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ABSTRACT

We present Neural Input Modeling (NIM), a generative-neural-network framework that exploits modern
data-rich environments to automatically capture simulation input distributions and then generate samples
from them. Experiments show that our prototype architecture NIM-VL, which uses a novel variational-
autoencoder architecture with LSTM components, can accurately, and with no prior knowledge, automatically
capture a range of complex stochastic processes and efficiently generate sample paths. Moreover, we show
that the outputs from a queueing model with (known) complex inputs are statistically close to outputs
from the same queueing model but with the inputs learned via NIM. Known distributional properties such
as i.i.d. structure and nonnegativity can be exploited to increase accuracy and speed. NIM can thus help
overcome one of the key barriers to simulation for non-experts.

1 INTRODUCTION

Stochastic discrete-event simulation is a time-honored technology for improving the design and operation
of complex engineered systems under uncertainty, but the barriers to entry are high. Traditionally, a domain
expert examines the existing system and specifies the simulation model structure (system elements and
their interrelations), along with probability distributions for simulation inputs, which are often fitted to
empirical data gleaned from the existing system. For example, a manufacturing expert might decide that a
robot station in an automated manufacturing system can be modeled as a FIFO queue. Based on a small
number of observed arrival times for raw parts and observed processing times for the manufacturing robot,
the expert will fit probability distributions for these quantities. Finally, the validated simulation model can
be used to explore potential improvements to the station via changes in buffer sizes, robot capabilities, job
scheduling, and so on. Although modern simulation software tools such as AnyLogic and Arena provide
graphical interfaces that can greatly ease the task of specifying the simulation model structure, modeling
the simulation inputs remains one of the most challenging tasks for a non-expert. Our goal is to facilitate
this process via automation.

Traditional input modeling Traditionally, data for fitting input distributions has been expensive and
painful to collect—e.g., a human would have to stand on a factory floor, stopwatch in hand—and hence has
been in short supply. With little data available, a modeler typically imposes strong simplifying assumptions,
for example, by assuming that the interarrival times to a system are independent and identically distributed
(i.i.d.) according to one of a set of supported distribution functions from which the system can efficiently
generate samples. The specific distribution function is selected as the one that best fits the observed data,
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as measured by an appropriate goodness-of-fit statistic; state-of-the-art tools such as ExpertFit (Law 2015,
Ch. 6) or Stat::Fit (Geer Mountain Software 2020) can automate this selection task.

Unfortunately, i.i.d. distributions with complex features such as multimodality are typically hard to
capture; e.g., one of our experiments in Section 4.1 (see Figure 10) shows that ExpertFit fails to model
a nonstandard Gamma-Uniform mixture distribution. Even for “simple” distributions, handcrafted variate-
generation code has traditionally been required. Jiang and Nelson (2018) proposed averaging multiple
fitted distributions to achieve better fidelity, and Hörmann, Leydold, and Derflinger (2004) have provided
methods for automatically producing generation code for a range of distributions, but in both cases the
distribution functions must be explicitly pre-specified, which restricts flexibility in modeling.

The situation becomes even more challenging when inputs are not well modeled as a sequence of
i.i.d. random variables. A system such as ExpertFit will sometimes detect the lack of i.i.d. structure, but
then, with little guidance or software support, the user faces a bewildering array of possible models for
autocorrelated, possibly nonstationary sequences, including time series models such as ARIMA, GARCH,
SETAR, and so on, with various choices for the innovations distribution (Box, Jenkins, Reinsel, and Ljung
2016), or, for arrival processes, direct point process models of arrival times such as nonhomogeneous,
compound, clustered, or doubly-stochastic Poisson processes (Cox and Isham 1980). Even after settling
on a stochastic-process model, efficiently generating sample paths can be decidedly nontrivial.

The other option for non-expert input modeling is to fit an empirical distribution for i.i.d. data and
use input traces for more general stochastic processes, perhaps combined with some sort of bootstrap
re-sampling. Both approaches suffer from the fact that the data values produced during a simulation run
are generally limited to those in the available data or, in the case of empirical distributions, require ad hoc
tail modeling (Law 2015, p. 361) This issue is one aspect of a general overfitting problem: the simulation
model captures the training data precisely but does not generalize well beyond it. Use of input traces has
the additional drawback that, if the simulation model is to be deployed widely, moving potentially large
amounts of data around is cumbersome and raises potential privacy issues.

Neural input modeling We aim to exploit the fact that data is becoming ever more abundant due to the
increasing use of sensors, the emergence of the Internet of things (IoT), and the retention of log data in
formally defined process management systems (van der Aalst 2018). Other potential sources of structured
log data include information extraction from text (Niklaus, Cetto, Freitas, and Handschuh 2018), as well as
from images and video (Zhou, Xu, and Corso 2018). Our key observation is that, in data-rich environments,
neural networks are a powerful and flexible tool for learning complex and subtle patterns from data; if
designed carefully, they can potentially automate the tasks of learning simulation input distributions and
of generating samples from these distributions during simulation runs.

