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ABSTRACT 

Vendor Managed Inventory (VMI) is a mainstream supply chain collaboration model. Measurement 
approaches defining minimum and maximum inventory levels for avoiding product shortages and over-
stocking are rampant. No approach undertakes the responsibility aspect concerning inventory level status, 
especially in semiconductor industry which is confronted with short product life cycles, long process times, 
and volatile demand patterns. In this work, a root-cause enabling VMI performance measurement approach 
to assign responsibilities for poor performance is undertaken. Additionally, a solution methodology based 
on reinforcement learning is proposed for determining optimal replenishment policy in a VMI setting. Using 
a simulation model, different demand scenarios are generated based on real data from Infineon 
Technologies AG and compared on the basis of key performance indicators. Results obtained by the 
proposed method show improved performance than the current replenishment decisions of the company.  

1 INTRODUCTION 

Due to intense competition and speedy innovation of technology, firms today are facing extremely volatile 
markets with short product life cycles (Aytac 2013). Dependence of modern technology products on 
semiconductor components and the exponential increase in the number of transistors used in a dense 
integrated circuit, requires efficiency in the semiconductor industry. Mastering end-to-end supply chains 
(SC) in semiconductor industry is therefore inevitable for achieving a competitive edge in a globalized 
economy (Ehm et al. 2011). However the semiconductor SC management, architecture and optimization 
face unique challenges due to specific attributes like short innovation cycles, long production lead times, 
and high demand uncertainties. Considering Infineon Technology AG as an example where frontend and 
backend production lead times can span a period of six months and even more, small changes in demands 
from end customers can result in significant fluctuations while moving further down the SC (Ehm and 
Ponsignon 2012). Due to the upstream position in the SC, semiconductor manufacturers are exposed to 
these amplifications of demand fluctuations, commonly known as the bullwhip effect, to a much greater 
extent. Lee et al. (1997) describes the bullwhip effect as a phenomenon where variance of orders tends to 
be larger than the variance of sales, and the distortion propagates in an amplified manner as one moves 
upstream in a SC. 
 While the bullwhip effect on the one hand results in “boom or bust” production cycles, it also 
necessitates a greater need for maintaining excessive safety stock if stock outs have to be avoided 
(Mackelprang and Malhotra 2015). In situations where demand depends on many exogenous variables, one 
idea would be to set safety stock levels (Beutel and Minner 2012). However in the semiconductor industry 
safety stock levels needed are very high and also comes with a high risk of scrap. Thus the fluctuations 
down the SC can result in tremendous inefficiencies like erroneous capacity plans, missed production 
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schedules, excessive inventory investment, and inventory stock outs. Various initiatives are adopted by 
companies for tackling the bullwhip, which are categorized on the basis of the underlying coordination 
mechanism, namely, information sharing, operational efficiency, and channel alignment.  One particular 
initiative known as Vendor Managed Inventory (VMI) which comes under the ambit of channel alignment, 
is the focus of our study (Lee et al. 1997). 
 VMI is a collaboration strategy adopted by various industries for managing complex SC, in which the 
supplier takes over the full responsibility over customer inventory replenishment and its related decisions 
(Kamalapur et al. 2013). Every VMI system has predefined conditions which commonly includes minimum 
and maximum inventory levels (Simchi-Levi and Kaminsky 2008). Due to the long production lead times 
in the semiconductor industry, it is a common approach that the customers sends demand forecasts on a 
rolling horizon basis to the supplier. VMI allows the supplier to independently satisfy the demand, provided 
that demands from the customer are within a certain range. Effective VMI implementation has produced 
benefits for both customers and suppliers, such as improved supplier service levels and production plans 
optimization, capacity utilization rates and reduction in transportation costs (Marquès et al. 2010). 
 In order to enable the collaborating partners to track and optimize their performance, seamless 
evaluation is required. In the semiconductor industry, measurement approaches are developed and applied 
by customers for evaluating performance of their suppliers (Continental AG 2010). Moreover, suppliers 
serving multiple customers, measure their own performance by making use of their individual approach 
(Ehm et al. 2018). Given that the replenishment decisions are transferred to the supplier, there is a common 
view that the responsibility for the performance of the VMI system lies entirely on the supplier (Odette 
International 2006).  Nevertheless, due to long production lead time, the supplier may not necessarily be 
able to instantly adapt the replenishments in situations when the forecasts provided by the customer are 
inaccurate e.g. unforeseen pull of all available stocks. In such a situation, the underperformance shall be 
attributed to the behavior of the customer. This feature of shared responsibility for the success of VMI has 
been addressed by Ehm et al. (2018), and further extended by incorporating two exceptions in our 
simulation study. On top of this root-cause enabling VMI performance measurement simulation, a Deep 
Reinforcement Learning (DRL) approach is proposed for determining optimal replenishment quantities in 
a VMI setting. This allows for significant reduction in stock violations, resulting in fewer instances of 
responsibility assignment and ultimately better VMI performance. In Section 2 an overview of literature is 
provided. Next, the root-cause enabling VMI performance measurement case study is presented in Section 
3. A theoretical basis of the DRL model is discussed in Section 4. Experiment and results are presented in 
Section 5. Finally, the conclusion and future research paths are discussed in Section 6. 

