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ABSTRACT

Warehouses and warehouse-related operations have long been a field of interest for researchers. One of the
areas that researchers focus on is the Storage Location Assigning Problem (SLAP or Slotting). The goal
in this field is to find the best location in a warehouse to store the products. With the current COVID-19
pandemic, there is a shopping paradigm shift towards e-commerce, which even after the pandemic will not
return to the old state. This paradigm shift raises the need for better performing multi-pick warehouses. In
this paper, we propose a clustering method based on the gravity model. We show that for warehouses in
which there is more than one pick per trip, our proposed method improves the performance.

1 INTRODUCTION

Order picking is one of the most labor-intensive and expensive processes in any warehouse. De Koster et al.
(2007) estimated the order-picking cost as high as 55 percent of the total costs of warehouse operations. It
is natural to try to reduce the cost associated with order-picking processes. Van Gils et al. (2018) developed
a full factorial ANOVA model and proved that the processes of storage, batching, zoning, and routing
as well as their two-way and three-way interactions have significant effects on average travel distance.
Considering that storage is a significant factor in determining the total travel distance and, hence, the total
cost associated with the order-picking process, there have been numerous research efforts on this subject.
Heskett (1963) introduced Cube-per-Order Index (COI), and Kallina and Lynn (1976) proved its optimality
in distribution warehouses under the assumption of forward-reserve warehouse structure and single item
per trip order-picking policy.

Later, Frazele and Sharp (1989) developed the concept of the correlated assignment in warehouses in
which an order-picker is assigned to pick multiple items in one trip. The idea is simple; stock-keeping
units (SKUs) that are ordered together should be stored together as well. This concept resulted in various
methods and research to extract the correlated items and store them together to optimize the order-picking
storage for a multi-item per trip order-picking policy.

Bindi et al. (2007) and Bindi et al. (2009) introduced a new similarity index to create clusters of
correlated SKUs based on it. Xiao and Zheng (2010) and Xiao and Zheng (2012) modeled a production
warehouse in which the BOM is known beforehand. Then, the authors proposed a heuristic model and
genetic algorithm, respectively, to solve the correlated SLAP in the mentioned warehouse. Kim and Smith
(2012) developed a mixed-integer programming model in order to solve the correlated SLAP in a zone-based
warehouse in which each aisle has its dedicated picker. Chuang et al. (2012) define a mathematical model
to solve the correlated SLAP in a single-aisle warehouse. It first clusters the SKUs into K different clusters.
K can be any number between one and the total number of SKUs. Then, it finds the K that results in the
lowest travel distance to pick all items. Zhang (2016) proposed heuristic methods to solve the correlated
SLAP. The proposed methods for solving the correlated storage assignment strategy (CSAS) are named
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Sum-Seed and Static-Seed. In both methods, using the similarity matrix, the author starts from a highly
correlated SKU, X , and creates a cluster from the SKUs correlated to it.

All of the previously mentioned models are limited in one or more of these aspects:

• The methods were tested only in single-block warehouse
• Significant assumptions were made regarding the warehouse operations (e.g., a single-aisle ware-

house)
• The methods were not tested in conjunction with realistic routing methods such as S-Shaped.

We propose a new clustering approach based on the gravity model in Section 2. We later test the method
with different warehouse designs (single- and multi-block warehouses) and different routing methods,
(S-Shaped, largest-gap, random).

2 GRAVITY CLUSTERING METHOD FOR SOLVING SLAP

Sir Isaac Newton formulated the gravitational force between two objects as:

F = G
m1m2

r2

where F is the force, G is the gravitational constant, m represents the mass of objects, and r represents the
distance between the two objects.

This formula later inspired researchers in fields other than physics. For example, in international
economics, the bilateral trade flow between two countries is calculated with the same formula in which m
represents the economic dimension of each country and r is the distance between their economic capitals
(Bergstrand 1985). Figure 1 is an example that illustrates the gravity model in international trades of UK-EU
and UK-India. As another example, in human geography, the amount of human interaction between two
cities is calculated based on the gravity model, in which the mass is the population of each city (Wikibooks.
2019).