We present NIM (Neural Input Modeling), a framework for automated modeling and generation of
simulation input distributions. NIM uses generative neural networks (GNNs), which not only learn a
complex statistical distribution, but provide a means of sampling from the distribution as well. NIM is
designed to avoid overfitting problems and, unlike with input traces, can generate sample values outside
the original training range. To our knowledge, NIM is the first system to use GNNs in order to automate
input modeling, thereby helping to democratize the use of stochastic simulation methodology.

NIM takes inspiration from the inversion method. Suppose we want to generate samples of a continuous
random variable X having cumulative distribution function (cdf) F . If we generate Z ∼N(0,1), then it is well
known that X = G(Z) is distributed according to F , where G(Z) = F−1(Φ(Z)) and Φ is the cdf of a standard
normal random variable. We can extend this idea to a stochastic process X = (X1,X2, . . . ,Xt) having joint
cdf F by factorizing F(x1,x2, . . . ,xt) as F1(x1)F2(x2|x1) · · ·Ft(xt |x1,x2, . . . ,xt−1). We then generate i.i.d.
normal variates Z1, . . . ,Zt and set X1 = G1(Z1),X2 = G2(Z2|X1), . . . ,Xt = Gt(Zt |X1,X2, . . . ,Xt−1), where
Gi(zi|x1, . . . ,xi−1) = F−1

i

(
Φ(zi)|x1, . . . ,xi−1

)
. That is, we have specified a function G that transforms Z =

(Z1, . . . ,Zt) into a sample path X = (X1, . . . ,Xt) having joint distribution F . NIM can be viewed as a system
for automatically learning the complex transformation function G from i.i.d. samples of X .
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Figure 1: NIM-VM training and generation architectures.

Our initial NIM prototype derives from a particular form of GNN called a variational autoencoder,
or VAE (Doersch 2016; Kingma and Welling 2013). A VAE uses a pair of neural networks to learn an
internal representation of a stochastic process from data (the “encoder”) and then transform a sequence of
i.i.d. Gaussian input variables into a realization of the modeled process (the “decoder”). A VAE does not
need to make any prior assumptions about the features of the training data, and appears easier to work
with than other types of GNNs, such as generative adversarial networks.

Paper organization In Section 2, we start by reviewing the standard VAE model of Kingma and Welling
(2013), which uses “multilayer perceptrons”—see, e.g., (Hastie, Tibshirani, and Friedman 2009)—for
both the encoder and decoder. Direct use of this VAE leads immediately to a simple neural network,
called NIM-VM, that is restricted to modeling and generation of i.i.d. random variables. We then describe
(Section 3) how the basic NIM-VM architecture can be modified by using “Long Short-Term Memory”
components (Hochreiter and Schmidhuber 1997) for the encoder and decoder. The resulting network, called
NIM-VL, can then compactly represent complex stochastic processes. NIM-VL can be further adapted to
exploit known properties of the stochastic process of interest to increase speed and accuracy. In Section 4,
we provide empirical evidence showing that NIM can accurately and automatically capture a range of
complex stochastic input processes and then efficiently generate synthetic sample paths. We also examine
the effectiveness of NIM in the context of a queueing simulation model with complex inputs. We conclude
in Section 5. A short work-in-progress version of this paper appeared in (Herbert, Cen, and Haas 2019);
the current paper contains the first full mathematical description of NIM, new extensions to exploit prior
knowledge of data characteristics, a significantly expanded experimental study and comparison to ExpertFit,
and an application to real-world call center data.

2 VARIATIONAL AUTOENCODERS AND NIM-VM

In this section, we describe the standard VAE framework, which directly yields the basic NIM-VM neural
network for modeling and generating sequences of i.i.d. random variables.

In general, a generative neural network can generate new data instances from a data distribution
P(x) after being shown i.i.d. training samples from P. GNNs have been used in a variety of domains,
including construction of music, faces, text, and more. In the setting of simulation input modeling, the
new data instances might represent i.i.d. interarrival or service times in a queueing network, blood-pressure
measurements for arriving patients, and so on. We focus on real-valued stochastic processes throughout.

VAE overview A variational autoencoder is a specific type of GNN that accomplishes the learning and
generation tasks via a pair of neural networks, an encoder E and a decoder D. The generative model for
the observed data assumes that a data sample is created by (1) sampling a latent variable from some prior
distribution, (2) feeding that latent variable into a function g that outputs a data-generation distribution,
and (3) drawing a sample from the data-generation distribution. The encoder E in the VAE learns to infer
the latent-variable values that likely produced the observed data samples. Thus a trained encoder maps an
observed data value x into a latent value z that serves as the internal representation of x; the mapping is
stochastic in nature. The decoder D learns the function g, taking a latent variable sample z and outputting
the data-generation distribution from which the final sample is drawn. We use historical data to train both
E and D such that the foregoing process will, to a good approximation, generate samples from P.

