Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

A DEVS SIMULATION ALGORITHM BASED ON SHARED
MEMORY FOR ENHANCING PERFORMANCE

Roman Cardenas Kevin Henares
Laboratorio de Sistemas Integrados Computer Architecture and Automation
Universidad Politécnica de Madrid Universidad Complutense de Madrid
ETSI Telecomunicacion, Avenida Complutense 30 C/ Prof. José Garcia Santesmases 9
Madrid 28040, SPAIN Madrid 28040, SPAIN
Patricia Arroba Gabriel Wainer
CCS-Center for Computational Simulation Systems and Computer Engineering
Universidad Politécnica de Madrid Carleton University
ETSI Telecomunicacion, Avenida Complutense 30 1125 Colonel By Drive
Madrid 28040, SPAIN Ottawa ON K18 5B6, CANADA

José L. Risco-Martin

Computer Architecture and Automation
Universidad Complutense de Madrid
C/ Prof. José Garcia Santesmases 9
Madrid 28040, SPAIN

ABSTRACT

The Discrete EVent System Specification (DEVS) formalism provides a unified method to define any
discrete-event system accurately. As the complexity of the system under study increases, the necessity of
simulation engines with higher performance rises. In this research, we present a chained DEVS simulator,
a DEVS-compliant, function-oriented simulation algorithm that exploits shared memory patterns to
improve the performance of sequential and parallel simulations. We also illustrate the positive impact of
this novel approach executing a set of DEVStone synthetic benchmarks and comparing a state-of-the-art
simulation engine with an updated version that implements the chained algorithm. Results show that the
chained simulator introduces up to 40% less synchronization overhead than the traditional simulation
approach.

1 INTRODUCTION

Multiple Modeling and Simulation (M&S) methodologies have emerged as a way to conduct preliminary
studies of complex systems (Mittal and Tolk 2020). Nowadays, M&S is a common practice in science,
technology, industry, and governance, reducing the capital expenses and potential hazards that testing with
real systems may imply (Ullah 2019). The increasing complexity of the models under study places the
definition of a formal method for model description as an important research field, as well as the
optimization of simulation engines in terms of speed and energy consumption (Guérout et al. 2013).
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Although there are different modeling formalisms, the Discrete EVent System Specification (DEVS)
(Zeigler et al. 2000) and its Parallel DEVS (PDEVS) variant (Chow 1996) showed success in expressing
any discrete-event formalism (Risco-Martin and Mittal 2019). PDEVS enables the description of a model
as a hierarchy of submodels and their relationship, including numerous advantages (e.g., modularity,
reusability, and shorter model description times).

The construction of models as a composite of submodels introduces the need for inter-model
communication. State-of-the-art PDEVS-compliant simulation engines use message-passing patterns:
models are managed by asynchronous, independent processors that follow a communication protocol for
synchronization. While this architecture enables a simple distribution of simulations, it introduces
unnecessary synchronization processing overheads in both sequential and parallel execution. This is
especially relevant with complex models, where messages are sent through multiple levels of the hierarchy,
producing a redundant propagation in the intermediate ports of the coupled components.

In this research, we introduce the chained DEVS simulator, a novel simulation algorithm for PDEVS
that exploits the benefits of shared memory systems. The algorithm introduces a function-oriented design
focused on reducing message-passing overhead. We discuss the potential benefits of the chained simulator
by benchmarking a simulation engine that implements this algorithm. The simulation overhead can be
reduced from 15 to 40%, depending on the structure of the model under study.

The paper is organized as follows. In Section 2, we provide a brief description of the PDEVS formalism
and enumerate different PDEVS-compliant simulation engines. Additionally, we discuss their
implementation patterns and procedures for benchmarking their performance. Section 3 presents the
chained DEVS algorithm, a novel implementation pattern for PDEVS simulation engines based on shared
memory for boosting the overall simulation performance in sequential and parallel simulation. We illustrate
the benefits of our proposal in Section 4, comparing a simulation engine with an equivalent version that
implements the chained algorithm. Finally, we present conclusions and future work in Section 5.