2 LITERATURE REVIEW AND RESEARCH BACKGROUND 

2.1 Supply Chain Collaboration and Typical Features of Vendor Managed Inventory 

The application of SC collaboration models is an extensively debated and recognized solution to mitigate 
the bullwhip effect. Within SC collaboration models, independent companies uphold relationships marked 
by openness and trust where risks, rewards and costs are shared between parties (Li et al. 2010). Although 
the majority of publications mention how clear and accurate measurements can improve the collaboration 
with a higher level of trust, Ehm et al. (2018) applied measurements with split responsibility to VMI setting. 
 The parties entering a VMI contract have to agree on the details of some necessary features, namely, 
inventory location, the point of ownership transfer, and content of information sharing. Concerning the 
inventory location in a VMI setting, there is a consensus in literature on the customer’s site (Disney and 
Towill 2003). This implies that replenishment decision is made by the supplier and the customer can directly 
pull its demand when needed. Hines et al. (2000) suggested that the inventory can also be held at a central 
warehouse, production line of the customer, or a third party logistic provider. Depending on the SC structure 
and product type, the parties entering a VMI agreement have to agree upon the location of inventory. 
 Next, the parties entering a VMI contract also need to settle on the point where the ownership is 
transferred from the supplier to the customer. In a standard arrangement, it could be assumed that the 
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ownership is deemed to have transferred once the product reaches the customer site. However, in essence, 
the concept of consignment inventory can also be observed, which indicates that the inventory at the 
customer’s premises is owned and replenished by the supplier, and the ownership transfer only takes place 
when the product is actually consumed or pulled by the customer (Hieber & Schönsleben 2002). 
 The content of information that is expected to be shared among the collaborating parties however varies 
across various industrial publications and academic literature. In majority cases, sharing of point-of-sales 
data is suggested. This allows for the speedy transfer of sales data upstream, thereby allowing the suppliers 
to rapidly react to changes in the demands. Information appertaining to inventory level of the VMI stock is 
another commonly mentioned content in literature (Disney and Towill 2003). This aids the supplier in 
making appropriate decisions related to replenishments in order to keep the inventory within the predefined 
minimum and maximum levels. In order to foster efficient planning, a variety of other information can also 
be included. Angulo et al. (2004) in their paper stress upon the need of making customer forecast data as 
part of the VMI arrangement. For this to happen, information about upcoming promotions and new product 
introduction should be shared with the supplier (DeToni & Zamolo 2005). Sharing of production schedules 
is also one suggested component of information content. Vigtil (2007) suggests that by providing 
production schedules, valuable information on future stock withdrawals could be revealed, thus allowing 
suppliers to better plan their replenishments. 

2.2 Inventory Replenishment in Vendor Managed Inventory Systems 

Coelho and Laporte (2015) proposed optimized target level (OTL) inventory replenishment policy, under 
which the replenishment always keep the final inventory at the same customer-dependent optimized target 
level. They perform computational experiments to evaluate the OTL policy against maximum level (ML) 
and order-up-to (OU) policies. Their results show that OTL yields lower costs and inventory levels than the 
OU policy, and is slightly more expensive than the ML policy, while being easier to implement. Cetinkaya 
and Lee (2000) presented an analytical model for the simultaneous computation of a time-based 
consolidation policy and the optimal replenishment quantity in a VMI setting. Govindan (2015) proposed 
an Adjusted Silver–Meal heuristic for a time-varying stochastic demand in two-echelon SCs with an aim 
to minimize the total SC cost by comparing various performance measures between traditional and VMI 
systems. Escuin et al. (2017) aimed at developing a mathematical model for computing the optimal 
inventory composition in order to deal with random demand at minimum cost in a two-tier SC under 
capacity and service level constraints. They used a simulation model to minimize the inventory costs and 
improve the level of customer service by incorporating adequate production planning and appropriate 
replenishment schedule in VMI setting.  

