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ABSTRACT

Dispatch rules are commonly used to schedule lots in the semiconductor industry. Earlier studies have
shown that changing dispatch rules that react to a dynamic manufacturing situation improves the overall
performance. It is common to use discrete event simulation to evaluate dispatch rules under different
manufacturing situations. On the other hand, machine learning method is shown to be useful in learning
the relationship of a manufacturing situation and the dispatch rules to generate dispatching knowledge. In
this work, we use simulation and machine learning methods to generate dispatching knowledge and define
features that are relevant in a dynamic product mix situation. However, more features will increase the risk
of overfitting the machine learning model. Hence, dimension reduction methods are explored to reduce
overfitting and improve generalization of the model. Simulation results show that this approach can adapt
the dispatch rule combination and achieve a comparable factory performance measurement.

1 INTRODUCTION

In a complex manufacturing environment such as the semiconductor industry, scheduling is important to
optimize the performance of a factory. However, scheduling in these problems are NP-complete (Garey
and Johnson 1979), and in practice, dispatching rules are usually used (Metan and Sabuncuoglu 2005).
By applying a dispatch rule, the list of lots in the queue of a machine is given a priority ranking, and the
highest priority lot will be the first to dispatch to the machine when the machine becomes available. Global
dispatch rules are the same for all work centers, whereas local dispatch rules are specific to a work center
aiming at maximizing the capacity utilization. Hence, in a real factory, multiple dispatch rules are used in
different work centers.

In order to achieve a better performance in a dynamic manufacturing environment, a multi-pass strategy
is proposed (Wu and Wysk 1989; Shiue and Su 2003) as compared to a single-pass approach. A multi-pass
approach is to adapt to the best dispatch rules for a scheduling period; whereas a single-pass approach
is to use one dispatch rule for all scheduling period. The challenge of the multi-pass approach is the
determination of the best dispatch rules for the next scheduling period, and this decision often needs to be
made in real-time.

There are various studies to use machine learning techniques to learn the dispatch rules for a manufacturing
situation. The idea is to create a set of features that could be best to represent the current manufacturing
situation and predict the best dispatch rules to be applied to achieve a category of user-defined performance.
In (Shiue and Su 2003), a decision tree learning approach was used to generate the machine learning
model for dispatch rule prediction. For the model to work with high prediction accuracy, the training
data should represent as many manufacturing situations as possible. Still, it is time-consuming to generate
various manufacturing situations. Hence, multiple existing works proposed using the clustering algorithm
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and reinforcement learning to learn the best dispatch rules for a scheduling period based on a cluster of
similar system status (Shiue et al. 2011; Shiue et al. 2018).

It has been shown that using feature selection procedure reduces over-fitting of the training data
and delivers better generalization ability (Shiue and Su 2003). On the other hand, omitting important
feature will significantly reduce the learning process and affect prediction accuracy. Generating new
attributes automatically using frequent itemset and arithmetic operations is also shown to be helpful in
classification learning (Olafsson and Li 2010). Although more features will increase the discriminating
power of the machine learning algorithm, especially in a dynamic manufacturing situation, it runs the risk
of overfitting the machine learning model. Hence, it is essential to generate more features that could capture
the manufacturing situations but at the same time, reduce the number of nonimportant features to avoid
overfitting and improve generalization of the machine learning model. In a dynamic product mix situation,
a high number of features will result in over-fitting, and hence dimension reduction methods are explored
to improve the generalization ability of the machine learning model.

This study examines the process of generating a multi-pass system using a machine learning algorithm.
The remainder of the paper is organized as follows. In Section 2, we provide an overview of multi-pass
systems. In Section 3, we discuss the knowledge base generation of a multi-pass system. In Section 4,
we demonstrate the knowledge base generation process using a factory model and show the performance
comparison using an on-line simulation. Finally, Section 5 concludes the paper and outlines future research
directions.

2 MULTI-PASS SYSTEM

Manufacturing system changes dynamically in real operation, and studies have found that changing dis-
patching rule results in better factory performance than using a single dispatching rule (Wu and Wysk
1989). However, there are two fundamental requirements of a multi-pass system: i) to interpret real-time
manufacturing environment; and ii) to evaluate the dispatch rules to be applied without delaying real
operation (Nakasuka and Yoshida 1992). Hence, a knowledge-based system uses the knowledge of the
relationship between the manufacturing situations and the dispatch rules to select a dispatch rule (Priore
et al. 2014). In order to acquire the knowledge, iterative simulation is often used to explore multiple
manufacturing situations to build a knowledge base for dispatch rules selection (Nakasuka and Yoshida
1992). In order to describe the changing of dispatch rules in a specified time horizon, Wu and Wysk (1989)
used the term “multi-pass”, Nakasuka and Yoshida (1992) used the term “dynamic scheduling”, and Su
and Shiue (2003) used the term “adaptive scheduling”. In this study, the term “multi-pass” is adopted.