Figure 1: Implication of gravity model in economics.

As mentioned in Section 1, one method to solve the correlated SLAP is to cluster the SKUs that are
ordered together, and assign them next to each other. We propose a clustering method for SKUs based on
the gravity formula. For a known set of order data, the order frequency of each SKU will represent its
mass, and one over relative support of their rule will represent their distance.

Fi j =
Support{i}Support{ j}

( N
Support{i, j}

)2

where
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• Fi j represents the attraction between SKU i and j
• Support{i} is the number of orders containing SKU i
• Support{ j} is the number of orders containing SKU j
• Support{i, j} is the number of orders containing both SKUs i and j
• and N is the total number of orders

Calculating the Support{i} and Support{ j} in the aforementioned formula is not complicated. However,
calculating Support{i, j} where i, j ∈ K will need a triangular K×K matrix. For large K values, calculating
this matrix requires significant computational time and power, if it is even possible. To overcome this, we
utilized Market Basket Analysis concepts and tools (Agrawal et al. 1993). The first step in analyzing the
market basket data is to mine the Association Rules. Most aspects of Association Rule Mining are outside
the scope of this research, but the part we are interested in is calculating the support values for itemsets
{i, j}.

Support{i, j} = Support(X +Y ); times that SKUs X and Y appeared in
the same order where X and Y were two distinct SKUs.

By using the available algorithms for Association Rule Mining such as Apriori and its faster successor
FP-Growth Apriori, and limiting the itemset size to two, we will have the set of Support{i, j} values where
i, j ∈ K. However, as Ansari et al. (2018) described, the overall process of Association Rule Mining will
result in a loss of data. This data loss means that the extracted rule set will not incorporate all i, j ∈ K.
However, the data loss is a result of ignoring non-significant rules (a.k.a small support values) and will not
have any effect on Gravity Clustering calculations.

Table 1 provides the notation used in this paper:

Table 1: Table of notations.

S{i} Support value of i, where i ∈ K
S{i j} Support value of itemset {i, j}, where i, j ∈K
t Minimum cluster threshold
K SKU Matrix (K = 1, ...,k)
S k×2 Support Matrix
O Order Matrix
M m×2 Relative Support Matrix where m is the

total number of mined rules

Then, we take the following steps to cluster the SKUs:

1. Calculate the support value for every SKU, S
2. Store the mined association rules in matrix M
3. Sort S in descending order
4. Select the first row of S, SKU i
5. Set SKU i as the core SKU of the new cluster
6. Loop through every SKU, K
7. For every SKU j, calculate Fi j, the attraction between SKU i, and SKU j, based on Si, S j, and

M{i j}
8. For all SKUs K, if Fi j is larger than the predefined threshold t, add them to the current cluster
9. Remove all current cluster SKUs from the support matrix S
10. Return to Step 3 until there is no SKU left
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Algorithm 1 illustrates the programming approach in developing clusters based on the Gravity Clustering
method.

Algorithm 1: Gravity Clustering pseudo code.

Count the frequency of appearance by each SKU ∈ K and add it to S;
Mine the rules with itemset size of 2 from O;
Write the results in M;
Sort(S) in decreasing order based on support value;
while S.Size()> 0 do

Choose the first SKU in S, i;
Create a new cluster with i as the core SKU;
Remove i from S;
for every j ∈ K do

Calculate Fi, j based on M{i, j}, S{i}, and S{ j};
if Fi, j > t then

Add SKU j to current cluster;
Remove j from S;

end
end
Sort current cluster based on SKU frequency;

end

After creating clusters, they are sorted based on their Cube-per-Order Index (COI) in descending order.
Also, in each cluster, SKUs are sorted based on the frequency (S{i}) value. Clusters and SKUs in each
cluster are assigned to the sorted list of the best locations in that order.