NIM-VM is a direct implementation of such a standard VAE; see Figure 1. The prior distribution P(z)
of the latent variable z is N(0,1), a standard normal distribution. The data-generation distribution is of the
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Figure 2: Multilayer perceptron vs. long short-term memory.

form P(x | z) = N(µ̂, σ̂). The decoder D thus learns the mapping from z to (µ̂, σ̂) =
(
µ̂(z), σ̂(z)

)
, and the

final sample y is generated from the corresponding normal distribution. This generation process is illustrated
in Figure 1b. We feed a sequence of i.i.d. N(0,1) z-values into the trained decoder to produce the desired
sequence of i.i.d. y-values having distribution P. On the other hand, given a data example x, the encoder
infers the posterior probability P(z | x)—the posterior distribution of the latent representation z given the
observed data x. This distribution is complex and, in general, expensive to compute: an application of Bayes’
theorem requires evaluation of

∫
P(x | z)P(z)dz over all configurations of latent variables, and z is often

high-dimensional. We therefore approximate the posterior distribution by a simpler distribution Q(z | x),
which we take to be a normal distribution N(µ̃, σ̃2). Thus encoder E thus learns the mapping from x to
(µ̃, σ̃) =

(
µ̃(x), σ̃(x)

)
, and the latent variable z is generated from the corresponding normal distribution.

This generation process is illustrated in leftmost portion of Figure 1a.
Note that the input z to the decoder depends on whether we are in the training or generation phase.

During training, a sample from the posterior distribution N(µ̃, σ̃2) will be input to the decoder function;
this is done by setting z = µ̃ + σ̃ξ , where ξ ∼ N(0,1). During generation, z is a sample from N(0,1).

Network architecture Both the encoder and the decoder employ a multilayer perceptron (MLP) structure,
which takes inspiration from biology. A standard MLP consists of three layers of neurons: an input layer,
a hidden layer and an output layer. In the hidden layer and the output layer, each artificial neuron receives
a signal from one or more neurons in the previous layer, applies a nonlinear “activation function”, and
then sends the result to the next layer. In our setting, the input layer comprises one neuron, the output
layer comprise two neurons (one each for the normal mean and variance), and the hidden layer comprises
m≥ 1 neurons; Figure 2a shows an MLP with m = 3. In NIM-VM, the encoder computes µ̃ and σ̃2 from
an observation x via the sequence of computations

h̃ = max(0m,W̃1x+ b̃1), µ̃ = W̃2h̃+ b̃2, log σ̃
2 = W̃3h̃+ b̃3,

where 0m is a column vector of m zeros, the maximum is taken component-wise, W̃1, b̃1 ∈ℜm×1, W̃2,W̃3 ∈
ℜ1×m, and b2,b3 ∈ℜ. Similarly, the decoder computes µ̂ and σ̂2 from a latent variable z via

ĥ = max(0m,Ŵ1z+ b̂1), µ̂ = Ŵ2ĥ+ b̂2, log σ̂
2 = Ŵ3ĥ+ b̂3.

We denote by θ = (W̃1,W̃2,W̃3, b̃1, b̃2, b̃3,Ŵ1,Ŵ2,Ŵ3, b̂1, b̂2, b̂3) the parameters of the network. The W ’s and
b’s are called weights and biases; they are learned during the training phase, which we now discuss.

Training the VAE The training phase seeks parameter values θ that minimize a carefully chosen loss
function. Specifically, the loss for a training point x is given by

L(x;θ) = DKL
(
Qθ (z | x)

∥∥ P(z)
)
−Ez∼Qθ (z|x)

[
logPθ (x | z)

]
, (1)
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where DKL denotes Kullback-Liebler divergence and we have explicitly indicated the dependence on θ ; see
(Doersch 2016) for a formal derivation. Under the VAE assumptions, i.e. P(z)=N(0,1), Qθ (z | x)=N(µ̃, σ̃2)
and Pθ (x | z) = N(µ̂, σ̂), the loss takes the specific form

L(x;θ) =−1
2
(log σ̃

2− µ̃
2− σ̃

2 +1)+
1
2

(
log2π + log σ̂

2 +
(x− µ̂)2

σ̂2

)
. (2)

Note that µ̃ = µ̃(x;θ), σ̃2 = σ̃2(x;θ), µ̂ = µ̂(z;θ), and σ̂2 = σ̃2(z;θ); we often suppress these dependencies
for readability. Also note that the second term is a method-of-moments estimator of the second term in
Equation (1): given a training point x, we approximate Ez∼Qθ (z|x)

[
logPθ (x | z)

]
by logPθ (x | z), where z is

the value output by the encoder.
The key ideas motivating the form of the loss function are that (i) given i.i.d. N(0,1) z-values, the

decoder will produce µ̂(z) and σ̂2(z) values such that the resulting y-values will jointly be distributed as
an i.i.d. sample from the target data distribution, and (ii) a set of z-values produced by the encoder, taken
together, look like i.i.d. samples from a standard normal distribution N(0,1), since this is what is needed
during generation. In the loss function, the first term represents the KL-divergence between N(µ̃, σ̃2) and
N(0,1); minimizing this term helps achieve goal (ii) above. The second term is the negative expected
log-likelihood of x under the N(µ̂, σ̂2) distribution for z, also called the reconstruction loss; minimizing this
term (i.e., maximizing the expected log-likelihood), helps achieve goal (i), which is to make the synthetic
data look like the training data. Importantly, the KL-divergence term acts as a regularizer and helps prevent
overfitting to the training data.