2 RELATED WORK

In this section, we first present the PDEVS formalism. We introduce different PDEVS simulation engines
and identify their most common implementation patterns. We also discuss about the main proposals for
analyzing and comparing the performance of DEVS environments.

2.1 DEVS and Parallel DEVS

The DEVS formalism (Zeigler et al. 2000) provides a rigorous foundation for discrete M&S. DEVS allows
the user to define a mathematical object (i.e., system) that represents an abstraction of real objects. PDEVS
(Chow 1996) is a popular variant of the original formalism, which addresses some deficiencies of the
original DEVS. In PDEVS, the behavior of a system can be described at two levels: atomic models, which
describe the autonomous behavior of a system as a series of transitions between states and its reactions to
external events, and coupled models, which describe a system as the interconnection of coupled
components. The formal definition of an atomic model is described as the following:

A =< X, Y,S, 6int: Sext: 66‘011,’ /1, ta >

An atomic model’s state is s € S at any given time. If no external events occur, its state remains in s
for a period of time ta(s) (i.e., time advance function). When the lifetime expires, the atomic model sends
a set of output events y € Y according to its output function A(s), and changes its state to a new one given
by the internal transition function &;,; (s). If one or more input events x € X occur before the expiration of
ta(s), the model changes to a new state determined by the external transition function &, (s, e, x). The
confluent transition function §.,, determines the next state in the case of collisions when a model receives
external events at the same time of its internal transition.

On the other hand, the formal definition of a coupled model is described as follows:
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M=<X,Y,C,EIC,EOC,IC >

where X is the set of inputs; Y is the set of outputs; C is the set of DEVS component models; EIC is the
external input coupling relation, from external inputs of M to component inputs of ¢; € C; EOC is the
external output coupling relation, from component outputs of ¢; € C to external outputs of M; and IC is the
internal coupling relation, from components outputs of ¢; € C to component inputs of ¢; € C.

2.2 PDEVS Simulation Algorithms

There are multiple simulation tools defined according to the PDEVS formal specification. These
engines are written in a wide variety of programming languages, like C++ (e.g., Cadmium (Belloli et al.
2019)), Java (e.g., xXDEVS (Risco-Martin 2014)), or Python (e.g., PyPDEVS (Van Tendeloo and
Vangheluwe 2014)). All these simulation engines are based on the same simulation algorithm: the PDEVS
abstract simulator (Chow et al. 1994). This approach proposes the use of independent, coordinating
simulation engines that interchange messages to synchronize any parallel task to be distributed across
asynchronous processors. In this abstract simulator, there are two types of simulation components:
simulators and coordinators. Simulators are attached to atomic models. On the other hand, coordinators
manage coupled models and are in charge of synchronizing their child simulators and coordinators (i.e.,
child processors). Abstract simulators exchange five synchronization messages:

e (@, t): collection messages. Parent coordinators send these messages to imminent child processors
(i.e., those processors whose next transition event is scheduled at time #) to execute the output
function A of their corresponding atomic model.

e (g, t): external messages. They contain bags of input events to be forwarded (i.e., x € X). Parent
coordinators send these messages to receiver child processors.

e (* ¢): transition messages. Imminent child processors receive this message to execute the
corresponding transition function (i.e., 8in¢, Oext, OF Oc0p) Of their atomic model.

e (y, t): output messages. They contain bags of output events (i.e., y € Y) to be forwarded from child
processors to parent coordinators. Parent coordinators forward these messages to the corresponding
processors according to the couplings defined in the model.

e (done, t): done messages. Child processors send these messages to acknowledge their parent
coordinator that they have finished processing a given pending task.

The communication between parent coordinators and child processors is always hierarchical, and
follows a request-response fashion: parents send requests to their child processors, and child processors
notify that they finished executing the requested action by responding with a done message.

Simulation engines based on this abstract simulator include explicit definitions of ports and couplings,
and each simulation cycle calls explicitly to functions in charge of propagating input/output events through
the model. Hence, for each coupling in the system, the same values in source ports are copied multiple
times until they reach the destination port. This approach is suitable for distributed simulation. In fact,
multiple research works are focused on distributed architectures to enhance simulation performance (e.g.,
RISE (Wainer et al. 2016) or the DEVSML 3.0 stack (Mittal and Risco-Martin 2017)). This message
passing process, though necessary for distributed simulation, impose a heavy simulation overhead in both
sequential and parallel simulation, where all the entities that participate in the simulation are hosted in the
same physical machine. As the main loop of the simulation engine is constantly copying messages sources
to consumers, the grouped propagation time results in a significant percentage of the overall execution time.