2.3 Reinforcement Learning for Optimal Inventory Replenishment in Vendor Managed 

Inventory Systems 

Gijsbrechts et al. (2019) applied DRL for solving classical intractable dual sourcing inventory 
replenishment problem. They compared their results to well established heuristics and approximate 
dynamic programming methods and found that with extensive tuning of hyper-parameters, matching 
performance could be achieved. Oroojlooyjadid et al. (2017) proposed a reinforcement learning (RL) 
algorithm based on deep Q-networks for optimizing replenishment decisions at a given stage in a multi-
agent, decentralized, cooperative SC problem. They showed that near-optimal solutions could be achieved 
when base-stock policy is followed by the agents. Also, it outperforms the base-stock policy when the other 
agents utilize a more realistic ordering behavior model. Sui et al. (2010) proposed an approach based on 
RL for determining optimal replenishment policy in a VMI system with consignment inventory. They 
compared their results to the newsvendor solution and showed that their approach outperformed the 
newsvendor model. No literature was found on simulating and finding optimal replenishment policy on top 
of a measurement including split responsibility to the concept of VMI. 

1755



Afridi, Nieto-Isaza, Ehm, Ponsignon, and Hamed 
 

 

3 CASE STUDY: ROOT-CAUSE ENABLING VENDOR MANAGED INVENTORY 

PERFORMANCE MEASUREMENT 

3.1 Generic Vendor Managed Inventory Measurement Approach 

It is important to define clear responsibility assignment apropos of VMI application and whenever the 
defined Min/Max inventory limits are violated. Consequently, a metric is outlined and further developed to 
monitor stock violations and assign responsibilities. It is expected that such a metric fosters collaboration, 
eventually resulting in mitigating the bullwhip effect. 
 The process for developing a metric like that begins with the analysis of the underlying VMI 
configuration as shown in Figure 1. The collaboration begins with the customer providing the demand 
forecasts to the supplier. Considering the current stock information, the supplier plans and deliver 
replenishments, which may be pulled by the customer from the stock at any point in time. It is pertinent to 
mention that the supplier does not receive any information with regard to generation of the demand 
forecasts. Therefore, there could be instances when the pull from the customer rises abruptly without being 
forecasted, resulting in a stock-out situation. As per the current setup, the supplier will be held responsible 
for a failed delivery. This call for the use of root-cause enabling VMI performance measurement approach, 
which could adequately assign responsibilities for any kind of stock violation. 

 
The VMI performance measurement approach used for responsibility assignment comprises of four 

main steps as shown in Figure 2. Foremost, the overall weekly performance 𝑊𝑃 of the VMI system is 
calculated using formula (1) adopted from Odette International (2006), and compared to target weekly 
performance 𝑊𝑃𝑇𝑎𝑟𝑔𝑒𝑡 = 75%. Here, 𝑁𝑉 , 𝑂𝑆, 𝑈𝑆, and 𝑆𝑂 represents no-violation, over-stock, under-
stock, and stock-out, respectively, whereas  𝑊𝑒𝑖𝑔ℎ𝑡𝑉 are the weights associated to the different inventory 
states reflecting the severity of the respective stock violation type. 
 

𝑊𝑃𝑤 = 
𝐷𝑎𝑦𝑠𝑁𝑉,𝑤 × 𝑊𝑒𝑖𝑔ℎ𝑡𝑁𝑉

∑ 𝐷𝑎𝑦𝑠𝑉,𝑤 × 𝑊𝑒𝑖𝑔ℎ𝑡𝑉 𝑉={𝑁𝑉,𝑂𝑆,𝑈𝑆,𝑆𝑂}
 × 100                                          (1) 

 
 Being in a certain inventory state requires the calculation of minimum 𝑧 and maximum 𝑍 target stocks 
levels. These are calculated using formula (2): 

              

