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ABSTRACT

We consider the estimation of rare-event probabilities using sample proportions output by naive Monte
Carlo. Unlike using variance reduction techniques, this naive estimator does not have a priori relative
efficiency guarantee. On the other hand, due to the recent surge of sophisticated rare-event problems
arising in safety evaluations of intelligent systems, efficiency-guaranteed variance reduction may face
implementation challenges, which motivate one to look at naive estimators. In this paper we investigate this
naive rare-event estimator, particularly its conservativeness level and the guarantees in using it to construct
confidence bounds for the target probability. We show that the half-width of a valid confidence interval
is typically scaled proportional to the magnitude of the target probability and inverse square-root with the
number of positive outcomes in the Monte Carlo. We also derive and compare several valid confidence
bounds constructed from various techniques.

1 INTRODUCTION

We consider the problem of estimating a minuscule probability, denoted p = P(A), for some rare event A,
using data or Monte Carlo samples. This problem, known as rare-event estimation, is of wide interest to
communities ranging from financial and insurance risk management (McNeil et al. 2015; Glasserman 2003;
Glasserman and Li 2005), engineering reliability (Nicola et al. 1993; Heidelberger 1995) to climatology and
hydrology (Gumbel 2012), where it is crucial to estimate the likelihood of events which, though unlikely,
can cause catastrophic impacts. There are multiple prominent lines of work addressing this estimation
problem, depending on how information is collected. In settings where real-world data are collected,
methods based on extreme value theory (Embrechts et al. 1997) are often used to extrapolate distributional
tails to assist such estimation. In settings where A is an event described by a simulable model, Monte Carlo
methods can be used, and to speed up computation one often harnesses variance reduction tools such as
importance sampling.

In this paper, we focus on a more basic setting than some of the above literature, but in a sense
fundamental. More precisely, we focus on the situation where all we have to estimate p is a set of i.i.d.
Bernoulli observations I(A). A natural point estimate of p is obviously the sample proportion p̂, i.e., given
a set of Bernoulli data I1, . . . , In of size n, we output p̂ = (1/n)∑

n
i=1 Ii. We are interested in understanding

the statistical error in using p̂, in the situation where p could be very small, importantly with no lower
bound on how small it could be.

The reason why we focus on the above, apparently simple, setup is related to the limitation of variance
reduction techniques in unstructured problems. While variance reduction is greatly beneficial in reducing
the number of Monte Carlo samples needed to estimate rare events (Bucklew 2004; Asmussen and Glynn
2007; Rubinstein and Kroese 2016), it is also widely known that they rely heavily on model assumptions
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(Juneja and Shahabuddin 2006; Blanchet and Lam 2012). That is, to guarantee the successful performances
of these techniques, one typically needs to analyze the underlying model dynamics carefully to design the
Monte Carlo scheme. However, recent applications, such as autonomous vehicle safety evaluation (Zhao
et al. 2016; Zhao et al. 2017; Huang et al. 2017; O’Kelly et al. 2018) and robustness evaluation of
machine learning predictors (Webb et al. 2018; Weng et al. 2018), lead to rare-event estimation problems
with extremely sophisticated structures that hinder the design of efficiency-guaranteed variance reduction
schemes. On the other hand, with the remarkable recent surge of computational infrastructure, in some
situations one could afford to run gigantic amount of simulation trials. Thus, one may consider resorting
to the use of naive sample proportion like described above. However, unlike the estimates given by
efficiency-guaranteed variance reduction techniques, it is open, at least to our best knowledge, whether
using simple sample proportion can give meaningful guarantee to estimating rare-event probabilities, in
relation to the sample size n and the (unknown) magnitude of p.

2 PROBLEM SETTING AND MOTIVATING CHALLENGES

To be more concrete, in this paper we would focus on the construction of confidence bounds, i.e., using
information from the Bernoulli data, or (equivalently) p̂, we would like to construct simple confidence
interval for p that has justifiable statistical guarantees. In answering this, we would also quantify the error
between the point estimate p̂ with p (probabilistically). We will focus on the upper confidence bound,
since typically the lower confidence bound can be argued analogously (though not always) and also the
upper direction is the more important one due to safety-related applications.