The VAE network is trained using mini-batch stochastic gradient descent (MSGD). The MSGD algorithm
first shuffles and partitions the training dataset into disjoint batches. For each training-data example in a
given batch, MSGD computes the gradient of the loss function in Equation (2) with respect to the network
parameters θ . MSGD then updates θ by taking a step in the direction −g, where g is the sum of the
gradients in the batch. The algorithm repeatedly cycles through the batches, updating θ until the sum of the
loss over all the batches converges. Our implementation uses the Adam algorithm (Kingma and Ba 2014),
which uses a constant step size α and actually takes a step in direction −d, where d is computed as a
normalized, exponentially weighted moving average of current and past gradients for the current batch. We
use the default hyperparameter values (α , exponential weights, etc.) specified by Kingma and Ba (2014).

3 LSTM COMPONENTS AND NIM-VL

NIM-VM can be used to model and generate i.i.d. random variables. In this section we describe how to
extend our methodology to model and generate i.i.d. sample paths of a stochastic process, given a training
set of i.i.d. sample paths.

NIM-VL overview A straightforward solution would directly modify NIM-VM so that a training point x is
now a sample path: x = (x1,x2, . . . ,xt) for some t > 1. Then the input layer of the MLP for encoder E would
comprise t neurons to hold x and the output layer would consist of 2t neurons to hold µ̃ = (µ̃1, . . . , µ̃t)
and σ̃2 = (σ̃2

1 , . . . , σ̃
2
t ). During training, we would generate z = (z1, . . . ,zt) by setting zi = µ̃i + σ̃iξi for

i ∈ [1..t], where the ξi’s are i.i.d. N(0,1). Similarly, the input layer of the MLP for decoder D would now
comprise t neurons to hold z and the output layer would contain 2t neurons to hold µ̂ and σ̂2. During
the generation phase, we would feed a vector z = (z1, . . . ,zt) of i.i.d. N(0,1) random variables into the
decoder, and generate y = (y1, . . . ,yt) by setting yi = µ̂i+ σ̂iζi for i ∈ [1..t], where the ζi’s are i.i.d. N(0,1).
Correspondingly, we would have W̃1 ∈ℜm×t , W̃2,W̃3 ∈ℜt×m, and b2,b3 ∈ℜt .

This approach has three serious problems. First, the number of neurons—or, equivalently, the sizes of
the weight matrices and bias vectors—grows linearly with the length of the stochastic process, leading to a
network that is slow and cumbersome when modeling long sequences. Second, the model can only handle
a fixed input and output size, namely t. For example, if each training sample path has length t = 100,
then the network can only generate sample paths of length 100. Finally, MLPs are not good at capturing
long-range dependencies, which is key to modeling complex stochastic processes (Lipton 2015).
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Figure 3: NIM-VL training architecture.
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Figure 4: NIM-VL generation architecture.

To overcome these problems, we modify the NIM-VM architecture by incorporating Long Short-Term
Memory (LSTM) components, as introduced by Hochreiter and Schmidhuber (1997). We refer to the
resulting, novel neural architecture as NIM-VL. Specifically, we replace the MLP networks in both the
encoder and decoder with LSTM layers. Moreover, instead of feeding a latent variable z = (z1,z2, . . . ,zt)
directly to the decoder during training or generation, we pass pairs (z1,0),(z2,x1), . . . ,(zt ,xt−1) to the
decoder during training, and pairs (z1,0),(z2,y1), . . . ,(zt ,yt−1) during generation, where x = (x1, . . . ,xn) is
an input (training) sample path and y = (y1, . . . ,yn) is an output (generated) sample path. Figures 3 and 4
show the training and generation architectures.

The LSTM layers allow the VAE to compactly capture temporal correlations within a sample path.
In addition, the change to the decoder’s input increases NIM’s flexibility. This can be seen clearly in
Figure 4. Instead of generating sample paths whose length is fixed and limited by the length of the training
data, NIM-VL can generate values one at a time, thereby enabling it to generate sample paths of arbitrary
length. We note that, even though the form of the above pairs might create the impression that an LSTM is
Markovian in nature, the LSTM architecture in fact explicitly models temporal correlations over multiple
time steps (Lipton 2015, Sec. 1.2).