Multiple research works are focused on improving the performance of DEVS simulation engines
(Uhrmacher et al. 2018). For example, the flat DEVS simulator was defined (Kim et al. 2000).This approach
creates an equivalent DEVS model that removes all the intermediate coupled models. Although the new
model behaves as the original, the complexity is reduced. Doing so, the root coordinator of the simulation
engine is the parent coordinator of all the atomic models that describe the behavior of the system. This
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algorithm reduces the simulation synchronization overhead. However, messages are still copied depending
on the number of port couplings.

2.3 Measuring Discrete-Event Simulation Performance: the DEVStone benchmark

To measure and compare the performance of different PDEVS simulation engines, several comparison
methods have been presented, commonly applied to specific applications. The DEVStone synthetic
benchmark (Wainer et al. 2011; Risco-Martin et al. 2017) has been used to study a variety of DEVS engines.
DEVStone describes several synthetic models with assorted sizes and complexities. They are defined as
coupled models, containing a fixed structure which is recursively replicated in other children coupled
components. This recursion ends with a simpler coupled model, that only contains an atomic component.
All the models presented in DEVStone can be customized with four parameters: (i) width, that specifies the
number of atomic components per layer, (ii) depth, that specifies the number of nested coupled models, (iii)
internal transition delay, and (iv) external transition delay. The internal and external transition functions
are programmed to execute a fixed amount of time specified in these delays. There are four types of models:

e LI models (Figure 1a). This model has the simplest structure, with a low level of interconnections
for each coupled model.

o HImodels (Figure 1b). These structures contain a higher level of internal couplings than LI models.

e HO models (Figure 1c). The number of ports, input and output couplings increases.

e  HOmod models (Figure 1d). The number of ports of these models is like HO models. However, the
number of atomic models, couplings, and outputs grows exponentially.
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Figure 1: DEVStone models.
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By profiling the execution of an arbitrary model generated using the DEVStone benchmark, we can
have a sense of the simulation time spent just in propagating messages. For instance, in the XDEVS
simulation engine, message propagation takes 39.61% of the total simulation time for a HO model of depth
300, width 10, and no internal nor external delays. Based on these results, in this research, we propose a
chained simulation algorithm, which is compliant with the PDEVS formalism. In contrast with the classic
message interchange-based abstract simulator, the chained simulation algorithm uses a reduced function set
that avoids data propagation and enhances the simulation performance by carefully enabling autonomous,
asynchronous processors to share the same memory space.

3 THE CHAINED SIMULATOR

In this section we present the chained simulation algorithm, an equivalent to the classic PDEVS abstract
simulator that avoids the use of propagation functions. With the removal of couplings and the propagation
needs, we update the abstract simulator concept (Chow et al. 1994). As a result, we obtain a different
function set and replace message transmission by shared memory mechanisms.

The main structure of the chained simulator is similar. The behavior of each atomic component is
controlled by a simulator. The control flow in each coupled component is controlled by a coordinator.
Hence, simulators and coordinators reproduce a hierarchy like the one reflected by the atomic and coupled
components present in the model. Although all the components have ports, they now are defined
accordingly to the aforementioned idea: only the output ports of atomic models store new events to be
transmitted, while the rest of the ports only reference (directly or indirectly) them. In this way, when an
external transition is activated, the input data is read from their original source. Figure 2 illustrates how
memory management works in the chained simulation algorithm with a common example in the DEVS
literature: the Experimental Frame-Processor (EFP) model.
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/ 3 Gout
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Frame T G data
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(a) EFP model. (b) Memory management.
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Figure 2: Example for illustrating memory management in the chained DEVS simulator.