To understand the challenges, we begin by first examining the use of a standard “textbook” confidence
interval. This means we use the following as the (1−α)-level upper confidence bound

p̂naive = p̂+ z1−α

√
p̂(1− p̂)

n
(1)

where z1−α is the (1−α)-quantile of a standard normal variable. The typical way to justify (1) is a Gaussian
approximation using the central limit theorem (CLT), which entails that

P(p≤ p̂naive)≈ Φ̄(−z1−α) = 1−α (2)

where we denote Φ̄ (and Φ) as the tail (and cumulative) distribution function of standard normal.
To delve a little further, note that the approximation error in (2) is controlled by the Berry-Essen

Theorem. To simplify the discussion, suppose we are in a more idealized (but unrealistic) case that we
know the precise value of the standard deviation of the Bernoulli trial, i.e., σ2 = p(1− p), so that we use
p̂+ z1−ασ/

√
n. Then the Berry-Essen theorem stipulates that

|P(p≤ p̂naive)−Φ(z1−α)| ≤
Cρ

σ3√n
(3)

where ρ = E|Ii− p|3 = p(1− p)(1−2p+2p2), and C is a universal constant (≈ 0.4748). Thus, the error
in (3) is bounded by

Cp(1− p)(1−2p+2p2)

p3/2(1− p)3/2√n
≤ C√

np(1− p)
. (4)

The issue is that when p is tiny, np can also be tiny unless n is sufficiently big, but a priori we would not
know what n is “sufficient” (Note that if we have used the “self-normalized” bound given by (1), a similar
Berry-Esseen bound would ultimately conclude the same issue as revealed by (4); Shao and Wang 2013).
These lead to the following exemplified questions:
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1. Suppose we have, say, 30 “success” outcomes among n trials, then we may think that np ≈ 30,
so that from the bound (4) the error of p̂naive appears controlled. As another, more extreme, case,
suppose we only have only 1 success, then we may be led to believe np≈ 1, so that p̂naive is not
“too bad” but its coverage is likely way off from 1−α . Are these conclusions on p̂naive correct?
Note that the guess that np≈ 30 or np≈ 1 is itself based on some central limit or concentration
argument, which apparently leads to a circular reasoning.

2. If we have 1 success among n trials, how do we construct a CI that is guaranteed the correct
coverage? Correspondingly, would constructing such a CI be easier if we have 30 successes?

3. For the valid CIs constructed in Question 2, what is the typical “half-width”, relative to the point
estimate p̂? If the relative half-width is too big, then the provided upper bound may not be
meaningful. For instance, if n is 0, then (1) is clearly meaningless. What about if n is 1 when we
use a valid CI? Note that the use of relative half-width is important since p (and correspondingly
p̂) could be tiny, and a meaningful upper bound should have a similar magnitude as p (and p̂).

4. Following up Question 3, we would also like to understand the relative error of the point estimate,
i.e., (p̂− p)/p, and the relative error of the confidence bound, e.g., (p̂naive− p)/p, the latter related
to Question 3.

5. Do all the above answers hold if we stop whenever we observe enough successes (e.g., when the
number of successes is 30, or 1) in our simulation experiment?

Note that a quick and implementable approach to Question 2 is to utilize the fact that np̂ follows a binomial
distribution and extract a finite-sample confidence region using duality. Though this is computationally
easy, we are interested in simpler mathematical forms that allow us to answer Questions 3 and 4 above.
In this regard, Wilson’s interval (Agresti and Coull 1998) has been studied and shown to give superior
empirical performances, even in the case that p is tiny, but we are not aware of any rigorous proof on its
validity. In Sections 3 and 4 below, we will offer two different ways of constructing upper confidence
bounds for p, one using a concentration inequality, while another one using the Berry-Esseen bound. They
both offer answers to Question 2 on top of the binomial confidence region and Wilson’s interval. Compared
to the binomial confidence region, these two bounds are in a similar form as p̂naive, which allows us to
answer Question 1. They also have the explicit forms that allow us to investigate their half-widths, thereby
answering Question 3.