𝑧𝑤 = 𝑐 ×
∑ 𝐹𝐶𝑤,𝑖
𝑞
𝑖=𝑝

𝑞−𝑝+1
      and      𝑍𝑤 = 𝑏 ×

∑ 𝐹𝐶𝑤,𝑖
𝑞
𝑖=𝑝

𝑞−𝑝+1
                                         (2)   

 
 where 𝑐, 𝑏, 𝑝, and 𝑞 are the parameters values decided by the VMI partners. While the values of 𝑐 and 
𝑏  defines the range of no-violation 𝑁𝑉  inventory state, the value of 𝑞  is positively correlated to the 
production and delivery time.  

If 𝑊𝑃 is found to be less than 𝑊𝑃𝑇𝑎𝑟𝑔𝑒𝑡, then further steps are performed in order to establish the 
responsibility for not achieving the target weekly performance. This requires first  the calculation of forecast  

Figure 1: Typical VMI configuration. 
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accuracy 𝐹𝐴 for that particular week, which is compared to the target forecast accuracy 𝐹𝐴𝑇𝑎𝑟𝑔𝑒𝑡. If the 
𝐹𝐴 is found to be greater than or equal to the 𝐹𝐴𝑇𝑎𝑟𝑔𝑒𝑡, the responsibility for not achieving 𝑊𝑃𝑇𝑎𝑟𝑔𝑒𝑡 value 
is assigned to the supplier. The calculation of 𝐹𝐴 is performed using Symmetric Mean Absolute Percentage 
Error (SMAPE) technique (Ott et al. 2013) as given in formula (3). Here, 𝐷𝑤 is the demand and 𝐴𝐹𝐶𝑤 is 
the average forecast for that particular week. The calculation of  𝐴𝐹𝐶 is done using formula (4). Here, 𝑢 
and 𝑧 are the parameters values decided by the VMI partners, and depends on the production and delivery 
strategy of the supplier. 

 
                                 𝐹𝐴𝑤 = (1 −

|𝐴𝐹𝐶𝑤−𝐷𝑤|

𝐴𝐹𝐶𝑤+𝐷𝑤
) × 100                                                             (3) 

 
                                 𝐴𝐹𝐶𝑤 =

∑ 𝐹𝐶𝑖,𝑤
𝑤−𝑢
𝑖=𝑤−𝑧

𝑧−𝑢+1
× 100                                                                (4) 

 
 If the 𝐹𝐴 is found to be less than the 𝐹𝐴𝑇𝑎𝑟𝑔𝑒𝑡, the responsibility for not achieving 𝑊𝑃𝑇𝑎𝑟𝑔𝑒𝑡 value is 
not directly assigned to the customer, and further investigation into the forecast history is performed to give 
leverage to the customer for unbiased forecasts. Since bias in forecasts can lead to stock violations, 
consideration of bias in the forecast and calculation of bias-adjusted forecast accuracy is required. Therefore, 
forecast bias 𝐹𝐵 is first calculated using formula (5) below as proposed by Trigg (1964): 

 

                                 𝐹𝐵𝑤 =
∑ 𝐴𝐹𝐶𝑖−𝐷𝑖
𝑤−1
𝑖=𝑤−𝑗

∑ |𝐴𝐹𝐶𝑖−𝐷𝑖|
𝑤−1
𝑖=𝑤−𝑗

                                                                   (5) 

 
 The forecast bias considered for the evaluation of week 𝑤 is taking into account a certain historical 
period 𝑗 decided mutually by the VMI partners. Formula (5) results in values between -1 and +1. If for all 
considered weeks the forecasts are higher than the demand (over-forecasting) the value of forecast bias 
would be 𝐹𝐵 = +1. Alternatively, if all considered weeks the forecasts are lower than the demand (under-
forecasting) the value of forecast bias would be 𝐹𝐵 = −1. Entire unbiased forecasts would generate a value 
of 𝐹𝐵 = 0. It should be noted that this measure does not provide any information about the extent of the 
forecast error. Hereupon the forecast bias is incorporated into the forecast accuracy measurement  calculate 
the bias-adjusted forecast accuracy as shown in formula (6) below (Trigg 1964):  

 