New data is only generated in the output ports of the atomic models. Therefore, in the example shown
in Figure 2, when the Generator atomic model produces a new output message via its output port G, this
message is written in the memory zone assigned to the Generator model (in Figure 2b, G data). The
simulator attached to this model creates a pointer to a memory zone that contains new data. This pointer is
represented in Figure 2b as the black arrow G, that is pointing to the memory zone G data. The simulator
sends this pointer to its parent coordinator, which is in charge of the Experimental Frame (EF) coupled
model. This coordinator resolves all the couplings according to the /C and EIC sets of the EF model. In
case of the IC, the output port G, is coupled to the input port Tamivea Of the Transducer model. The
coordinator of the EF then creates a virtual memory pointer (in Figure 2b, the green arrow labeled as Tyrived)
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that points to the memory position pointed by the pointer G,... The pointer T,.ieq is sent to the simulator in
charge of the Transducer model, so it can read the data that the Generator sent from the original memory
zone G data. On the other hand, the external coupling between Generator and the output port EF,,; of EF
creates another virtual pointer (in Figure 2b, this pointer is represented as the green arrow labeled as EF,.).
The coordinator of the EF model sends this pointer to its parent coordinator (the one in charge of the EFP
model), which resolves the couplings and detects a coupling between the EF and Processor models. The
coordinator generates another virtual pointer (shown as the blue arrow P;, in Figure 2b) that points to the
same memory zone pointed by the virtual pointer EF,, and sends it to the simulator that controls the
Processor atomic model.

This memory mapping is performed equivalently for the rest of output ports of atomic models (i.e., Tou
and P,,). Virtual memory mapping is a recursive process that enables any atomic model to read input data
from its original source, avoiding time-consuming intermediate read/write operations. The chained
simulator is a flat simulator, in which the model hierarchy disappears, and virtual memory mapping
becomes a simpler operation, reducing even more simulation overhead.

3.1 Implementing the Chained Simulator

The implementation of the chained simulator is divided in three parts: (i) the function set of the simulators,
(i1) the function set of the coordinators, and (iii) the root coordinator main routine, in charge of executing
the simulation loop. Keeping in mind a potential parallelization of the simulation algorithm, we ensure
access to the data corresponding the atomic output ports until all the dependent external events have been
executed. This is done by returning memory locks in the simulators collection functions @) indicating
their non-empty output ports. Parent coordinators are responsible of managing locks of their child
processors. Each coordinator must solve all the depending events due to couplings before unlocking ports
in their corresponding simulators. The function set of simulators and coordinators is the following:

e  (@(t): collection function. It is invoked on imminent simulators before the transition function, and it
may return locks pointing to ports with new data.

e ¥t P): transition function. It deals with internal and external state transitions. The argument P contains
tuples (Lfrom, Pro). For each tuple, the input port p: reads input data from the port that the lock lfrom
points to. Processors executing this function return their next time advance, #y.

e u(t, /): unlock function. It is used to remove the lock [ of a given output port and free its memory.
Functions are triggered hierarchically: only parent coordinators can execute a function of their child

processors. Atomic models are the only ones that produce data when the collection function of their
corresponding simulator is triggered. Furthermore, data is exclusively read when an atomic model triggers
an external transition function. Atomic models read input data directly from the original source, with no
intermediate copies required. Simulators check which output ports contain data after executing their
model’s output function. If there is data, the simulator locks the port and returns a reference of the port to
the parent coordinator. A lock provides read-only permits. While a port is locked, writing or deleting data
from the port is forbidden. Coordinators receive locks from their child processors. A new lock means that
the child processor’s port that is locked contains new data. If there is any /C, the coordinator sends the lock
to the influencees in the next transition function, so they have access to the data of the port. As locks have
read-only permissions, we ensure that simulators with access to the port’s values do not add nor remove
anything. If there is an EOC, the output port of the coupled model is blocked and sent to the parent
coordinator. Notice that a lock can be recursive: it can either point to data or to a set of locks that point to
data.

3.1.1 Simulator Function Set
The simulator function set (represented in Algorithm 1) contains all the functions used to deal with the

atomic components and manages its behavior. An independent simulator is instantiated for each atomic
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component present in the model. Each of them has a locks list, locked,x:, that contains locks of the non-
empty output ports. This list is shared between functions, being used both in the collection and unlock
function.