In fact, we will show that the half-widths of our constructed confidence bounds scale in the same
magnitude as p̂, and inverse square-root of the number of positive outcomes np̂. Thus, even if we only
have one positive outcome in our sample, the resulting valid confidence bound is still not “too loose”, and
the bounds get better at the canonical rate in the number of positive outcomes. Compared to p̂naive, our
bound has a longer half-width that is of higher-order of np̂, and this can be viewed as a price of “validity”
paid to make p̂naive correct. Lastly, we also compare our bounds to Wilson’s bound and see that ours is of
a similar magnitude.

We will briefly conclude that, together with an analogous valid lower confidence bound (not shown in
this paper), we can answer Question 4. Lastly, we use similar methods to derive confidence bounds for p
in the situation asked by Question 5, which is presented in Section 5.

3 CONFIDENCE BOUND VIA INVERTING A CONCENTRATION BOUND

We present our first approach to construct an upper confidence bound for p by utilizing the Chernoff
inequality. We can either directly invert this inequality, or consider the following set that resembles the
common “p-value” method:

{0≤ p≤ 1 : F(p̂)≥ α}
where F(·) is the distribution function of p̂ (which depends on p). This region is a 1−α confidence region
for p, i.e., P(F(p̂)≥ α)≥ 1−α . Note that if F was continuous, then this inequality becomes an equality

since in this case F(p̂) d
=Uni f [0,1]. We argue that the inequality holds in the discrete case of p̂. Indeed,
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for any α ∈ (0,1], there exists 0≤ k ≤ n such that F((k−1)/n)< α ≤ F(k/n). Then

P(F(p̂)≥ α) = P(p̂≥ k/n) = 1−P(p̂ < k/n) = 1−F((k−1)/n)> 1−α.

By Chernoff’s inequality, we have

P(p̂≤ (1−δ )p)≤ e−δ 2np/2

for any 0≤ δ ≤ 1. Replacing (1−δ )p by x, we have

F(x)≤ exp

(
−
(

1− x
p

)2 np
2

)
for x≤ p. Hence

P

(
exp

(
−
(

1− p̂
p

)2 np
2

)
∨1≥ α

)
≥ P(F(p̂)≥ α) = 1−α.

Therefore, {
0≤ p≤ 1 : exp

(
−
(

1− p̂
p

)2 np
2

)
∨1≥ α

}
is a confidence region for p̂ with confidence level at least 1−α . Simplifying the expression above, we
get, either p̂≥ p, or

p−
(

2 p̂+
2log(1/α)

n

)
+

p̂2

p
≤ 0

giving

p≤ 1
2

2p̂+
2log(1/α)

n
+

√(
2p̂+

2log(1/α)

n

)2

−4p̂2


=

1
2

(
2 p̂+

2log(1/α)

n
+

√
8log(1/α)p̂

n
+

4(log(1/α))2

n2

)

= p̂+

√
2log(1/α)p̂

n
+

(log(1/α))2

n2 +
log(1/α)

n
.

Hence, taking union with p̂≥ p, we have

p̂+

√
2log(1/α)p̂

n
+

(log(1/α))2

n2 +
log(1/α)

n

being a (1−α)-level upper confidence bound for p, for any finite sample n. This can be summarized as:
Theorem 1 The bound

p̂con = p̂+

√
2log(1/α)p̂

n
+

(log(1/α))2

n2 +
log(1/α)

n

is a valid (1−α)-level upper confidence bound for p, for any finite sample n. That is, P(p≤ p̂con)≥ 1−α

for any n.
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Note that the bound is trivially ∞ when n = 0. When p̂ = 0, the bound reduces to 2log(1/α)/n (and
in fact we can construct even tighter bounds by using the binomial distribution of np̂ directly in this case).
On the other hand, when p̂ > 0, we can re-express using n̂ = np̂, the number of 1’s among the n trials, to
get

p̂con = p̂+ p̂

√
2log(1/α)

n̂
+

(log(1/α))2

n̂2 + p̂
log(1/α)

n̂
.

We highlight that in this case, the confidence bound has the same magnitude as p̂, and the relative discrepancy
with p̂ shrinks as n̂ increases in a square-root fashion.

