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ABSTRACT

Machine Learning-based Anomaly Detection approaches are efficient tools to monitor complex processes.
One of the advantages of such approaches is that they provide a unique anomaly indicator, a quantitative
index that captures the degree of ’outlierness’ of the process at hand considering possibly hundreds or more
variables at the same time, the typical scenario in semiconductor manufacturing. One of the drawbacks
of such approaches is that Root Cause Analysis is not guided by the system itself. In this work, we
show the effectiveness of a method, called DIFFI, to equip Isolation Forest, one of the most popular
Anomaly Detection algorithms, with interpretability traits that can help corrective actions and knowledge
understanding. Such approach is validated on real world semiconductor manufacturing data related to a
Chemical Vapor Deposition process.

1 INTRODUCTION AND LITERATURE REVIEW

In complex manufacturing environments like semiconductor manufacturing with hundreds of machines
involved in the day-by-day production of a single fab, monitoring of processes is a crucial activity to
perform corrective actions in time and ensure elevated production quality and reduced costs associated with
scrap products.

Typically monitoring is achieved by means of univariate control charts over quantities like key process
indicators or statistics/features of the sensor data collected from the equipment. This approach, widespread
in many industries, is effective for its simplicity, but has several drawbacks, namely:

• univariate approaches in many cases are not able to capture multi-dimensional anomalies (see Figure
1);

• univariate control charts rely on the fact that monitored quantities follow Gaussian distributions,
that is difficultly the case in real-world applications;

• when dealing with dozens of processes (Pampuri et al. 2012), this generates hundreds of control
charts to be monitored, making users overwhelmed by this quantity of information and leading
such users to not act systematically or even ignore the suggestions coming from these tools.

Machine Learning (ML)-based Anomaly Detection (AD) approaches allow to overcome the above-
mentioned issues, providing a unique module that is able to jointly consider all the data related to a system
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Figure 1: Univariate Control Charts; in this 2-dimensional example, an outlier, represented by the red circle
(Top-left panel), cannot be detected by monitoring the control charts related to xi (Top-right panel) and x j

(Bottom-left panel).

and to provide a degree of ‘outlierness’ for the process iteration under exam; AD solutions provide an
anomaly score - also called with various other names like deviance index or health factor (Susto et al.
2018) - that summarizes with a unique index how much the system in its current state differs from its past,
typical behaviour.

In semiconductor manufacturing literature, several works have proven the effectiveness of AD techniques
when dealing with hundreds of monitored quantities (Susto et al. 2017), (Puggini and McLoone 2018).
While some works in the literature have used supervised approaches to deal with anomaly detection
(Nakazawa and Kulkarni 2019), (Rostami et al. 2016), typically when speaking of AD tasks we are
considering forecast approaches when dealing with time-series data or unsupervised approaches for ‘static’,
feature-based monitoring problems. In the past recent years, several Deep Learning-based solutions have
been presented for their capabilities of handling time-variant, complex data structures (Chen et al. 2018),
(Kim et al. 2018), (Liao et al. 2018), (Maggipinto et al. 2019); nevertheless, feature-based approaches are
more widespread and versatile, since they can be applied to any monitoring problem (Puggini and McLoone
2018), (Puggini and McLoone 2016), (Susto et al. 2017). In this context, we will consider in this work the
Isolation Forest (Liu et al. 2008), (Liu et al. 2012), a powerful model both in terms of outlier detection
accuracy and computational efficiency, that has already been employed in the context of semiconductor
manufacturing (Puggini and McLoone 2018).

Beside their main advantages, AD methods have a major drawback that limits their diffusion in many
real scenarios, that is the lack of interpretability and, consequently, the lack of a natural approach to guide
the operators in performing Root Cause Analysis (RCA) procedures. In this work we employ for the first
time in semiconductor manufacturing an interpretability method for Isolation Forest called Depth-based
Isolation Forest Feature Importance (DIFFI) (Carletti et al. 2019), that provides the user with a sorted list
of the variables monitored in the AD task according to their importance; the list provided by DIFFI also
comes with scores quantifying the importance of each variable in the AD task, enabling both quick and
informed RCA and enhanced process understanding.

We demonstrate the effectiveness of the proposed approach compared with other interpretability methods
like Permutation Importance (Altmann et al. 2010), also this applied for the first time, to the best of our
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knowledge, in the context of semiconductor manufacturing. As case study, we investigate a Chemical
Vapor Deposition (CVD) (Susto et al. 2011) monitoring problem.