Figure 2: Scheme for Root-cause Enabling VMI Performance Measurement. 
Algorithm 
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                                 𝐵𝐹𝐴𝑤 = 𝐹𝐴𝑤 +𝐵𝐹 × (1 − |𝐹𝐵𝑤|) × (1 − 𝐹𝐴𝑤)                                         (6) 
 

where 𝐵𝐹 = [0; 1] is the bias factor value which is used to steer how much it is desired to consider the 
forecast bias, and therefore reward the customer. No general suggestion for the bias factor value was found 
in literature. However, it depends on the agreed minimum stock, production specifications, and the 
supplier’s capacity and inventory flexibility. Finally the 𝐵𝐹𝐴 is compared to the 𝐹𝐴𝑇𝑎𝑟𝑔𝑒𝑡. The supplier is 
held responsible if 𝐵𝐹𝐴 is found to be greater than or equal to 𝐹𝐴𝑇𝑎𝑟𝑔𝑒𝑡.  

3.2 Extension of the Existing Algorithm 

Two exceptions are checked in the final step of the performance measurement algorithm when the 𝐵𝐹𝐴 is 
found to be less than 𝐹𝐴𝑇𝑎𝑟𝑔𝑒𝑡: (1) Over-stock despite under-forecasting (𝐴𝐹𝐶𝑤 < 𝐷𝑤) and (2) Under-
stock (or stock-out) despite over-forecasting (𝐴𝐹𝐶𝑤 > 𝐷𝑤). The reasons for such exceptions to occur could 
either be due to the inefficiencies in the delivery strategy of the supplier, or the delays in supplier’s 
production system. Both exceptions, if occur, could potentially attribute the poor weekly performance to 
the customer when the 𝐹𝐴 is found to be less than the 𝐹𝐴𝑇𝑎𝑟𝑔𝑒𝑡. For either of the exception to occur, the 
supplier is  held responsible for the poor performance in that respective week. 

It should be noted that for exception 1 to hold true, the weekly sum of over-stock 𝑂𝑆 shall be greater 
than the weekly sum of under-stock 𝑈𝑆 and stock-out 𝑆𝑂, when 𝐴𝐹𝐶𝑤 < 𝐷𝑤. Also for exception 2 to hold 
true, the weekly sum of under-stock 𝑈𝑆 and stock-out 𝑆𝑂 shall be greater than weekly sum of over-stock 
𝑂𝑆, when 𝐴𝐹𝐶𝑤 > 𝐷𝑤. 

4 DEEP REINFORCEMENT LEARNING FOR SELECTING OPTIMAL REPLENISHMENT 

QUANTITIES 

4.1 Reinforcement Learning and Markov Decision Process 

RL, also known as approximate dynamic programming, is an area of machine learning that has been 
effectively applied in recent years for solving complex sequential decision problems. While classical 
dynamic programming (DP) became ineffective in solving large-scale Markov decision problems (MDP) 
due to the curse of modeling and dimensionality, strong mathematical roots of RL in the principles of 
function approximation and DP allowed for solving such problems (Gosavi 2009). Curse of dimensionality 
refers to the dramatic increase in time and space required for finding an approximate solution to a MDP, 
when its state space and control variables become intractably large (Gosavi 2009). RL deals with the 
question on what action an agent must take to maximize (minimize) the cumulative reward (penalty).  
 Figure 3 shows a MDP in which an agent interacts with its environment. The agent observes system’s 
current state 𝑠𝑡 ∈ 𝕊 (𝕊 being the set of all possible states) in a given time 𝑡, and takes an action 𝑎𝑡 ∈ 𝔸(𝑠𝑡) 
(𝔸(𝑠𝑡) being the set of all possible actions given that the system is in state 𝑠𝑡) to receive a reward 𝑟𝑡 ∈ ℝ. 
Afterwards, the system randomly makes a transition into state 𝑠𝑡+1 ∈ 𝑆 (Sutton and Barto 1998). In order 
to find solution to such a problem, RL can be utilized. 

The probability for transitioning from state 𝑠 to a state  𝑠′ upon taking an action 𝑎 is provided by the 
transition probability matrix  𝑃𝑎(𝑠,  𝑠′) as shown in formula (7). Also, the reward matrix is defined by 
𝑅𝑎(𝑠,  𝑠

′). Every period 𝑡, the agent takes and action 𝑎𝑡 = 𝜋𝑡(𝑠) as per a given policy 𝜋𝑡. The objective of 
the RL is to determine a policy 𝜋: 𝕊 → 𝔸 which maximize the expected discounted sum of the rewards 𝑟𝑡 
when the system operate for an infinite time horizon, as given in formula (8). Here 𝑎𝑡 = 𝜋𝑡(𝑠𝑡), and 0 ≤
𝛾 < 1  is the discount factor. 