Finally, if we check the difference between p̂con and the naive bound p̂naive, then we will find that it is
of the same order as p̂naive− p̂. The following theorem presents the details of this claim. We will contrast
this result with our bound presented in the next section momentarily.
Theorem 2 Assume that 0 < α < 1/2. Then

p̂con− p̂naive ≥ (
√

2log(1/α)− z1−α)

√
p̂
n
+

log(1/α)

n
.

Note that
√

2log(1/α)− z1−α > 0 for 0 < α < 1/2.

Proof. We have that

p̂con− p̂naive =

√
2log(1/α)p̂

n
+

(log(1/α))2

n2 +
log(1/α)

n
− z1−α

√
p̂(1− p̂)

n

≥ (
√

2log(1/α)− z1−α)

√
p̂
n
+

log(1/α)

n
.

One may note that as long as n̂≥ 1, that is, we have at least one positive observation, then
√

p̂/n =
√

n̂/n≥
1/n. Provided that

√
2log(1/α)− z1−α > 0, p̂con− p̂naive is of no higher order than p̂naive− p̂.

4 CONFIDENCE BOUND VIA INVERTING THE BERRY-ESSEEN THEOREM

We develop another upper confidence bound for p by inverting the Berry-Esseen theorem. Here, we assume
that p is known to satisfy p < 1

2 a priori (which is reasonable if we consider rare event). We also assume
that α < 1

2 (typically, we would set α to be a small number like 0.05). In this paper, we use the standard
version of the Berry-Esseen theorem, and a potential future investigation is to consider a B-E bound for
the studentized statistic (Wang and Jing 1999; Wang and Hall 2009).

By the Berry-Esseen theorem, we have that∣∣∣∣P((p̂− p)
√

n
p(1− p)

≤ x
)
−Φ(x)

∣∣∣∣≤ C(1−2p+2p2)√
np(1− p)

≤ C√
np(1− p)

where C is a universal constant. We use F() to denote the distribution function of p̂ and replace x by
p̂−p√

p(1−p)/n
, and then we get that∣∣∣∣∣F(p̂)−Φ

(
p̂− p√

p(1− p)/n

)∣∣∣∣∣≤ C√
np(1− p)

.

Then we have that

P

(
Φ

(
p̂− p√

p(1− p)/n

)
+

C√
np(1− p)

≥ α

)
≥ P(F(p̂)≥ α)≥ 1−α.
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Hence, {
0 < p < 1 : Φ

(
p̂− p√

p(1− p)/n

)
+

C√
np(1− p)

≥ α

}
is a valid (1−α)-level confidence region for p. Since we have assumed that p < 1/2, the above confidence
region can be further shrunk. To summarize, we have the following theorem:
Theorem 3 Assume that p < 1/2. Then the set{

0 < p < 1/2 : Φ

(
p̂− p√

p(1− p)/n

)
+

C√
np(1− p)

≥ α

}
(5)

is a valid (1−α)-level confidence region for p, for any finite sample n.
Now we may develop a more explicit (1−α)-level upper confidence bound starting from (5). In fact,

for any 0≤ λ ≤ 1− 2C√
nα

, we have that

0 < p < 1/2,
C√

np(1− p)
≥ (1−λ )α ⇒ 0 < p≤

1−
√

1− 4C2

n(1−λ )2α2

2

and

0 < p < 1/2,Φ

(
p̂− p√

p(1− p)/n

)
≥ λα ⇒ 0 < p≤

1+ 2np̂
z2

λα

+

√
1+ 4np̂(1−p̂)

z2
λα

2
(

1+ n
z2

λα

) .

Therefore, we get that

1−
√

1− 4C2

n(1−λ )2α2

2

∨
1+ 2np̂

z2
λα

+

√
1+ 4np̂(1−p̂)

z2
λα

2
(

1+ n
z2

λα

)


is a (1−α)-level upper confidence bound. For simplicity, we denote the two parts as U1 and U2 respectively.
One may note that λ is not necessarily deterministic. Instead, it can be dependent on the data as long as it
stays within the interval [0,1− 2C√

nα
]. In fact, we may choose λ carefully such that U1 ≤U2 is guaranteed

for sufficiently large n. Specifically, the following theorem proposes another valid upper confidence bound.
Theorem 4 Assume that p < 1/2 and α < 1/2. Let

λ = 1− C̃√
nα

where

C̃ =

(
C√

p̂(1− p̂)

)
∧
(
u
√

nα
)
.