It is worth mentioning that the threshold value acts in the same way as a galaxy’s centrifugal force in
astrophysics. As the centrifugal force prevents a galaxy from collapsing into a single object, the threshold
prevents forming a single cluster of all SKUs in our Gravity Clustering method.

Our proposed method incorporates both the frequency of SKUs as well as their joint occurrences in
creating the clusters. This means that based on the gravity model, two SKUs with low support values
need to be extremely close to each other to be grouped in the same cluster. We expect our model to be an
improvement over the current correlated SLAP methods.

3 SIMULATION MODEL

To test the proposed method, we developed a simulation model using the AnyLogic® software (Grigoryev
2012). Although using programming languages such as Python™ in modeling warehouse operations (as
done by Ansari and Smith 2017) might result in a faster modeling and replication process compared
to multi-purpose simulation software such as AnyLogic®, considering the following benefits of using a
simulation software, we decided to use AnyLogic® in this research.

• Easier validation and verification process: The graphic representation of steps makes it easier to
validate various methods coded in the simulation.

• GUI representation of simulation parameters: The developed model is highly flexible, which means
that the user inputs many design parameters.

• Predefined experiments such as Parameter Variation: AnyLogic® is equipped with various predefined
experiments such as parameter variation and optimization, which are helpful in testing effects of
using multiple designs, SLAP, batching, and routing methods.
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In this section, the input data used in our simulation model are explained in Section 3.1. Then, we
discuss the configuration of simulation in Section 3.2. In Section 3.3, we explain the verification process
in more detail, and in the last section we describe the simulation experiment.

3.1 Input Data

The data we used for our experiment consist of a set of open-source retail data provided by the Instacart
retail company (Instacart 2017). Table 2 represents a preliminary analysis of data.

Table 2: Instacart retail data.

SKUs 49,688 SKUs
Orders 3,214,490 orders
Line items 32,434,490 items ordered
Extracted rules 56,810 pairs of itemsets with support value

bigger than 320 (equivalent of 0.01 % of the
total number of orders)

As can be seen in Table 2, the total number of pairs with a support value of 0.0001 shows the importance
of using Association Rule Mining instead of a K×K similarity matrix. The resulting similarity matrix would
have been a triangular matrix with a whopping 1 billion values, which is computationally time-consuming
(if not impossible) by an above-average workstation. Table 3 gives a small sample of the 57,000 extracted
rules.

Table 3: Sample of extracted rules.

Itemset Relative support value
[142,630] 0.00424
[84,177] 0.00412
[125,6202] 0.00016
[31,52] 0.01939
[386,35423] 0.00388
... ...

3.2 Simulation Parameters

The simulation model is highly flexible and user-friendly. The simulation is capable of modeling a warehouse,
configurable in width, length, number of aisles, cross-aisles, and levels. Figure 2a illustrates a warehouse
with a width of 800, length of 600, 4 cross-aisles (including the first and last cross-aisles), 20 aisles, 50
locations per each side of an aisle, and nine levels for each location. The same set of warehouse parameter
values is used in this paper to analyze the effect of the Gravity Clustering method (Section 4.1) and the
gravity threshold value (Section 4.2) in model performance. Also, other SLAP methods, including Random
and COI, were coded in the simulation model for performance comparison. The methods can simply be
chosen at the beginning of the simulation. Figure 2b is a screenshot of the parameter configuration tab in
our simulation model.

3.3 Model Verification

The developed simulation model consists of various SLAP and routing methods. We started with verifying
the most straightforward configuration of the model, and step by step validated each implemented method.
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(a)

Number of Aisles 20
Number of Cross-Aisles 4
Warehouse Length 600
Warehouse Width 800
Locations in Aisle 50
Levels in Each Location 9
Number of SKUs 49,688
Number of Orders 10,000

SLAP Method
Random
Freq COI
Gravity Clustering

Gravity Threshold 100
Sampling Orders True
Large Data Size 3,200,000

Random Generator
Fixed Seed
Random Seed

(b)

Figure 2: Warehouse simulation parameters and designs: (a) sample warehouse design, (b) set of Parameters
from simulation configuration tab.