As the multi-pass approach is the study of changing the dispatch rules in a specific time horizon, the
variation of scheduling period on the machine learning model is being studied (Metan et al. 2010). The
scheduling period is defined as the period to apply a dispatch rule. It is found that a short scheduling
period results in the system switching rule too frequently and affects the long-run performance (Metan
and Sabuncuoglu 2005). Hence, in our study, we have fixed the scheduling period to be one day to avoid
frequent changes in dispatch rule.

In a real factory, there are varying types of ad-hoc situations that could impact on the factory performance,
such as the machine unavailability, rush orders, varying product mix, etc. Applying better dispatch rules
can mitigate the effect of randomness in the manufacturing environment (Schoemig 1999). However, for a
multi-pass approach to react to this randomness of the manufacturing environment, dispatching knowledge
must be acquired first. Simulating all possible scenarios to generate the manufacturing states is time
consuming and wasteful. Different randomness might result in the same manufacturing state. Hence,
self-organizing map (SOM) is proposed to group different manufacturing states, and only distinct groups
are simulated to acquire dispatching knowledge (Shiue et al. 2011).
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3 MULTI-PASS SYSTEM KNOWLEDGE BASE GENERATION

A multi-pass system can modify the dispatch rules based on the current manufacturing situation. A
knowledge-based approach is used to generate a relationship between a manufacturing situation and the
dispatch rules to be applied at the moment using a machine learning algorithm (Priore et al. 2014). However,
the manufacturing performance by using a knowledge-based approach would be negatively affected if the
training set is insufficient (Priore et al. 2001). Hence, training data generation is important to create
different manufacturing situations. A general overview of the self-adaptive dispatching system is shown
in Figure 1.

In the training data generator, the factory simulation model is used to evaluate the performance of the
dispatch rules with a simulator. The data preprocessing is a list of steps that transform the data generated
from the simulator to the machine learning algorithm input. The training data collection is to select the
best dispatch rule in a defined period for the training data. After the training data is generated, the machine
learning algorithm generates a knowledge base that relates the system state with the dispatch rule. The
control system captures the current system state and modifies the dispatch rules for the manufacturing
system using dispatch rule knowledge. The performance and manufacturing data from the manufacturing
system will then be passed to the knowledge refinement module to decide the generation of more training
data.

Figure 1: General overview of a self-adaptive dispatch rule system.

3.1 Factory Key Performance Measurement

Factory key performance could be measured in terms of throughput and average cycle time within a specific
period. Assuming the set of completed lots within the time period t is CompleteLott , the cycle time of lot
a is CycleTimea. The formula for throughput and average cycle time is given in equation (1) and equation
(2) respectively.

The shortcoming of using equation (1) and equation (2) to measure throughput and average cycle time is
that they only consider the lots that had completed. In a complex wafer manufacturing environment, where
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the cycle time of a product could be weeks or even months, these key performance measurement formulas
do not properly consider the lots that are still work-in-progress. Thus, Hansch (2015) has suggested the use
of dynamic daily going rate (dynDGR) as a measurement of throughput and dynamic cycle time (dynCT )
as a measurement of average cycle time. Equation (3) shows the definition of dynDGRi for product i,
where DGRli represents the daily output of operation l for product i and Li represents the total number of
operations for product i. Equation (4) shows that dynDGR is the summation of dynDGRi for all products I.
Equation (5) shows the definition of dynCT , where WIP is the total number of lots in work. As dynCT is
derived from dynDGR, we will be using dynCT as the main key performance measurement for the training
data generation.