Here, u < 1 is any constant such that C2

u2α2 < z2
(1−u)α . In the case that p̂ = 0 or 1, naturally we set C̃ = u

√
nα .

Then there exists N0 ∈ N, which does not depend on p and p̂, such that for any n > N0,

p̂BE =

1+ 2np̂
z2

λα

+

√
1+ 4np̂(1−p̂)

z2
λα

2
(

1+ n
z2

λα

)
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is a valid (1−α)-level upper confidence bound for p. In particular, N0 can be chosen as(
2C
uα

)2

∨
3z2

(1−u)αC2/(u2α2)

z2
(1−u)α −C2/(u2α2)

.

Proof. Following our derivations, it suffices to show that there exists N0 such that for any n > N0, we
have that 0≤ λ ≤ 1− 2C√

nα
and U1 ≤U2. Obviously, C̃√

nα
≤ u < 1, so λ > 0. On the other side, λ ≤ 1− 2C√

nα

if and only if C̃≥ 2C, which holds as long as n≥
( 2C

uα

)2
. Now we prove that U1 ≤U2 for sufficiently large

n. Indeed, if C̃ =C/
√

p̂(1− p̂), then U1 = p̂∧ (1− p̂)≤ p̂ and we know that U2 ≥ p̂, so U1 ≤U2. In the
other case that C̃ = u

√
nα , we have that

U1 =
1−
√

1− 4C2

nu2α2

2
=

C2

u2α2
1
n
+o
(

1
n

)
,

U2 ≥
1

1+ n
z2
(1−u)α

=
z2
(1−u)α

n
+o
(

1
n

)
.

Since u is chosen such that C2

u2α2 < z2
(1−u)α , we also have U1 ≤U2 for sufficiently large n. Note that as

u ↑ 1, C2

u2α2 → C2

α2 while z2
(1−u)α → ∞, and thus such u exists. Therefore, we can find such N0 which does

not depend on the value of p or p̂.

Next we will show that p̂BE − p̂naive is bounded by order 1/n. In other words, though p̂naive has
undesirable coverage probability in the rare-event setting, it is not “too far” from a valid confidence bound.
The following theorem states this result.
Theorem 5 Assume that p < 1/2 and α < 1/2. p̂BE is as defined in Theorem 4. Then there is a constant
C0 which only depends on α and u such that

|p̂BE − p̂naive| ≤C0/n.

Proof. We have that

p̂BE − p̂naive =

1−2p̂+
√

1+ 4np̂(1−p̂)
z2

λα

−2
(

1+ n
z2

λα

)
z1−α

√
p̂(1−p̂)

n

2
(

1+ n
z2

λα

) .

We first deal with √
1+

4np̂(1− p̂)
z2

λα

−2

(
1+

n
z2

λα

)
z1−α

√
p̂(1− p̂)

n

=

(
1− 8z2

1−α
p̂(1−p̂)

z2
λα

)
− 4z2

1−α
p̂(1−p̂)
n + 4np̂(1−p̂)

z2
λα

(
1− z2

1−α

z2
λα

)
√

1+ 4np̂(1−p̂)
z2

λα

+2
(

1+ n
z2

λα

)
z1−α

√
p̂(1−p̂)

n

.
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The denominator satisfies that√
1+

4np̂(1− p̂)
z2

λα

+2

(
1+

n
z2

λα

)
z1−α

√
p̂(1− p̂)

n
≥

(
2
√

np̂(1− p̂)(z1−λα + z1−α)

z2
λα

)
∨1.

Note that (z1−λα + z1−α)/z2
λα

increases with the value of λ . Since λ ≥ 1−u > 0, we can find a constant
C1 such that √

1+
4np̂(1− p̂)

z2
λα

+2

(
1+

n
z2

λα

)
z1−α

√
p̂(1− p̂)

n
≥
(

C1
√

np̂(1− p̂)
)
∨1.