LSTM details LSTM networks belong to the family of recurrent neural networks (RNNs); see (Lipton 2015).
RNNs are widely employed in sequence-modeling tasks such as machine translation, image captioning,
text-to-speech synthesis, handwriting recognition, and game playing. Whereas an MLP treats a sequence
x = (x1,x2, . . . ,xt) as merely a point in a high-dimensional space, RNNs explicitly model the current value
xi as a function of the previous value xi−1 and a hidden state vector. This hidden state vector allows RNNs
to capture long-range dependencies. For example, an RNN that models arrivals to a restaurant might learn
that a high arrival rate in the morning predicts a high arrival rate later that evening. LSTM networks improve
upon standard RNNs by allowing easier and more stable training. For brevity, we give a high-level functional
overview of LSTMs below, and refer the reader to (Hochreiter and Schmidhuber 1997) for further details
about the low-level architecture.

At a time step i, the LSTM unit receives the hidden state and cell state from the previous time step,
along with the current input. The unit computes a new hidden and cell state through a series of non-linear
transformations, and passes this data on to the next time step. The hidden state is also fed into the input
layer of a task-specific MLP to compute the final output yi. For our specific NIM-VL encoder, the MLP’s
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hidden layer transforms the input hidden state h̃i into an intermediate state g̃i, which is then used to compute
µ̃i and σ̃2

i ; the decoder behaves analogously. Figure 2b depicts this process. We also show an “unrolled”
version of the LSTM network to clearly illustrate the data flow (Figure 2c).

Formally, the network structure is as follows. Let hi,ci ∈ℜm and gi ∈ℜl be the hidden state, cell state,
and task-specific hidden state at time i, where m and l are user-defined sizes. Let xi be the input at timestep i
and θLSTM be the collection of trainable weights inside the LSTM network. For simplicity, we denote the
entire LSTM transformation at time i as (hi,ci) = fLSTM(hi−1,ci−1,xi;θLSTM). Then the encoder computes
µ̃ and σ̃2 from an observation x via the sequence of computations

(h̃i, c̃i) = fLSTM(h̃i−1, c̃i−1,xi;θLSTM), g̃i = max(0m,W̃1h̃i−1 + b̃1), µ̃i = W̃2g̃i + b̃2, log σ̃
2
i = W̃3g̃i + b̃3.

The decoder similarly computes µ̂ and σ̂2 from z via

(ĥi, ĉi) = fLSTM(ĥi−1, ĉi−1,zi;θLSTM), ĝi = max(0m,Ŵ1ĥi−1 + b̂1), µ̂i = Ŵ2ĝi + b̂2, log σ̂
2
i = Ŵ3ĝi + b̂3

The training procedure is similar to NIM-VM, in that we use the Adam algorithm for mini-batch
gradient descent to minimize an appropriate loss function. With training points now t-dimensional, i.e.,
x = (x1, . . . ,xt), the loss function in Equation (1) now takes the specific form

L(x;θ) =−1
2

t

∑
i=1

(log σ̃
2
i − µ̃

2
i − σ̃

2
i +1)+

1
2

t

∑
i=1

(
log2π + log σ̂

2
i +

(xi− µ̂i)
2

σ̂2
i

)
.

Exploiting domain knowledge When building a simulation, the modeler usually has some domain
knowledge about the input processes to the system. For example, when studying the behavior of a queueing
system, we know that the interarrival times and the processing times must always be positive. In other cases,
we might know that the blood-sugar levels of successive patients are independent and identically distributed,
or that the distribution of transportation times is multimodal. Exploiting these types of knowledge lets us
train a more accurate NIM model, and can also accelerate training and generation. We outline some specific
techniques below. Although we describe our methods in the context of NIM-VL, they can also be applied
to NIM-VM essentially without change.

Bounded random variables If we know a priori that there exist lower and/or upper bounds on the range
of the input stochastic process of interest, then we first transform each training point x = (x1, . . . ,xt) by
applying a nonlinear transformation φ that maps each value into (−∞,+∞), thereby creating a modified
training point x′ =

(
φ(x1), . . . ,φ(xt)

)
. We then apply the normal training procedure to the x′-values. During

the subsequent generation phase, we apply the inverse transform to each generated point y′ = (y1, . . . ,yt)
to create the final output y =

(
φ−1(y′1), . . . ,φ

−1(y′t)
)
. For example, if the original range is (α,+∞) we can

choose φ(v) = log(v−α) and φ−1(x) = ev+α . Similarly, if the range is (−∞,α), then we can negate each
value so the range becomes (−α,+∞) and apply the same method. For a range (α,β ), we can choose
φ(v) = ψ−1

(
(v−α)/(β −α)

)
and φ−1(v) = (β −α)ψ(v)+α , where ψ(v) = 1/(1+ e−v) is the sigmoid

function.

I.i.d. random variables If the target variables are known to be i.i.d., then we can simply use the NIM-VM
architecture discussed in Section 2. This can increase both accuracy and generation speed, since NIM-VM
will not learn any erroneous inter-temporal correlations, and MLP components are simpler and faster than
LSTM components.