The collection function, @), is called by the parent coordinator when the current simulation time ¢
matches with the next time scheduled in the related atomic component, ¢y. It first executes output function
of its atomic model, A. Then, each port p€0Ports with new output events is locked, and its lock [, is stored
in the locked. list. This prevents the removal of new messages until the parent coordinator triggers the
unlock function u(t, ly). Simulators return their locked..: list, giving up the control of locked ports to their
parent coordinator.

The transition function, *(z, P), receives the current time and a list P containing tuples (Lfrom, Pto) Of
port references. p: must belong to the input ports set (IPorts) of the related atomic component, and lfrom
is a virtual memory reference to the data generated by a locked source port prrom With new data. These
source ports correspond directly to the atomic output ports where the values are physically stored.
Therefore, the set of inputs that must be considered in this transition function is the one resulting from
joining the output sets of all the ports psrom€P. Depending on the time and presence of new input data,
either an internal, an external, or a confluent transition event of the atomic model is processed. At the end
of the transition function, the next internal transition time ¢y is returned to the parent coordinator.

The unlock function, u(z, /), unlocks a previously locked port and frees its assigned memory. The locked
port p must belong to the output ports set (OPorts).

Algorithm 1: Simulator function set.

Function @(#): Function =(t, P): Function u(t,[):
assert t = ty; x = 0; assert [ € lockedeyt;
y = A(s); foreach (lfrom,pw) e Pdo locked,yt = lockedexs — I;
foreach (pfrom.v) € y do assert p;, € [Ports; p = unlock(l);
lrom = lock(p from); x =x U y(from)s assert p € OPorts;
lockedext = lockedext Ulprom; | if tp <t <ty Ax # 0 then y(p) :=0;

return lockedey; e:=1t—t;
8 1= Oext (5, €,%);
elseif t = tny A x = 0 then
‘ s = dint (s);
elseif t =ty A x # () then
‘ $ 1= con (S, X);
else
| raise error

tp =1
tN =t + ta(s);
return fy;

3.1.2 Coordinator Function Set

The coordinator function set contains all the functions used to deal with the coupled components and
synchronize its child processors. It is represented in Algorithm 2. The name of the functions, as well as the
expected parameters, coincides with the simulator function set. This proves that the chained algorithm
provides closure under coupling (Zeigler 2018). Coordinators have two internal lock lists: lockedin: and
lockedex:. The first contains all the locks of output ports of child processors that contain new data. The
second is composed of locks of output ports of the coupled model itself that point to one or more ports of
child processors with new data. Additionally, coordinators keep two lock-to-port reference tables: P and
Pext. Pinemaps virtual memory between locks with new data and input ports of child processors, mimicking
the EIC and IC sets defined in the coupled model. On the other hand, Pex: keeps record of memory
references between locks of output ports of child processors and output ports of the coupled model
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according to its EOC. Finally, imminent child processors that require to be activated at a given simulation
time are tracked in the sync set.

The collection function, @), is triggered by the parent coordinator when the simulation time matches
with the minimum next time scheduled by any child processor. The collection function is forwarded to
imminent child processors, and if any lock is returned, the coordinator stores it in locked,: and resolves
the corresponding port memory mapping in Pi: according to the coupled model’s /C, adding influencees
to the sync list. If any EOC is triggered, the corresponding output port of the coupled model is locked and
stored in Jockedex:. This last set is returned to the parent coordinator. Additionally, the virtual memory
mapping corresponding to the EOC is stored in Pey:.

The transition function, *z, P), is forwarded to all the child processors in the sync set. Memory mapping
related to the /C set is cleared, and child processors’ output ports with no EOC dependencies are unlocked.

If an unlock function u(?, /) is triggered by the parent coordinator, the output port corresponding to the
given lock is unlocked. Memory mapping related to the EOC set is removed, and child processors’ output
ports with no /C dependencies are unlocked.

Algorithm 2: Coordinator function set.