Then we deal with the numerator. We know that zα = Φ−1(α) and zλα = Φ−1(λα). By Taylor expansion,
we have that

1
z2

λα

=
1
z2

α

− 2
√

2π

z3
α

e
z2
α
2 (λ −1)α + r(λ ).

Here, r(λ ) is continuous in λ and r(λ )/(1−λ )→ 0 as λ ↑ 1. We also know that 1−λ ≤ u, and thus
|r(λ )/(1−λ )| = |(

√
nαr(λ ))/C̃| is bounded by a constant. Hence |

√
np̂(1− p̂)r(λ )| is bounded by a

constant. We have that

1−
z2

1−α

z2
λα

=
2
√

2π

z1−α

e
z2
1−α

2
C̃√

n
− z2

1−αr(λ ).

Thus, the numerator satisfies that∣∣∣∣∣
(

1−
8z2

1−α
p̂(1− p̂)

z2
λα

)
−

4z2
1−α

p̂(1− p̂)
n

+
4np̂(1− p̂)

z2
λα

(
1−

z2
1−α

z2
λα

)∣∣∣∣∣
≤1+8 p̂(1− p̂)+

4z2
1−α

p̂(1− p̂)
n

+
4np̂(1− p̂)

z2
λα

(
2
√

2π

z1−α

e
z2
1−α

2
C̃√

n
− z2

1−αr(λ )

)
.

Clearly, the first three terms divided by the denominator are bounded by some constants. Now we consider
the fourth term. Since |

√
np̂(1− p̂)r(λ )| is bounded, we can also get that the fourth term divided by the

denominator is bounded by some universal constant.
Therefore, combining the above results, we know that∣∣∣∣∣1−2 p̂+

√
1+

4np̂(1− p̂)
z2

λα

−2

(
1+

n
z2

λα

)
z1−α

√
p̂(1− p̂)

n

∣∣∣∣∣≤C2

where C2 is a positive constant. We also have that

2

(
1+

n
z2

λα

)
≥ 2n

z2
(1−u)α

.

Hence the error term satisfies that∣∣∣∣∣∣∣∣
1−2p̂+

√
1+ 4np̂(1−p̂)

z2
λα

−2
(

1+ n
z2

λα

)
z1−α

√
p̂(1−p̂)

n

2
(

1+ n
z2

λα

)
∣∣∣∣∣∣∣∣≤

C0

n

for some constant C0. From the above derivations, we find that C0 only depends on α and the choice of
u.
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Note that the bound in Theorem 5 can be rephrased as |p̂BE − p̂naive| ≤C0 p̂/n̂. In other words, p̂BE

differ from p̂naive by a magnitude that is of higher-order than the half-width of p̂naive (i.e., p̂naive− p̂) in
terms of n̂, while all quantities scale with p̂ in a similar manner. Compared to Theorem 2, we see in
Theorem 5 that p̂BE is substantially tighter than p̂con when n̂ increases, although due to the implicit constant
C0 it may not be the case for small n̂.

Compared to our confidence region proposed in (5) which takes care of the Berry-Esseen error term,
Wilson’s confidence bound is obtained by directly inverting

Φ

(
p̂− p√

p(1− p)/n

)
≥ α.

That is,

p̂Wilson =

1+ 2np̂
z2

1−α

+

√
1+ 4np̂(1−p̂)

z2
1−α

2
(

1+ n
z2

1−α

)
works as an approximate (1−α)-level upper confidence bound for p. Note that p̂Wilson has a similar form
to p̂BE . Indeed, we may derive similar results to Theorem 5 (the proof is simple and thus skipped):
Theorem 6 Assume that α < 1/2. Then

|p̂Wilson− p̂naive| ≤
z2

1−α

n
+

z3
1−α

2n3/2 .

In practice, the Wilson’s confidence bound has a satisfactory performance, in the sense that it is relatively
tight while the coverage probability is usually close to the nominal confidence level. The Berry-Esseen
confidence region in (5) is conservative by comparison, yet guaranteed to achieve the correct confidence
level. Nevertheless, Theorem 5 and 6 show that for both of them, the difference from p̂naive is O(1/n).