Multimodal distributions If we know that the marginal distributions of the xi’s are multimodal, we can
replace the usual Gaussian data-generation distribution N(µ̃, σ̃2) in the decoder by a Gaussian mixture
distribution with M mixture components, where M is a user-specified parameter. Specifically, given an
input zi, the decoder first executes the following computations:

(ĥi, ĉi) = fLSTM(ĥi−1, ĉi−1,zi;θLSTM), ĝi = max(0m,Ŵ1ĥi−1 + b̂1), αi = softmax(Ŵ2ĝi + b̂2). (3)
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(a) ACF GT (b) ACF NIM-VL (c) PACF GT (d) PACF NIM-VL

Figure 5: ACF and PACF for ARMA(3,3) process.

For v = (v1, . . . ,vM), the ith component of softmax(v) is defined as evi/∑
M
j=1 ev j . The components of the

vector αi = (αi1, . . . ,αiM) thus sum to 1, and are interpreted as mixture coefficients. The decoder computes
the individual means and variances for the mixture components via

µ̂i j = Ŵ3 jĝi + b̂3, log σ̂
2
i j = Ŵ4 jĝi + b̂4

for j ∈ [1..M]. We also change the second term in the loss function accordingly to

t

∑
i=1

log
( M

∑
j=1

αi j(2πσ̂
2)−1/2 exp

(
(x− µ̂i j)

2/2σ̂
2
i j
))

.

To generate an output yi, we first choose a mixture component by sampling j ∈ [1..M] according to the
probabilities αi1, . . . ,αiM, and then sample yi from the jth Gaussian distribution N(µ̂i j, σ̂

2
i j).

4 EXPERIMENTS

We conducted a series of experiments to assess NIM’s accuracy and performance. Our results indicate that
NIM can faithfully model both complex i.i.d. probability distributions and complex stochastic processes.
Moreover, when interarrival and service times learned by NIM are used to drive a GI/G/1 queueing simulation,
the outputs are close to those of the same simulation but with the “ground truth” input processes. NIM
was also able to accurately model the arrival process to a real-world call center. Finally, NIM exhibited
fast training and generation speeds, enabling practical deployment, and the required training-set sizes were
modest compared to other VAE applications such as images, music, and text.

4.1 Synthetic Complex Input Processes

We tested NIM-VL on five synthetic complex stochastic processes: an ARMA(3,3) process, a nonstationary
ARMA/ARMA mixture process, an interarrival-time sequence for a nonhomogenous Poisson process, the
waiting-time sequence for a GI/G/1 queue, and a sequence of i.i.d. multimodal random variables. In each
case, NIM-VL was trained with 1,000 ground truth sample paths, each of length 100 unless otherwise
noted. (For the i.i.d. example, this amounts to 100,000 i.i.d. training samples.) Sample paths generated
traditionally are called “ground truth” and those generated by our VAE are called “NIM-VL”. Unless
specified otherwise, we took h̃i, c̃i, g̃i ∈ℜ32 in the encoder, and similarly for the decoder.

ARMA(3,3) We first modeled an ARMA(3,3) process using NIM-VL. The autoregressive coefficients
were (0.3,0.4,−0.1) and the moving average coefficients were (0.2,0.3,−0.7). At test time, we generated
one NIM-VL sample path and compared it to a ground truth ARMA(3, 3) sample path, both of length
10,000. Figure 5 shows the empirical autocorrelation function (ACF) and partial autocorrelation function
(PACF) of the ground truth ARMA time series and NIM-generated sample path. Notice that the ACF and
PACF of the NIM-VL generated sample path have damped-sine-wave shapes almost identical to those of
the ground truth ARMA process.
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Table 1: Mean log-likelihood of sample paths generated by NIM-VL, ground truth and ExpertFit.

Stochastic Process NIM-VL Ground Truth ExpertFit ExpertFit Dist’n / Quality

ARMA(3, 3) −198.56±1.18 −197.98±1.07 −5931.81±240.43 Johnson SU / Good

NHPP 43.00±0.17 43.53±0.17 37.73±0.18 Pearson Type VI / Good

I.i.d. Gamma-unif. mix. -236.26±0.39 -226.95±0.19 -415.42±0.64 Johnson SB / Bad

(a) Ground Truth (b) NIM-VL (c) Difference

Figure 6: Empirical correlation coefficients for the ARMA/ARMA mixture stochastic process.

We also numerically evaluated the fidelity of NIM-VL by computing the mean log-likelihood, under
the ARMA(3,3) distribution, over 1,000 sample paths of length t = 100 generated (i) by NIM-VL after
training, (ii) as sequences of i.i.d. samples from a fitted distribution found by ExpertFit, and (iii) directly
from a true ARMA(3,3) distribution (and different from the paths used to train NIM-VL). The results are
given in the first row of Table 1, where precision is indicated by 95% confidence-interval bounds. It can be
seen that the mean log-likelihood for NIM-VL generated sample paths is close to that for the ground truth
sample paths. ExpertFit was unable to detect the inter-temporal correlations of ARMA(3,3), and mistakenly
identified the process as a sequence of i.i.d. samples from a Johnson SU distribution, rating the fit as
“good”. Not surprisingly, the log-likelihood score was extremely poor in this case.