The rest of the paper is organized as follows: in Section 2 the Isolation Forest is reviewed and the
DIFFI method is illustrated. Section 3 is devoted to provide the experimental settings and results on a
CVD case study. Finally, conclusions and future works are highlighted in Section 4.

2 METHODOLOGY

2.1 Isolation Forest

The Isolation Forest (Liu et al. 2008; Liu et al. 2012) is among the most used AD algorithms due to its
good performance on a wide variety of application domains, the limited number of hyperparameters to be
tuned and the low computational cost. It is an ensemble method which combines the predictions of base
estimators, called isolation trees, characterized by a tree-like structure. The core idea behind the functioning
of the Isolation Forest is based on the fact that anomalies are ”few and different” (Liu et al. 2008), i.e. they
are lower in number and they have very different features values with respect to normal instances. Relying
on these properties, each isolation tree performs an isolation procedure aimed at distinguishing between
normal and abnormal instances. This is achieved by means of split tests performed at each internal node
of the tree, starting from the root node: instances associated to the generic node v are routed to either the
left child or the right child, depending on whether the value of the splitting feature f associated to node
v is smaller than or greater than a given splitting threshold. Both the splitting feature and the splitting
threshold associated to a specific internal node are chosen randomly. The procedure is repeated until the
node only contains one instance or the tree reaches a predetermined maximum height. As a result, all
instances end up in a leaf node, i.e. a node with no children. In light of the properties listed above, we
should expect anomalies to be associated with leaf nodes closer to the root since the isolation of data points
far away from the others should require less split tests with respect to normal instances. As mentioned
above, the Isolation Forest consists of a collection (an ensemble) of isolation trees and typically each tree
is trained on a subset (with fixed size ψ) of instances sampled from the original training set, allowing for
low computational cost, low memory consumption and reduced swamping and masking effects. We refer
the curious reader to (Liu et al. 2008; Liu et al. 2012) for more details on the implications of sub-sampling.

At the evaluation stage, for the generic instance x, we need a systematic way to put together the
information provided by each tree and define a unique measure of outlierness, the so-called anomaly score.
This is done as follows:

s(x,ψ) = 2−
E(h(x))

c(ψ) (1)

where E(h(x)) is the average path length of x (i.e. the average number of edges x passes through in its
path from the root to the leaf node), c(ψ) is a normalization term given by

c(ψ) =


2H(ψ−1)−2(ψ−1)/ψ if ψ > 2,
1 if ψ = 2,
0 otherwise,

with the harmonic number H(i) estimated as H(i) ≈ ln(i)+ 0.5772156649. The last step consists in a
thresholding operation on the values of anomaly score in order to associate a predicted label ŷ with any
data point of interest: ŷ = 1 represents a predicted anomaly, while ŷ = 0 represents a predicted inlier. Based
on the value of the predicted labels, the set D of data points of interest is partitioned into:

• the subset of predicted inliers PI = {x ∈D | ŷ = 0};
• the subset of predicted outliers PO = {x ∈D | ŷ = 1}.
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2.2 Feature Importance for Isolation Forest

Despite many appealing properties, the Isolation Forest exhibits a major drawback: the lack of interpretability.
As a matter of fact, the output at the evaluation stage is just a prediction, in the form of either an anomaly
score or a predicted binary label, and no explanation about the logic behind the prediction is provided.
While this is not necessary a problem in many applications, additional information about the process under
examination may be the key for the development of actionable insights in industrial scenarios. In this work,
we rely on the model-specific method proposed in (Carletti et al. 2019), called DIFFI, for the interpretation
of Isolation Forest. The method is completely unsupervised and has been proven to have good performance,
especially in presence of correlated features. The core of the DIFFI method is represented by an iterative
procedure carried out separately over the subset of predicted inliers PI and the subset of predicted outliers
PO. Such a procedure is based on the evaluation of splits performed in each internal node (of each isolation
tree) in terms of the capability of isolating data points and outputs a vector of importance scores, whose
i-th component indicates the score associated with the i-th feature. As pointed out in (Carletti et al. 2019),
in the context of AD a feature is deemed ‘important’ if it facilitates the isolation of anomalies and, at the
same time, does not contribute to the isolation of normal data points. These are the reasons why the final
feature importance scores are computed as the ratio between the scores obtained on the subset of predicted
outliers and subset of predicted inliers. Indeed, for the generic feature f a high importance score on the
subset of predicted inliers denotes a significant relevance of feature f in the task of isolating inliers, which
is clearly the opposite objective with respect to the AD task. The DIFFI method also takes into account
the randomness inherently present in the Isolation Forest model (i.e. random selection of splitting features
and splitting thresholds); the adopted approach performs a normalization procedure to filter out the effect
of randomness on the final feature importance scores.