Finally, we note that, by deriving results for an analogous lower bound similar to those in Theorems
1 and 2 (or Theorems 4 and 5), we can conclude that P(|p̂− p| ≤ ε p̂|n̂ ≥ c) ≥ 1−α for some small ε

depending on the constant c, which is chosen large enough independently. This in turn concludes that
P(|p̂− p| ≤ (ε/(1− ε))p|n̂≥ c)≥ 1−α . In other words, given we observe that n̂ is large enough, p̂ can
be viewed as a conditionally relatively efficient estimator. The caution, however, is that this is under the
precondition that we can observe enough positive outcomes.

5 CONFIDENCE BOUND UNDER TARGETED STOPPING

Now we consider experiments where we keep sampling until we get n0 successes. Our goal is to construct
a (1−α)-level upper confidence bound for p using a similar method to Section 4 and then carry out
the analysis on the difference from the naive bound. Like in Section 4, we assume here that p < 1/2
and α < 1/2. The sample size N is a random variable. More specifically, N = N1 + · · ·+Nn0 where

N1, · · · ,Nn0

i.i.d.∼ Geometric(p). Note that N ≥ n0.
We may again apply Berry-Esseen Theorem. Let Xi =

1
p−Ni. Then E(Xi) = 0. Set σ2

N = E(X2
i ) =

1−p
p2

and ρN = E|Xi|3. By the theorem, we get that∣∣∣∣∣P
(

N ≥ n0

p
− x

√
n0(1− p)

p2

)
−Φ(x)

∣∣∣∣∣≤ CρN

σ3
N
√

n0
. (6)

We need to deal with ρN first. In fact, we know that

p3
ρN = p3E

∣∣∣∣1p −Ni

∣∣∣∣3 = E|1− pNi|3 ≤ 1+3pE(Ni)+3p2E(N2
i )+ p3E(N3

i ).
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Since Ni ∼ Geometric(p), we know that

E(Ni) =
1
p
,E(N2

i ) =
2− p

p2 ,E(N3
i ) =

p2−6p+6
p3 ,

and thus
p3

ρN ≤ p2−6p+6+3(2− p)+3+1 = p2−12p+16≤ 16.

Hence,
CρN

σ3
N
√

n0
=

Cp3ρN

(1− p)
3
2
√

n0
≤ C̃

(1− p)
3
2
√

n0

where C̃ = 16C is an absolute constant.
We use FN() to denote the CDF of N. Also, we set x =

√
p2

n0(1−p)

(
n0
p −N

)
in (6). Then we get that∣∣∣∣∣1−FN−(N)−Φ

(√
p2

n0(1− p)

(
n0

p
−N

))∣∣∣∣∣≤ C̃

(1− p)
3
2
√

n0
,

which gives that

FN−(N)≥ 1−Φ

(√
p2

n0(1− p)

(
n0

p
−N

))
− C̃

(1− p)
3
2
√

n0
. (7)

Now we show that P(FN−(N)≤ 1−α)≥ 1−α . We know that FN−(n0) = 0 and FN−(n)→ 1 as n→∞.
Then we can find ñ≥ n0 such that FN−(ñ)≤ 1−α < FN−(ñ+1). Thus we have that

P(FN−(N)≤ 1−α) = P(N ≤ ñ) = FN−(ñ+1)> 1−α.

Also, from (7), we get that

FN−(N)≤ 1−α ⇒Φ

(√
p2

n0(1− p)

(
n0

p
−N

))
+

C̃

(1− p)
3
2
√

n0
≥ α.

Finally, we develop a valid confidence region under this particular setting, which is similar to the one in
Section 4:
Theorem 7 Suppose that we keep sampling from Bernoulli(p) until we get n0 successes and the sample
size is denoted by N. Assume that p < 1/2 and α < 1/2. Then{

0 < p < 1/2 : Φ

(√
p2

n0(1− p)

(
n0

p
−N

))
+

C̃

(1− p)
3
2
√

n0
≥ α

}

is a valid (1−α)-level confidence region for p. Here, C̃ is a universal constant. In particular, one may
pick C̃ = 16C where C is the constant in the Berry-Esseen theorem.