Function @(#): Function *(t, P): Function u(t, lfyom):
assert t = in; assert i <t < in; assert lfmm € lockedext;
tr = tN; locked;mp = 0; lockedey; := lockedexs — lfmm;
foreach i € ImminentChildren do foreach (If,om, pseif) € P do Pself = unlock(lfrom);
sync := sync U i; foreach (pseif, pj) € EIC do foreach (Ii, pseif) € Pext do
foreach [; € i :: @(t) do lself = lOCk(pse[f); if l; ¢ Pj,; then
lockedins := lockedins U I; locked;mp = lockedimp U Lyerf: ‘ iu(tl;);
foreach (pi,pj) € IC do sync := sync U j; Pext (pserr) = 0;

sync := sync U j;

Pint(j) = Pine (j) U (Li, pj)s
foreach (p;, pseir) € EOC do
Pext = Pext U (li, pserf);

Pint(j) = Pint (J) U (serf: pj)s
foreach i € sync do

Ny =1zt Pine (1))

foreach (I}, p;) € Pint (i) do

Lsel = lock(pseif); if Ij ¢ Pex; then
lockedeys = lockedext U lself; ‘ i ult, lj);
if [; € Pint A l; & Pexs then Pint (i) = 0;
lockediny := lockedins — I;; sync = 0;
b u(t, 1)) foreach ty € locked;mp do
return lockedext; ‘ unlock(lself);
iy, == t;

tn = minimum of child components’ t;

return iy;

3.1.3 Root Coordinator Routine

The root coordinator contains the same function set as any regular coordinator. However, as root of the
entire hierarchy, it has an additional main routine, which corresponds to the simulation workflow. The main
routine is described in Algorithm 3. The root coordinator only triggers collection and activation functions.
As the root coordinator has no parent, its activation function will never generate any external lock.

4 CASE STUDY: THE XDEVS SIMULATOR

To study the effectiveness of the chained simulation algorithm, we used the Python branch of the xXDEVS
simulation engine. The original xXDEVS version is based on the classic abstract simulator. We modified this
implementation following the function sets described in Section 3 to obtain a renewed version of xDEVS.
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Algorithm 3: Root coordinator main routine.

Function Main:
t:=1IN;
while t # oo do
locked := @(t);
assert locked = 0;
#(t,0);
t=1IN;

To evaluate how much the chained algorithm improved the performance compared to the original, we ran
a heterogeneous set of synthetic DEVStone benchmarks, comparing the simulation time using different
models and shapes. For the LI, HI, and HO structures, we explored 100 different models with widths and
depths going from 20 to 200 with increments of 20. On the other hand, as the complexity of HOmod models
is significantly higher than the rest of the DEVStone structures, we explored a reduced set of 50 models
with widths and depths going from 10 to 50 with increments of 10.

As we were only interested in analyzing the simulation engine execution overhead, we set both internal
and external execution time to 0 (these mimic the processing required for computing a given model's next
state —i.e., it depends on the model under study). By setting these parameters to 0, we ensure that simulation
time only depends on the model's structure and the simulation algorithm of the engine.

All these combinations of models were simulated 5 times both in the original and renewed
implementations of xDEVS to work with a confidence interval of 95% in the results. We used a workstation
with Ubuntu 18.04, Intel Core 17-9700 and 64GB RAM. All the experiments were run sequentially.

Table 1 shows the simulation results of a subset of corner cases of the experiments. For each structure,
we show the deepest, the widest, and the most complex models.

Table 1: Chained/original xDEVS simulation time comparison for several DEV Stone models

Structure Width Depth Original (s) Chained (s) Speedup
20 200 0.0191 +0.0003 0.0140 +0.0005 1.3578
LI 200 20 0.0173 +0.0002 0.0139 +0.0003 1.2444
200 200 0.1985 £ 0.0035 0.1582 +0.0013 1.2552
20 200 0.2306 £0.0016 0.1546 +£0.0033 1.4913
HI 200 20 2.1440 + 0.0859 1.5375+0.0374 1.3945
200 200 25.5225+0.1836 17.6190 £ 0.3642 1.4486
20 200 0.2730 +0.0038 0.1558 £0.0124 1.7517
HO 200 20 2.5063 +0.0476 1.5435 +0.0442 1.6238
200 200 29.6602 + 0.6885 17.6750 + 0.4832 1.6781
10 50 4.3406 +0.0429 2.6092 +0.1474 1.6636
HOmod 50 10 18.8785 £ 0.2663 10.9209 +0.1459 1.7287
50 50 615.0647 £11.3729 367.3651 £9.9269 1.6743

Times shown in the table represent exclusively the simulation time, and therefore they do not include
the model instantiation and engine setup times. Even though model instantiation times are the same for both
simulation algorithms, the chained simulation engine has then to adapt the models before starting to
simulate. This adaptation is required for keeping backwards compatibility with the original simulation
algorithm. In future versions of XDEVS, the chained algorithm will be the standard, and this additional pre-
processing will not be necessary.