T hroughput = |CompleteLott | (1)

AvgCycleTime =
∑a∈CompleteLott CycleTimea

|CompleteLott |
(2)

dynDGRi =
1
Li
∗

Li

∑
l=1

DGRli (3)

dynDGR =
I

∑
i=1

dynDGRi (4)

dynCT =
WIP

dynDGR
(5)

3.2 Training Data Representation

A triplet of {P,S,D} is used to represent the training data (Shiue and Su 2003). P represents the user-defined
performance; S represents the features; D represents the dispatch rules that perform best under the current
system attribute and user-defined performance. Earlier studies have listed the features in generating the
dispatching knowledge for the multi-pass system (Park et al. 1997; Su and Shiue 2003; Shiue et al. 2011).

However, the features suggested in the above-mentioned literature are factory level features. In a
complex manufacturing environment with different product mixes, using only factory level features is not
sufficient to represent the current state of the factory. For example, according to little’s law (Ignizio 2009),
two different products with the same cycle time but different due-date tightness will have the same level of
WIP if the factory throughput rate remains the same for both products. However, due to the difference in
due-date tightness, a due date related dispatch rule will be preferable in some cases as compared to other
dispatching rules. Hence, product level features are required to differentiate the dispatching requirements
under different product mix.

Table 1 shows the different categories of features that could potentially be used in the training data.
In this study, only different product mix scenario is generated. Hence, we have chosen the factory and the
product category for feature consideration. Table 4 shows the lot related features. The lot related features
are used to generate the fab and product features shown in Table 3. Features are further classified into
statistics features (e.g., OprT St in Table 3) and summation features (e.g., SumJ in Table 3). For each
statistics feature, four summary statistics (St) are calculated. They are minimum (Mi), maximum (Ma),
average (Me), and standard deviation (Sd) (that is, St ∈ {Mi,Ma,Me,Sd}). Hence, the total number of
features can be determined by:

Numbero f Products×Numbero f ProductStatisticsFeatures×Numbero f SummaryStatistics+
Numbero f Products×Numbero f ProductSummationFeatures+Numbero f FactoryStatisticsFeatures×

Numbero f SummaryStatistics+Numbero f FactorySummationFeatures

For example, for a factory model with two products, there is a total of 87 features.
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As we have chosen dynCT as the key performance measurement in our study, we selected dispatch
rules that will be affected by the lot cycle time as candidate dispatch rules. The selected dispatching rules
are shown in Table 2.

Table 1: Category of features for the manufacturing environment.

Feature Category Description
Factory Features that provide fab level information, such as overall factory WIP.
Product Features that provide product level information, such as product WIP.
Lot Features that provide lot level overview, such as lot wait time.
Work center Features that provide work center level overview, such as uptime.
Equipment Features that provide equipment level overview, such as equipment uptime.

Table 2: Candidate dispatch rules in the study.

Dispatch Rule Description
SIO Select the lot with the shortest operation process time.
SPT Select the lot with the shortest product process time.
CR Select the lot with minimum ratio between remaining due date time and remaining

processing time.

3.3 Training Data Collection Mechanism

The training data collection mechanism as described by (Shiue and Su 2003) is an exhaustive search for
every combination of manufacturing situations and dispatch rules. It requires the training data generator
to exhaustively explore the combination of dispatch rules with a multi-pass simulation before deciding the
training data by observing the performance for the whole simulation period. However, we collect training
data by running a single-pass simulation and compare the factory level dynCTt for each time period t.

Multiple single-pass simulations with different dispatch rules are executed on a steady-state simulation
model for a predefined simulation run length to generate the training data. These single-pass simulation
models share the same model characteristics such as wafer start pattern and machine availability except
only for dispatch rules. After the warm-up time, the simulation period is divided by time period t, as shown
in Table 5. For each time period, the features of the model are captured at the start of the time period,
and the performance measurement is calculated at the end of the time period. Table 5 shows a numeric
example of the features and performance measurement for the training data collection. As wafer start and
machine availability are the same between the same time period of different single-pass simulation, it is
assumed that dynCTt of the time period is comparable across the different single-pass simulation. The
features corresponding to the best performing dispatch rule in a time period, in terms of dynamic cycle
time, are chosen as the training data.

3.4 Dimensionality Reduction

High dimensional data is shown to improve the discriminating power of the classifier but increases
the processing time (Lee and Landgrebe 1993). Manually generating more features based on domain
knowledge and the raw production data is shown to be important in the learning of the relationship between
manufacturing situations and dispatch rules (Chen and Yih 1996). Furthermore, new composite features
that are automatically generated via frequent itemset have also shown to provide new insight on the
dispatch rule (Li and Olafsson 2005). However, performing dimension reduction is important to enhance
the generalization ability of the knowledge base and reduce overfitting (Shiue and Su 2003; Priore et al.
2014). Dimension reduction could be achieved by feature selection or projection pursuit.
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Table 3: Factory and production features in the study.