For 0 < λ < 1, we have that

Φ

(√
p2

n0(1− p)

(
n0

p
−N

))
≥ λα ⇔ p≤

(2Nn0− z2
λα

n0)+
√

4z2
λα

Nn0(N−n0)+ z4
λα

n2
0

2N2 ,

C̃

(1− p)
3
2
√

n0
≥ (1−λ )α ⇔ p≥ 1−

(
C̃

(1−λ )α
√

n0

) 2
3

.
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Note that if we fix 0 < λ < 1, then
(

C̃
(1−λ )α

√
n0

) 2
3 → 0 as n0→∞. Therefore, there exists Ñ0 ∈N such that

1−
(

C̃
(1−λ )α

√
n0

) 2
3 ≥ 1

2 for any n0 > Ñ0. In this case,

p̂BE
n0

=

(
(2Nn0− z2

λα
n0)+

√
4z2

λα
Nn0(N−n0)+ z4

λα
n2

0

)
/(2N2) (8)

is a valid (1−α)-level confidence upper bound for p.
Naturally, we still denote p̂= n0

N . Moreover, we consider the naive bound p̂naive = p̂+z1−α

√
p̂(1− p̂)/n.

We may also develop an upper bound for the difference between p̂BE
n0

and p̂naive:

Theorem 8 Assume that p < 1/2 and α < 1/2. p̂BE
n0

is as defined in (8). Then

|p̂BE
n0
− p̂naive| ≤ z1−λα

√
n0/N.

We skip the proof of Theorem 8, which can be handled by similar techniques as for Theorem 5.
Therefore, under the setting of target stopping instead of fixing the sample size, we may also develop a

valid confidence region for p by applying the Berry-Esseen Theorem. However, p̂naive− p̂ is approximately
z1−α

√
n0/N, where N is a random sample size, so we cannot conclude that p̂BE

n0
− p̂naive elicits a higher-order

magnitude in n̂ as in Theorem 5, which appears to require more delicate analysis.

6 NUMERICAL EXPERIMENTS

To visualize the differences among the confidence bounds, we perform some numerical experiments. The
true value is chosen as p = 1e− 6. For n = 1/p,5/p,10/p,20/p,30/p,50/p, we respectively do 1000
simulations and calculate the confidence bounds with α = 0.05. Table 1 presents the mean values and the
coverage probabilities of the four confidence bounds covered in this paper.

Though the CLT-based bound is closest to the true value, it is not reliable especially when the sample
size is relatively small. The Chernoff bound and the B-E bound are both very conservative, but as analyzed
above, the error of the B-E bound decreases in higher order as the sample size grows. Wilson’s bound has
a satisfactory performance overall, though theoretically it does not always reach the nominal confidence
level. Therefore, the Chernoff bound and the B-E bound proposed in this paper are useful in situations
where absolute safety is critical, since they are rigorously justified, but they are conservative. In other
general applications, Wilson’s bound would be an ideal choice.

Table 1: Results of the numerical experiments. “CLT”, “Cher”, “BE”, “Wil” respectively stand for the
CLT-based bound, the Chernoff bound, the B-E bound and Wilson’s bound. “mean” stands for the mean
value of the confidence bounds and “prob” stands for the coverage probability.

np CLT-mean Cher-mean BE-mean Wil-mean CLT-prob Cher-prob BE-prob Wil-prob
1 2.21E-06 7.74E-06 9.02E-05 4.35E-06 0.615 1 1 1
5 1.73E-06 2.85E-06 1.80E-05 2.06E-06 0.869 1 1 0.957

10 1.51E-06 2.12E-06 9.02E-06 1.67E-06 0.923 0.995 1 0.966
20 1.36E-06 1.70E-06 4.51E-06 1.43E-06 0.935 0.998 1 0.961
30 1.29E-06 1.55E-06 3.01E-06 1.34E-06 0.921 0.995 1 0.972
50 1.23E-06 1.41E-06 1.81E-06 1.26E-06 0.935 0.998 1 0.948
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