ARMA/ARMA mixture Next, we considered a mixture {Xi}i≥1 of two nonstationary ARMA(2,2) processes
{Ai}i≥1 and {Bi}i≥1 (with standard Gaussian innovations). To generate a sample path, we ran both processes
in parallel; at time step i, we set Xi = Ai with probability 0.5 and otherwise set Xi = Bi. The parameters
of the two processes are (0.95,−0.1;0.2,0.95) and (0.8,−0.3;0.3,0.7). At test time, the trained model
was used to generate 10,000 NIM-VL sample paths of length 100, and these NIM-VL sample paths were
compared against 10,000 validation ground truth sample paths (again distinct from the sample paths used
for training). As a simple way to compare these complex, nonstationary stochastic processes, we took
the validation ground truth sample paths xn = (xn,1, . . . ,xn,100) for n ∈ [1..10,000] and computed empirical
correlation coefficients ρ̂GT

i j = Ĉorr[Xi,X j] for 1≤ i, j≤ 100. We similarly computed ρ̂NIM
i j for the NIM-VL

sample paths, and plotted the absolute differences di j = |ρ̂NIM
i j − ρ̂GT

i j | in a heat map. Figures 6a and 6b
show the empirical correlations ρ̂GT

i j and ρ̂NIM
i j respectively. Figure 6c gives the correlation difference plot.

Note that Figure 6a and Figure 6b both have scale [0,1] while Figure 6c has scale [0,0.1]. The largest
absolute correlation difference value is 0.060, indicating good agreement.

Nonhomogeneous Poisson process We next tested our approach on a nonhomogenous Poisson process
(NHPP) interarrival time process with a rate function λ (t) = 1

2 sin(π

8 t)+ 3
2 . Because we know a priori that

interarrival times for a NHPP are positive with probability 1, we applied the log-transformation technique
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Figure 7: Empirical correlation
coefficient differences for NHPP.

Figure 8: Empirical arrival rates
for NHPP.

Figure 9: Empirical correlation
coefficient differences for GI/G/1
waiting-time sequence.

described in Section 3 when using NIM-VL. Ground truth data was generated via thinning; see (Law 2015,
p. 474). Figure 7 shows the correlation differences. The largest absolute correlation difference is 0.069,
again indicating good agreement.

We next compared the empirical arrival-rate function to the ground truth function λ ( ·) given above.
We trained NIM-VL on 1,000 sample paths of arrival times in the time interval [0,50], and tested on
10,000 sample paths with arrivals in [0,100]. Figure 8 shows the empirical and ground truth arrival-rate
functions. As can be seen, the agreement is quite good, not just during the interval [0,50], the period on
which NIM-VL was trained, but also on the interval [50,100], where NIM-VL never saw data values during
training. NIM-VL thus learned the underlying statistical structure of the NHPP—without knowing that it
was an NHPP—and thus was able to extrapolate beyond the training data.

Finally, we computed log-likelihoods of generated sample paths, analogously to our ARMA(3,3)
experiment. Looking at the second row of Table 1, it can be seen that, as with ARMA(3,3), the mean
log-likelihood for NIM-VL generated sample paths is close to that for the ground truth sample paths.
ExpertFit is again unable to detect inter-temporal correlations, and mistakenly identifies the process as
a sequence of i.i.d. samples from a Pearson Type VI distribution, rating the fit as “good”. Although the
log-likelihood score is much better than for ARMA(3,3), it is still lower than for NIM-VL. We note that a
more careful user of ExpertFit could generate an autocorrelation plot, and hence might visually detect the
lack of independence, but then there would be no guidance on what to do next.

Waiting time sequence for a GI/G/1 Queue The next complex stochastic process that we examined
was the waiting-time sequence for a GI/G/1 queue, which can be generated from the well-known Lindley
recursion or by simulating the queue. We used a Gamma(0.25,4) interarrival-time distribution and a
Gamma(0.5,1).service-time distribution. Since the waiting time is always nonnegative, we used the log-
transformation described in Section 3. We generated 1,000 sample paths, each comprising the sequence of
waiting times for the first 100 jobs, and used these to train NIM-VL (with h̃i, ĥi ∈ℜ128). We then compared
the NIM-VL sample paths against a validation set of 1,000 ground truth sample paths. Figure 9 shows the
empirical correlation differences; the maximum difference is 0.056, again showing good agreement.