Feature
Type

Feature Description

FAB OprT St Statistic summary of current operation processing time of all lots in the
factory.

FAB ProT St Statistic summary of total processing time of all lots in the factory.
FAB RemT St Statistic summary of remaining processing time of all lots in the factory.
FAB SlkT St Statistic summary of slack time of all lots in the factory.
FAB LtnASt Statistic summary lateness of all lots in the factory.
FAB QueT St Statistic summary of queue time of all lots in the factory.
FAB RmdDSt Statistic summary of remaining due time of all lots in the factory.
FAB SumJSt The total number of lots in the factory.
PRODUCT OprT PdSt Statistic summary of current operation processing time of all lot with

product Pd.
PRODUCT ProT PdSt Statistic summary of total processing time of all lot with product Pd.
PRODUCT RemT PdSt Statistic summary of remaining processing time of all lot with product

Pd.
PRODUCT SlkPdSt Statistic summary of slack time of all lot with product Pd.
PRODUCT LtnAPdSt Statistic summary of lateness of all lot with product Pd.
PRODUCT QueT PdSt Statistic summary of queue time of all lot with product Pd.
PRODUCT RemdDPdSt Statistic summary of remaining due time of all lot with product Pd.
PRODUCT SumJPdSt The total number by product Pd lots in the system.

Feature selection is to select a subset of features from the original features that yield the minimum
generalization error (Vergara and Estévez 2014). The features that are selected still retain the original data
and information prior feature selection process. Information retention of the feature is important when new
insights are needed to generate new knowledge. However, due to the dynamic nature of the manufacturing
environment, feature selection might provide a different set of features under different product mix situations.
If the product mix is dominated by a particular group of products in the training data, then feature selection
would select the features that are affected by the group of the products due to sparse data from other low
volume products. On the other hand, the relationship between the feature and the training label is also
important in a supervised learning algorithm. Hence, in this paper, we use mutual information to select
the top 20-percentile features (Kraskov et al. 2004).

Projection pursuit is another dimensionality reduction method. Principle Component Analysis (PCA)
is a common method for projection pursuit. The goal of the projection pursuit is to find a k orthonormal
vector that could best represent the training data and then project the training data with the vector (Han

Table 4: Lot feature.

Lot Attribute Description
OprTi Current operation processing time of lot i.
ProTi Total processing time of lot i.
RemTi Remaining processing time of lot i.
SlkTi Slack time of lot i.
LtnAi Lateness of lot i.
QueTi Queue time of lot i.
RmdDi Remaining due time of lot i.
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Table 5: Example of training data selection of two dispatch rule.

Time Period,
t

Dispatch Rule 1, d1 Dispatch Rule 2, d2 Result
Min(dynCTt ,d1,
dynCTt ,d2)

Selected
Feature

Feature
(St ,d1)

Performance
(dynCTt ,d1)

Feature
(St ,d2)

Performance
(dynCTt ,d2)

1 S1,d1 dynCT1,d1 S1,d2 dynCT1,d2 dynCT1,d1 S1,d1

2 S2,d1 dynCT2,d1 S2,d2 dynCT2,d2 dynCT2,d1 S2,d1

3 S3,d1 dynCT3,d1 S3,d2 dynCT3,d2 dynCT3,d2 S3,d2

et al. 2012). The value k represents the number of significant components that provide information about
the variance of the data. By eliminating components that have low variance, the number of the resulting
dimensions is reduced. However, PCA knows only about the variance of components and chooses the
components that best represent the variance. In a supervised learning algorithm where the training label
is provided in the training data, which is the dispatch rule (D), the PCA does not consider the relationship
of the projected data with the training label. Hence, Linear Discriminant Analysis (LDA) is used in our
attempt to reduce dimensionality by projection pursuit (Hastie et al. 2009). LDA is closely related to PCA
but with the additional consideration of promoting separation by the training label. The objective of LDA
is to find a vector that could promote the distance between the projected data of each training label and
minimize the variance in the projected data of each label. The k value of LDA is bound by the number of
dispatch rules in the training data.