                                 
 𝑃𝑎(𝑠,  𝑠′) =  𝑃𝑟(𝑠𝑡+1 =  𝑠′⃓ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 )                                               (7) 

 
                                 𝑀𝑎𝑥∑ 𝛾𝑡∞

𝑡=0 𝐸[𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)]                                                        (8) 
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According to Sutton and Barto (1998), for a given 𝑃𝑎(𝑠,  𝑠′) and 𝑅𝑎(𝑠,  𝑠′), the optimal policy can be 

calculated using linear or dynamic programming. Another method to solve this problem is the Q-learning 
approach, which captures the Q-value for any 𝑎 = 𝜋(𝑠)  and 𝑠 ∈ 𝑆 , i.e., 𝑄(𝑠, 𝑎) =  𝔼[𝑟𝑡 + 𝛾𝑟𝑡+1 +
𝛾2𝑟𝑡+2 + 𝛾

3𝑟𝑡+3 +⋯  ⃓ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎; 𝜋 ]. This begins with a preliminary assumption for  𝑄(𝑠, 𝑎) ∀ 𝑠, 𝑎, 
and then advances to update the values on the basis of an iteration as shown in formula (9) below: 

 
𝑄(𝑠𝑡, 𝑎𝑡) = (1 − 𝛼𝑡)𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼𝑡 (𝑟𝑡+1 + 𝛾max

𝑎
𝑄(𝑠𝑡+1, 𝑎𝑡) ) , ∀𝑡 = 1,2,3,…,                 (9) 

 
      where 𝛼𝑡 is the learning rate in a given time 𝑡. The agent decides on taking an action in each observed 
state via an 𝜖-greedy algorithm. This implies that a random action is chosen with a probability 𝜖𝑡 in a given 
time 𝑡, and an action with the highest cumulative action value (𝑎𝑡+1 =  𝑎𝑟𝑔max

𝑎
𝑄(𝑠𝑡+1, 𝑎𝑡)) is chosen 

with a probability 1 − 𝜖𝑡. This enables the algorithm to explore the solution space and provide an assurance 
of optimality if 𝜖𝑡 → 0, when 𝑡 → ∞. Once the optimal 𝑄∗ is found, the optimal policy could be retrieved 
in the form of 𝜋∗(𝑠) =  𝑎𝑟𝑔max

𝑎
𝑄∗(𝑠, 𝑎). 

While both dynamic programming and Q-learning algorithms provide assurance of optimality, they are 
confronted with the curse of dimensionality while solving MDPs having large state and action spaces. To 
address this, Mnih et al. (2015) developed a deep Q-Network (DQN) that combines RL with artificial neural 
networks known as deep neural networks, in order to achieve an approximation of the Q-function, and 
which is trained via the Q-learning algorithm iterations while updating another target network 
(Oroojlooyjadid et al. 2019). The work carried out here is based on this approach. 

4.2 Simulation and Deep Reinforcement Learning for Training Replenishment Policy 

The performance measurement AnyLogic model is further extended with reward function, state 
(observation) space, and action space, in order to prepare it as a training environment in an external 
integrated development environment (IDE) called IntelliJ IDEA. The model is exported as a Java standalone 
application and imported into IntelliJ. A RL for Java (RL4J) library is utilized in order to make the agent 
learn a policy. The trained model is imported back into AnyLogic model as a testbed, where the extended 
model is used as an environment in order to teach the learning agent on taking appropriate actions in order 
to achieve a desired state. Below we briefly describe the action space, state space and reward function: 
 

 Action: A discrete space is used to define actions. We define them as having 9 possible values from 
0 → 8. Considering 𝑚 as a magnitude of an action, the replenishment policy is a function of action 
𝑎 given by 𝑓(𝑎) = 𝑚 × 𝑎.  For example if  𝑎 = 4 and 𝑚 = 2500, the value of action would be 
7500, i.e., a replenishment amount of 7500 units in our case (𝑎 = 1 corresponds to 0). 
 