The initial model consisted of a single block warehouse with just two cross-aisles (no middle cross-aisle)
and five aisles. With each added process, we started with visually verifying it. As an example, for
S-Shaped Routing, we visually checked the path that the worker takes to pick all SKUs of an order from
the warehouse. We compared the resulting path from the simulation to what we expect for an S-Shaped
routing in single-block and multi-block warehouses (Figure 3a). Also, to verify the COI SLAP method,
we developed a heat-map of the SKU frequencies after their location assignment (Figure 3b). As expected,
the resulting graphic matched our expectations.

3.4 Simulation Experiment

As we mentioned in Section 3.1, the input dataset consists of more than 3.2M orders. We used the
bootstrapping method to randomly sample 10,000 orders from the original dataset for each run of the
simulation. In addition, considering the simulation complexity, we used the Common Random Numbers
(CRN) concept to test various configurations of our simulation model with the same sequence of random
numbers (Yang and Nelson 1991). By using a fixed seed in generating the random numbers, CRN reduces
randomness for pairwise comparisons (Nelson and Matejcik 1995). Also, considering that there is no queue
or buffer in the system, and all aspects of the model are considered to be at their steady state, we eliminated
the warm-up period for our experiments.

Our experiment response, as well as our main criteria for comparison, is the simulation termination time.
The model terminates when the last order is picked and delivered to the I/O point and, hence, represents the
pick wave makespan. These simulation time stamps are later analyzed by statistical methods to compare
the effects of various configurations. In our experiment, the number of replications are chosen based on
experiment design and simulation complexity. For comparing the performance of Gravity Clustering vs.
COI (Section 4.1), since the experiment is only one factor with two levels, we replicated the model 50
times. However, although our sensitivity analysis to find the optimal threshold value (Section 4.2) is also
a single factor experiment, we decided to run only 10 replications considering the large number of levels.
All other simulation parameters are as discussed in Section 3.2.
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(a) (b)

Figure 3: Illustration of sample routing and the SLAP method in a multi-block warehouse; (a) S-shaped
routing, (b) COI SLAP.

4 RESULTS

In this section, we compare various configurations for our simulation model. As mentioned in Section
3.4, the criterion for comparison is the overall time that it takes to pick all SKUs from the warehouse.
We use Common Random Numbers to reduce the randomness caused by the random selection of orders.
We perform a t-test for all statistical analyses. In Section 4.1, we compare the results of our suggested
Gravity Clustering SLAP method to the widely used and researched COI. In Section 4.2, we perform a
sensitivity analysis to find the value of gravity threshold that results in the lowest picking time in the Gravity
Clustering method.

4.1 Performance Comparison of Gravity Clustering and COI

Since the goal in this section is to compare the two SLAP methods, the only difference between the two
models is the storage location assigning method. We used the configuration discussed in Section 3.2 and a
default value of 100 for the gravity threshold (discussed later in Section 4.2). Figure 4a represents the box
plot comparing the simulation results with 50 replications. In Table 4, a paired t-test has been performed
to statistically validate our hypothesis that Gravity Clustering performance is superior to that of COI.

4.2 Optimal Gravity Threshold Value

In this section, we evaluate the effect that the number of created clusters has on the performance of the
Gravity Clustering method. Figure 4b is illustrating the effect of cluster count on the total simulation time.
It is obvious that as the gravity threshold decreases, more inter-SKU gravitational forces pass the predefined
limit and lead to forming clusters. This change in created clusters also means that increasing the gravity
threshold high enough will lead to not forming any clusters, which is practically the COI method.