Multimodal distribution Finally, in the i.i.d. setting, we show how domain knowledge can be exploited to
accurately capture a multimodal interarrival-time distribution by using the Gaussian-mixture technique of
Section 3, as well as a log-transformation to enforce nonnegativity. We denote the resulting network as NIM-
VL-GM. Specifically, we consider a mixture distribution having two components, a Gamma(2.875,0.5) and
a Uniform(10,20) distribution, with mixing weights 0.6 and 0.4. For this challenging distribution, ExpertFit
fitted a Johnson SB distribution family to the data, completely missing the multimodality, but at least rated
the fit as “bad”. As shown in Figure 10, the enhanced version of NIM-VL is able to capture the structure
of this distribution. Moreover, the third line in Table 1 shows that the empirical mean log-likelihood of
NIM-VL-GM is close to that of ground truth, and is significantly higher than that of ExpertFit.
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Figure 10: Empirical densities for
Gamma-Uniform mixture.

Figure 11: Empirical arrival rates
for emergency-call data.

Figure 12: Q-Q plot for W60 dis-
tribution in a GI/G/1 queue.

Table 2: Min. # of training sample paths required to achieve fidelity comparable to n = 1000 baseline.

Stochastic process: ARMA(3,3) ARMA mix. NHPP GI/G/1 Waiting time Gamma-unif. mix.

Min. # sample paths: 10 500 250 500 1,000

4.2 Real World Dataset: Emergency Call Center

We applied NIM-VL (with h̃i, ĥi ∈ℜ128) to a real world dataset, the daily emergency-call interarrival times
for the San Francisco Fire Department (SFFD) in 2018. We randomly selected two thirds of the data
(243 days) to train the model. We then generated sample paths and compared their empirical arrival rate
function to the remaining one third (122 days) of the SFFD data. As can be seen in Figure 11, the empirical
arrival-rate function of NIM-generated data closely approximates that of the actual data. Note that the
ground truth arrival-rate function is constructed from less data than was used to construct the arrival-rate
function for NIM-VL, and hence is less smooth.

4.3 A Queueing Simulation

Our final experiment examines the end-to-end effect of using inputs from NIM-VL to simulate the waiting
time W60 of the 60th job in an NHPP/Gamma/1 FIFO queue: the interarrival time process is an NHPP as
before and service times are i.i.d. Gamma(1.2,0.4). The training sets for interarrival times and for service
times each comprise 1000 sample paths with 50 observations per path. We apply our log-transformation
method for interarrival and service times. Figure 12 shows a Q-Q plot for the distribution of W60 over
4,000 simulation replications, comparing simulations with ground-truth inputs to simulations with NIM-VL
inputs; There is close agreement between the simulations. Note that each sample path in the training data
comprises only 50 jobs, but we simulate 60 jobs. This indicates that, if the system is not too nonstationary,
we can extrapolate beyond our training set; a trace-driven simulation would not be applicable here.

4.4 Training Times, Generation Speeds, and Training-Set Size

We implemented NIM-VL in PyTorch 1.0 and trained our models on a workstation equipped with a 2.10GHz
Intel Xeon CPU having 376 GB of RAM, plus an NVIDIA GeForce RTX 2080 Ti GPU with 12GB memory
and CUDA 10.1 installed. Training times ranged between 10 and 20 minutes.

After training, the models were exported in ONNX format, which can then be used for sample-path
generation on a wide range of computers. In particular, we tested generation speeds on a commodity 2018
MacBook Pro (2.2GHz 6-core Intel Core i7 with 32GB of RAM). We were able to generate 1,000 sequences
of 1,000 learned NHPP interarrival times in roughly 0.85 seconds. For i.i.d. data, NIM-VM (with 32 hidden
nodes per encoder and decoder) is able to generate 106 i.i.d. learned exponential random variables in
roughly 0.12 seconds. Note that sample-path generation consists mainly of simple matrix multiplications,
which can potentially be accelerated via GPUs. Thus NIM-VL is fast enough to be usable in practice.
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We have used a baseline training-set size of 1,000 sample paths throughout; this data requirement is
much milder than for, e.g., image generation. We tested the effect of training-set size, recording for each
synthetic stochastic process the smallest size for which the fidelity was comparable to the baseline; see
Table 2. We observe that the simpler the distribution or stochastic process, the less training data is needed.

5 CONCLUSION AND FUTURE WORK

Generative neural networks are promising tools for automating the modeling and generation of simulation
input data. NIM can automatically capture complex stochastic processes—exploiting prior knowledge if
available—thereby facilitating one of the hardest tasks in a simulation study. NIM is not a silver bullet,
however. Estimating tails, especially heavy ones, and extrapolating far beyond the training data are challenging
tasks for any input modeling scheme. Sanity checking and validation are still needed; we recommend using
visualization and data mining techniques to initially explore the training data. We have released NIM
as an open source tool (https://github.com/cenwangumass/nim), and are currently exploring techniques
for handling discrete random inputs, marked point processes (Cox and Isham 1980), multidimensional
processes, and input processes that are nonstationary but homogeneous as in (Box et al. 2016, p. 88).
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