2.3 Selection of the best predictions

As stated in (Carletti et al. 2019), the DIFFI method as outlined above has a major drawback: since we
iterate over PI and PO, the computational cost depends on the total number of data points n. The simplest
solution to this problem would be to randomly select a fraction of predicted inliers and outliers, but we can
easily define a smarter criterion which turns out to be beneficial also for the quality of the produced feature
importance scores. The strategy, suggested in (Carletti et al. 2019), consists in selecting the fraction of
predicted inliers with the lowest anomaly scores, and the fraction of predicted outliers with the highest
anomaly scores. We will define the resulting subsets as the set of selected inliers SI and the set of selected
outliers SO, respectively. Obviously, it holds that SI ⊂PI and SO ⊂PO. Notice that SI and SO can
be specified according to two different and alternative criteria:

• by defining the fraction of predicted inliers αI and predicted outliers αO to be considered, or
• by defining a fixed number of predicted inliers mI and predicted outliers mO to be considered.

The DIFFI computational cost when adopting the first selection strategy still depends, although indirectly,
on the total number of data points n (more precisely, it depends on the cardinality of PI and PO, which
in turn are influenced by the total number of data points n). The second selection strategy, instead, implies
a constant computational cost since the cardinality of SI and SO in this case are fixed and independent
of the cardinality of PI and PO, respectively.

Notice that through the selection process we focus the attention on data points whose associated
predictions are more confident. This reveals to a greater extent the inner logic of the Isolation Forest
since less confident predictions may inject noise into the feature importance scores computed by the DIFFI
method.

In Figure 2 a pictorial overview of the approach adopted in our experiments is displayed. Notice that
DIFFI relies on the inner structure of the Isolation Forest (big blue arrow). The selection process discards
less confident predictions (characterized by a lighter shade).
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Figure 2: Overview of the approach adopted in our experiments. Circles represent data points, where
green indicates predicted inliers and red predicted outliers. The darker the shade, the more confident the
prediction.

3 EXPERIMENTAL RESULTS

As anticipated in Section 1, our experiments are focused on a CVD process monitoring problem. Specifically,
we consider 4 datasets representing 4 different recipes, with different characteristic in terms of cardinality
(see Table 1). Data points are represented as 25-dimensional feature vectors, where each feature is derived
from sensor measurements installed on the equipment. It is worth highlighting that none of the considered
datasets is equipped with ground truth binary labels indicating whether a specific data point is anomalous
or not. In light of this, the exploitation of the collected data in the context of an AD problem might seems
senseless since the detection performance cannot be assessed. Instead, we claim that the formulation of an
AD task is reasonable and useful in many respects:

• in industrial scenarios labels are rarely available, thus the formulation of supervised problems is
practically almost never possible;

• AD algorithms (such as the Isolation Forest) which associate an anomaly score to each data point
are particularly useful in flagging potentially problematic situations, even in cases where the data
point under examination does not clearly represent an anomaly;

• unsupervised algorithms offer a multivariate alternative to simpler univariate control charts for
monitoring purposes.

In addition to the above considerations, in the specific case study considered in this work we can also rely
on prior knowledge due to the collaboration with domain experts. More in detail, thanks to the physical
interpretation that can be associated with most of the features, we have additional information about which
are the most relevant features for the CVD process at hand. This can be considered as a (noisy) ground truth
for the feature importance ranking and can be exploited to assess how well the feature importance ranking
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(a) Correlation between features - recipe 1. (b) Correlation between features - recipe 2.

(c) Correlation between features - recipe 3. (d) Correlation between features - recipe 4.

Figure 3: Correlation between features: recipe 1 dataset (a); recipe 2 dataset (b); recipe 3 dataset (c); recipe
4 dataset (d).

based on the DIFFI scores is aligned with domain knowledge. A good alignment between true and predicted
feature importance could help in increasing the user’s trust towards the predictions produced by the Isolation
Forest. If we denote the first feature with f1, the second one with f2 and so on, the prior knowledge is
represented by the claim that the most important features are { f15, f16, f17, f18, f19, f20, f21, f22, f23}.

For our experiments, we train an instance of the Isolation Forest with the default hyperparameters
setting suggested in the original paper, i.e. 100 isolation trees and sub-sampling size ψ = 256. For the
DIFFI method, we define a fixed number of predicted inliers and predicted outliers m = mI = mO = 50, so
that we have constant computational time, while ensuring satisfactory statistical significance of the obtained
results.