 State: We have one unique state (observation) which is related to the anticipated stock position 
based on the predictions of the current week, the actual demand, and the anticipated minimum 𝑧 
and maximum 𝑍 target stock levels. These are calculated by using same formulas as in formula (2), 
but slightly modified to incorporate order lead time 𝑂𝐿𝑇, as under: 

Figure 3:Generic Reinforcement Learning Process. 
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𝑧𝑤𝐹 = 𝑐 ×
∑ 𝐹𝐶𝑤,𝑖
𝑞+𝑂𝐿𝑇
𝑖=𝑝+𝑂𝐿𝑇

𝑞−𝑝+1
     and      𝑍𝑤𝐹 = 𝑏 ×

∑ 𝐹𝐶𝑤,𝑖
𝑞+𝑂𝐿𝑇
𝑖=𝑝+𝑂𝐿𝑇

𝑞−𝑝+1
                                 (10)                                                                                          

 
The anticipated stock position 𝐹𝑆𝑃 is given by the formula (11), where 𝐶𝑆𝑃 is the current stock 
position, 𝐹𝑅 is the anticipated replenishment based on the forecast at the time of decision, 𝐹𝐶 is 
the forecast, and 𝐷 is the actual demand. Given an 𝑂𝐿𝑇 we know the amount replenished in future. 
This value (𝐹𝑅)  is calculated on a daily basis, which means that whenever there is a new 
replenishment, it is summed up for a given 𝑂𝐿𝑇. It can be observed from formula (11) that the 
demand is comprised of two elements: 𝐷  is the actual demand, whereas 𝐹𝐶  is the anticipated 
demand. This is equal to the sum of all forecasts that could exist during the total time span of the 
𝑂𝐿𝑇. Afterwards, the mean value of anticipated minimum 𝑧𝑤𝐹 and maximum 𝑍𝑤𝐹 target stock 
levels is calculated using 𝑀𝐹 = (𝑧𝑤𝐹 + 𝑍𝑤𝐹)/2. Since we are interested in knowing how much 
the 𝐹𝑆𝑃 deviates from the 𝑀𝐹 (as ideally we would want our inventory to stay within the 𝑧𝑤𝐹 and 
𝑍𝑤𝐹), the anticipated distance to the mean is calculated using 𝐷𝑇𝑀𝐹 = 𝐹𝑆𝑃 −𝑀𝐹. A negative 
value of 𝐷𝑇𝑀𝐹 would correspond to the 𝐹𝑆𝑃 below the 𝑀𝐹 , and vice-versa. Finally the state 
(observation) is a normalized value between −1 and  +1 as shown in formula (12). 
 

                                 𝐹𝑆𝑃 = 𝐶𝑆𝑃 + ∑ 𝐹𝑅𝑂𝐿𝑇
𝑖=1 − (∑ 𝐹𝐶𝑂𝐿𝑇

𝑖=1 + 𝐷)                                             (11) 
 

                           𝑆𝑡𝑎𝑡𝑒 =

{
 
 

 
 

+1, 𝑓𝑜𝑟 𝐹𝑆𝑃 > 2 × 𝑍𝑤𝐹 
𝐷𝑇𝑀𝐹

(2×𝑍𝑤𝐹)−𝑀𝐹
, 𝑓𝑜𝑟  𝑀𝐹 ≤ 𝐹𝑆𝑃 ≤ 2 × 𝑍𝑤𝐹

𝐷𝑇𝑀𝐹

𝑀𝐹
, 𝑓𝑜𝑟  0 ≤ 𝐹𝑆𝑃 ≤ 𝑀𝐹

−1, 𝑓𝑜𝑟  𝐹𝑆𝑃 < 0

                                       (12) 

 
 Reward Function: The reward function is different from the state function is a sense that it uses 

the current stock position 𝐶𝑆𝑃 instead of anticipated stock position 𝐹𝑆𝑃, and naturally so, since we 
are interested in the immediate reward. First the mean value of minimum 𝑧 and maximum 𝑍 target 
stock levels is calculated using 𝑀 = (𝑧𝑤 + 𝑍𝑤)/2, which is followed by calculating distance to the 
mean using 𝐷𝑇𝑀 = 𝐶𝑆𝑃 −𝑀. It is pertinent to mentioned that we are assigning penalties if the 
current stock position 𝐶𝑆𝑃 deviates from mean 𝑀. Finally the reward (penalty) is normalized value 
between −1 and  +1 as shown in formula (13). 