4 EXPERIMENT

4.1 Simulation Model Construction and Training Example Generation

The case study uses a four work centers factory model to generate the training data (Ignizio 2009). The
model is verified by comparing the simulated throughput of the factory with the theoretical capacities of the
factory. Table 6 shows the number of visits to each work center by different products. Table 7 is a summary
of the product and product mix used in the factory model. Five different products are created by repeating
the operations from PRODUCT 1 by a factor. The model is tuned so that the fab is in steady-state and
factory utilization is at 90% without machine interruptions. Mix Short has a product mix that is dominated
by the short process time products; Mix Equal has a product mix of equal weightage of all products, and
Mix Long has a product mix that is dominated by long process time products.

The lot start rate is exponentially distributed with a mean of 1 day, and 40 different random seeds are
used to vary the lot start pattern. Each simulation is run for 30 days, with 10 days of warm-up period.
The data collection period is set to be 1 day, and this will result in 20 data points for each arrival pattern.
Hence, for a single product mix, we will generate 800 data points and a total of 2400 data points for the
3 different product mix. As there are 5 different products, there is a total of 174 features generated.

Table 6: Work center description.

Work
center
ID

Work center
Name

No. of
ma-
chine

No of
visits
PID 1

No of
visits
PID 2

No of
visits
PID 3

No of
visits
PID 4

No of
visits
PID 5

Mean Pro-
cess Time
(minute per
lot)

1 WC LITHO 45 3 6 9 12 15 79.3
2 WC DEP 60 4 8 12 16 20 79.8
3 WC ETCH 60 4 8 12 16 20 76.4
4 WC STRIP 30 2 4 6 8 10 74.6
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Table 7: Product mix ratio used in this study.

PID Product Name Number
of Opera-
tions

Product Pro-
cess Time
(day)

Product mix ratio (%)

Mix Short Mix Equal Mix Long
1 PRODUCT 1 13 0.7 84 20 5
2 PRODUCT 2 26 1.4 6 20 4
3 PRODUCT 3 39 2.1 4 20 3
4 PRODUCT 4 52 2.8 3 20 3
5 PRODUCT 5 65 3.5 3 20 85

4.2 Features and Dimension Reduction

Two different types of features are collected during the training data collection process. “FAB” training
data features only contain factory level features, while “FAB PRODUCT” training data features include
features that are both product level and factory level. As the product mix ratio changes, it is logical to
assume that “FAB PRODUCT” features are better than “FAB” features because more features increase the
discriminating power of the classification data and result in better prediction accuracy. However, as more
features are introduced to the training process, the training time will be increased. Furthermore, features
that have no data variance such as minimum and maximum of product process time (ProT Mi, ProT Ma) is
also redundant and should be removed. Hence, a feature selection algorithm is important to reduce the
unimportant features of the training data and achieved dimension reduction.

In order to select features that have a higher dependence on the classification label, mutual information
(MI) score is calculated (Kraskov et al. 2004). A higher MI score means higher dependency between the
feature and the training label. Figure 2 shows the feature selection process selecting the top 20% of these
features that achieve a high MI score.

Projection pursuit is another dimension reduction method. In this example, we have chosen linear
discriminant analysis (LDA) (Hastie et al. 2009). LDA projects the features into a lower dimension to
maximize the separation between the classes. The number of dimensions is reduced to k-1 where k is the
total number of class in the training data. As we have chosen three dispatch rules to generate our training
data, hence, it is possible to visualize the LDA projection in a two-dimensional plot. Figure 3 shows the
LDA projection of the training data using “FAB” and “FAB PRODUCT” features. As more features are
provided in “FAB PRODUCT” the class separation is better than the use of “FAB” features.

Table 8 shows a summary of the total number of features after applying dimension reduction methods.
While projection pursuit and features selection are both dimension reduction methods, the result of projection
pursuit is the projection of the original feature using the discriminant function. Hence, the feature meaning
after the projection pursuit does not carry the same meaning of its original feature.

Table 8: Total number of features after applying dimension reduction on the different feature type.

Feature Type Dimension Reduction Total Number of Features
FAB No 29
FAB Feature Selection 6
FAB Projection Pursuit 2
FAB PRODUCT No 174
FAB PRODUCT Feature Selection 35
FAB PRODUCT Projection Pursuit 2
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Figure 2: Frequency diagram of FAB and FAB PRODUCT features by mutual information score.

Figure 3: LDA data projection of FAB and FAB PRODUCT features.