For the sake of simple visualizations, we report experimental results referred to a single experiment,
which is representative of a set of experiments performed with different random seeds, all leading to similar
results.

We compare the DIFFI scores with the feature importance scores obtained with the Permutation
Importance (PIMP) method, adapted to unsupervised settings by evaluating the deviation from original
predictions rather than the drop in detection performance under permutations of feature values. This choice
is motivated by the fact that PIMP method has been proven to achieve performance comparable with DIFFI
when features are not highly correlated (Carletti et al. 2019) and this is actually the case for recipe 1,
recipe 3 and recipe 4 datasets, as shown in Figure 3.
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(a) DIFFI - recipe 1. (b) DIFFI - recipe 2.

(c) DIFFI - recipe 3. (d) DIFFI - recipe 4.

Figure 4: DIFFI scores: recipe 1 dataset (a); recipe 2 dataset (b); recipe 3 dataset (c); recipe 4 dataset (d).

In Figure 4 are reported the DIFFI scores for recipe 1 dataset (top left), recipe 2 dataset (top right),
recipe 3 dataset (bottom left) and recipe 4 dataset (bottom right), respectively. It is evident that the DIFFI
method successfully identifies relevant features for the AD task since the important features according to
DIFFI align well with those indicated by domain experts.

Similar considerations hold for the feature importance scores obtained exploiting the PIMP method,
as can be seen in Figure 5. Despite the fact that the relative importance between most important and
least important features is not as pronounced as in the DIFFI scores (especially for recipe 4 dataset), it is
fair to say that PIMP method exhibits satisfactory performance as well. In light of this consideration, a
fundamental question arises: why do we need a new model-specific interpretability method for the Isolation
Forest if well-established model-agnostic methods such as PIMP perform comparably? The answer can be
found in Table 1, where the execution times of the two approaches are compared. Thanks to the fact that
its computational cost does not depend on the cardinality of the dataset, the DIFFI method is arguably the
best choice as the execution time is negligible if compared to the huge amount of time necessary for the
computation of PIMP scores.

It is worth noticing that interpretability in general (being it achieved thanks to DIFFI or other methods)
is highly valuable when dealing with semiconductor manufacturing processes as a tool to tackle many other
interesting questions, such as the following:

• Should we train different ML models for different machines? Or should we better train a single
ML model for all machines?

• Should we train different models for different ML chambers within the same machine? Or should
we better train a single ML model for all chambers?

• Should we train different ML models for different recipes? Or should we better train a single ML
model for all recipes?
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(a) PIMP - recipe 1. (b) PIMP - recipe 2.

(c) PIMP - recipe 3. (d) PIMP - recipe 4.

Figure 5: PIMP scores: recipe 1 dataset (a); recipe 2 dataset (b); recipe 3 dataset (c); recipe 4 dataset (d).

For the case study presented in this paper, a quick visual inspection of the diagrams in Figure 4 and Figure
5 suggests that different recipes should be kept separated w.r.t. AD modules. Indeed, feature importance
scores profiles are not consistent across the recipes. Put differently, features that are important for a specific
recipe might not be relevant to others and for this reason a model trained on data related to several different
recipes might struggle in achieving satisfactory detection performance.

Table 1: Execution times comparison: DIFFI vs PIMP.

Dataset Num samples DIFFI exec time [s] PIMP exec time [s]

Recipe 1 956 0.37 9.12
Recipe 2 34716 0.41 272.38
Recipe 3 3580 0.38 18.75
Recipe 4 13459 0.38 55.73

4 CONCLUSIONS AND FUTURE WORKS

In this paper we have shown in the context of semiconductor manufacturing how unsupervised Anomaly
Detection can achieve interpretability; more specifically, we employed feature importance approaches to
unsupervised outlier detection for the first time in this application context. In the proposed comparison we
focused on the Isolation Forest algorithm, one of the most popular approaches in AD, and we considered the
model-specific approach, DIFFI, for feature importance: we have shown the effectiveness of such approach
in a real CVD case study.
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Future works in the area of interpretability for AD in semiconductor manufacturing will consider more
complex data scenarios, like time-series data or Optical Emission Spectroscopy data, upon which effective
AD approaches have already been implemented in the literature.

ACKNOWLEDGMENTS

Infineon Technologies AG is gratefully acknowledged for financing this research activity. Part of this work
was supported by MIUR (Italian Minister for Education) under the initiative ”Departments of Excellence”
(Law 232/2016).

REFERENCES
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