The speedup column represents the improvement of the simulation time of the chained implementation
over the original one. From the obtained results, we can infer that the chained algorithm shows better

2192



Cardenas, Henares, Arroba, Wainer, and Risco-Martin

performance when simulating more complex models. This trend is not accomplished by models of the
HOmod structure, which presented less mean speedup than HO models. Note that, for a given width and
depth, all the DEVStone structures except HOmod contain the exact number of atomic models and coupled
models. In contrast, the number of components within HOmod models grows exponentially faster with
changes in width or depth, increasing the amount of time required for processing external/internal transition
functions. As the chained simulation algorithm focuses on reducing message propagation times, the speedup
obtained in HOmod models is slightly smaller than in HO models.

Looking at the results of a specific structure, models with greater depth and smaller width tend to
present higher speedups, regardless of the structure. However, the difference is not significant enough, and
a more in-depth research should be performed before inferring any further conclusion.

Figure 3 shows the speedup obtained using the chained simulator over the original implementation of
xDEVS, using the depth of the structures as the ordinates and the width as the abscissae.

(a) LI Structure (b) HI Structure

(c) HO Structure (d) HOmod Structure
(grid size is 50x50 instead of 200x200)

Figure 3: Speedup of the chained simulator over the original implementation of xDEVS

Experiments reported that, even though cases with greater depth and smaller width had slightly greater
speedups, the obtained speedup remained uniform for a given structure, regardless of its shape. However,
if we compare the obtained results depending on the structure, the simulation time improvement of the
chained algorithm over the original implementation is greater in more complex structures: using LI
structures, the mean speedup was 1.2668, whereas HI structures reported a mean speedup of 1.4557, and of
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1.7149 and 1.7026 in HO and HOmod structures, respectively. This is because the main benefit of using
the chained simulation algorithm resides in how events are propagated through components in the hierarchy
of the model. As the number of couplings increments, so do the number of events triggered during the
simulation. The original algorithm spends a greater portion of the simulation time forwarding events, while
the chained algorithm does not need to forward them, as any coupled atomic model can access to these new
events directly to their original source.

5 CONCLUSIONS

M&S tools require higher computing capabilities to explore increasingly complex scenarios. New
technologies and algorithms that enhance the performance of simulation tools are needed. PDEVS is an
M&S formalism that allows the simulation of a variety of complex systems. Its modular and hierarchical
structure comes to several benefits, but it raises the need for communicating messages between the modules
of the system. This operation represents a significant percentage of the simulation time spent just in
synchronization issues. Our chained simulation algorithm is a PDEVS-compliant simulation routine that
makes extensive use of shared memory patterns to reduce the computation footprint of simulation engines.

To provide experimental results that support this approach, we developed a new implementation of the
Python branch of xXDEVS. Regarding the comparison, we used all the structures defined in the DEV Stone
benchmarks to evaluate the different algorithms. This method is a convenient method for analyzing DEVS
environments, allowing them to generate synthetic test models with a variety of structures and behaviors.
We showed that the chained simulator allows reducing the simulation engine overhead up to 40%.

This memory-shared approach can improve performance of PDEVS simulation engines. Besides, any
PDEVS framework can integrate it with no backwards compatibility issues. With it, we contribute to
continue towards faster simulators that introduce less simulation time overheads to the model computation
time while reducing the energy consumption.

As future work, we will perform an in-depth study of several simulation engines using the DEV Stone
benchmark. Using profiling techniques, we will identify the potential benefits of implementing the chained
simulation algorithm for different PDEVS-compliant frameworks. We will also define implementation
practices for adding native support to distributed simulation.
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