4.3 Cross-Validation of Machine Learning Model

In this paper, we used the support vector classification (SVC) to generate the machine learning model (Chang
and Lin 2011). We use 10-fold cross-validation to validate the machine learning model where training and
testing are done in 10 iterations. The training data is first randomly partitioned into 10 partitions. During
each iteration of validation, 9 partitions of data are retained for training, and 1 partition is used for testing.
The accuracy of the evaluation is measured by the number of an exact match between the predictions label
and the testing label.

Figure 4 shows the average accuracy of the validation scenarios with different feature types. The result
has shown the “FAB PRODUCT” feature type improves accuracy. This is because the variation of the
product-related features is affected by the product mix used in the training data generation. Hence, by
including the product-related features into the training data, it improves the discriminating power of the
learning algorithm. The result also shows that the dimension reduction method is effective in improving
accuracy as compared to no dimension reduction.

4.4 On-line Simulation Verification

In this study, the learning model is used to rerun the same product mix with 40 replications, using the same
wafer start pattern as the training data. The objective of the study is to determine whether the learning model
can adapt the right dispatch rule based on the different manufacturing situations. For each replication, we
set 10 days of warm-up period that uses the FIFO dispatch rule and run the on-line decision model for
the next 20 days. The decision period is set to one day, and the learning model adapts a global dispatch
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Figure 4: Average accuracy of 10-fold cross-validation across different feature with all data points from
product mix Mix Short, Mix Equal and Mix Long.

rule based on the current manufacturing simulation at the beginning of every simulation day. As dynCT
is used as the factory performance in our study, it is reasonable to expect that the SPT dispatch rule is the
best long-term dispatch rule to be applied in Mix Equal and Mix Long scenario because SPT would result
in high fab level dynDGR and in return reduces dynCT . We also observed SPT rule as the best dispatch
rule for Mix Short scenarios. This is because fab level dynDGR is the aggregation of all products dynDGR
without weightage of the individual product.

The training data is potentially not generated from a continuous manufacturing situation because each
period is treated independently during dynCT comparison. However, using the discriminating power of
the “FAB PRODUCT” feature type, the on-line simulation is able to adapt the best dispatch rule most of
the time and resulted in a comparable long term dynCT when compared with SPT dispatch rule. Figure 5
shows the average dynCT across the 40 replications between SPT and on-line simulation.

In the future, it will be interesting to see how the on-line simulation will perform in a varying product
mix wafer start. As the wafer start mix is not the same as the line mix, the varying product mix wafer
start will have an intermediate effect on the line mix before the line reaches a steady state. In order
to adapt to the right dispatch rule, it is essential to have a knowledge refinement module to generate a
sufficient manufacturing situation as the training data for the machine learning algorithm. Furthermore, as
dynCT does not consider individual product performance, other performance measurements should also
be explored to account for product-level performance.

5 CONCLUSIONS AND FUTURE WORK

In a situation-aware dispatching system, selecting a good dispatch rule will help increase factory performance.
Hence, forming a relationship between the manufacturing situations and best dispatch rules is important
for situation aware dispatching system.

In this study, we have analyzed the features of three different product mix. By including features that
are product-related, we noticed accuracy improvement of the prediction model. However, using a large
number of features will result in overfitting and reduce the generalization of the machine learning model.
Hence, we proposed using LDA as a dimension reduction method. This resulted in higher prediction
accuracy and better generalization, as shown in the experimental results.

We then used the machine learning model to predict the dispatch rule in multiple on-line simulation
runs. The results show that the factory performance using the machine learning model is comparable with
that of using the best-known dispatch rule. This shows the dispatching knowledge is acquired, and the
relationship between manufacturing situations and best dispatch rules is created. However, the multi-pass
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Figure 5: Dynamic cycle time comparison between SPT and on-line simulation.

system did not outperform the best-known dispatch rule in our scenario because we use only fab level
dynCT in this study which does not account for product-level performance. Furthermore, the factory model
used in the study is simplified and does not consider other variability in a manufacturing environment, such
as the machine interruption.

This paper represents a step towards the direction of realizing situation aware dispatching in a dynamic
and complex manufacturing system. Further studies need to be carried out to include other manufacturing
situations such as machine interruptions into the machine learning model. Besides, techniques to explore
distinct manufacturing situations so as to reduce the time to acquire the knowledge will be investigated.
Finally, it would be interesting to apply the situation aware dispatching to the real-world scenarios with
more complex factory models.
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