As can be seen in Figure 4b, a Gravity Clustering with no clusters is the same as the COI method. With
increasing number of clusters (by decreasing the gravity threshold) the performance of the order picking
process improves. The slope of this improvement is at highest for the first clusters and decreases as the
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(a) (b)

Figure 4: Performance analysis of the Gravity Clustering method: (a) box plot comparison of the Gravity
Clustering vs. the COI, (b) effect of cluster count of gravity clustering performance.

number of clusters increases. In our case, The improvement stops at around 100 clusters. The performance
is almost constant till 3,000 clusters, where not only the results of the simulation do no longer improve, but
we can see a pattern of simulation results getting worse. We expected such behavior in Gravity Clustering.

• The first wave of clusters is the most important. This wave consists of the clusters with highly
correlated and frequently ordered members. Forming those clusters improves the performance of
the order picking process in the simulation model (clusters 0 to 100).

• The less-correlated or less-frequent SKUs form the second wave of clusters. If SKUs are less
correlated, although some members of such clusters might be frequently ordered, since the orders
that contain both items are not that common, the change in their location will not have any effect on
order picking performance. The same happens for the SKUs that are correlated but less frequently

Table 4: Paired t-Test: Gravity Clustering vs. COI with α = 0.05

Gravity COI
Mean 4,479,116 4,508,524
Variance 401,551,189 401,926,675
Observations 50 50
Hypothesized Mean Difference 0
df 49
t Stat -7.3359
p value one-tail 3.216E-11
p value two-tail 6.433E-11
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ordered. Creating a cluster of these SKUs will result in the improvement of that cluster, but since
they are rarely ordered, they do not affect model performance (clusters 100 to 3,000).

• The third wave of clusters contains those that are better kept separate. Decreasing the gravity
threshold will cause some SKUs that are not ordered that much (e.g., SKU x), to be grouped in
the same cluster with an SKU that is more frequently ordered (e.g., SKU y). Doing this causes the
not-so-frequent SKU x to move forward and occupy a slot close to the frequently picked one (y).
This relocation means that all SKUs with order frequency between SKU x and y will be pushed
one slot back. Although this cluster will perform better, all other SKUs will perform worse which
causes a decrease in model performance.

We also developed a chart showing the change in cluster count with the increase of the gravity threshold
(Figure 5). Since the gravity threshold ranges from 0.0001 to 20M, the horizontal axis of the chart is
on a logarithmic scale. Although we expected that as we decrease the gravity threshold, the number of
clusters increases exponentially, this did not happen. The reason is the data loss discussed in Section 3.1.
The Association Rule Mining Algorithm did not extract many rules that could have contributed to creating
clusters. However, as we mentioned, these lost clusters will not have improved the performance of the
model.

Figure 5: Logarithmic scale representing the effect of the gravity threshold on the cluster count.

We developed a pairwise t-test table to analyze not only the gravity clustering performance, but also
the effect of the gravity threshold on the overall simulation time. Table 5 represents a triangular matrix of
t-test for various cluster numbers as well as COI (cluster count of 0). The test was performed on results
of ten replications for each cluster count.
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5 CONCLUSION AND NEXT STEPS

In this paper, we introduced a new clustering method for the Storage Location Assigning Problem (SLAP)
based on the famous gravity model and formula. We provided a statistical comparison that proves our
method to outperform the widely used and accepted COI under S-Shaped routing method and pre-defined
order data structure assumptions. We also investigated various configurations for our method and analyzed
the optimal value for the clustering threshold that returns the best results.

Although the introduced method appears to be promising, it is far from a comprehensive approach
in solving the storage location assignment problem. More testing and comparisons are needed, such as
a side-by-side comparison of our method with other clustering methods introduced by researchers. This
comparison can be extended by incorporating different routing methods such as Mid-Point, Largest Gap,
and an optimal routing method provided by Gurobi® or other optimization software. Also, the performance
of the Gravity Clustering method should be tested with various order data structures. By analyzing the
performance with different order data, we can also investigate the behavior of the optimal gravity threshold
value in more depth.
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