 

                           𝑅𝑒𝑤𝑎𝑟𝑑 =

{
 

 1 −
2×𝐷𝑇𝑀

(2×𝑍𝑤)−𝑀
, 𝑓𝑜𝑟  𝑀 ≤ 𝐶𝑆𝑃 ≤ 2 × 𝑍𝑤

1 + (
2×𝐷𝑇𝑀

𝑀
) , 𝑓𝑜𝑟  0 ≤ 𝐶𝑆𝑃 ≤ 𝑀

−1,          𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                                     (13) 

4.3 Data Preparation and Performance Evaluation 

Three demand scenarios are used to evaluate performance of our approach. The first scenario concerns the 
actual data (853 days). For this purpose demand forecasts, actual demand data, and replenishment data is 
used for a randomly selected product type and customer in a VMI partnership. Two other random demand 
scenarios are generated, representative of the demand (and forecasts) in scenario one, to be used as a training 
set and tested on the real data for the purpose of further validating our approach. The second scenario 
(random demand and forecast) is generated using a comprehensive method known as Martingale Method 
of Forecast Evolution (MMFE). For this, readers are advised to follow the work carried out by Heath and 
Jackson (1994). Finally the third scenario (random demand and forecast with sporadic rise and fall) is 
generated by slightly modifying the second scenario through random introduction of random multipliers. 
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5 EXPERIMENT AND RESULTS 

5.1 Discrete Event Simulation based Validation 

The VMI performance measurement approach is validated in AnyLogic discrete event simulation 
environment. The sensitivity of the developed approach is tested using different parameters which includes 
forecast information, daily replenishments, and actual demand (pull) of 853 days. This provides the basis 
to calculate the minimum 𝑧 target stock level, maximum 𝑍 target stock level, and daily status of the stock 
level, as shown in Figure 4(a). The weekly performance 𝑊𝑃 is calculated afterwards which is compared to 
the target weekly performance 𝑊𝑃𝑇𝑎𝑟𝑔𝑒𝑡. In case of poor performance, the assignment of responsibility is 
carried out with the calculation of forecast accuracy 𝐹𝐴, bias-adjusted forecast accuracy 𝐵𝐹𝐴, and the 
exceptions check. The simulation provides a clear insight into the inventory states and the assigned 
responsibilities as shown in Figure 4(b). Values of the different parameters mutually decided by the VMI 
partners are provided in Table 1. 

 

[a]  [b]  

Figure 4: [a] Max Z, Min z, and Daily Stock Level and, [b] Responsibility and Inventory States. 

Table 1: Parameters used in VMI Performance Measurement. 

Parameter c b p q u z j WPTarget BF FATarget 

Value 2 4 1 12 1 12 12 75% 0.5 90% 
 
 We focus on three Key Performance Indicators (KPIs): (1) Alpha (α) service level, which is the ratio 
of days without shortages to the total number of days. (2) Beta (β) service level, which is the fraction of 
demand immediately satisfied from stock. (3) Percentage no-violation, which is the ratio of number of days 
with no-violation inventory states to the total number of days. In addition to these, we also make a 
comparison of the total number of shipments done for the different demand scenarios and order lead times. 

5.2 Demand Scenario 1 

For demand scenario 1, the initial 70% of data is used for training purpose, and the testing is performed on 
the last 30%. 𝜖-greedy is used as the selection method for learning. Double DQN is used, and the Stochastic 
Gradient Method used for updating the parameter is Adam. Three hidden layers with hundred neurons each 
are used. A learning rate 𝛼 = 0.00001, Q target frequency of 10000, experience replay size 50000, batch 
size 256, and gamma , 𝛾 = 1 is used. Figure 5(a) visualize the daily stock level with 𝑂𝐿𝑇 = 0 after the 
trained policy is used as a testbed. It should be noted that the testing is performed on the last 30% of the 
data which is highlighted in the red box. Figure 5(b) shows the corresponding results with 𝑂𝐿𝑇 = 28 days. 
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5.3 Demand Scenario 2 and 3 

Random demand and demand forecast are generated based on MMFE. This method provides realistic 
representation of how demand forecasts evolve over time and is useful in our problem. Also, since the 
training is performed on the randomly generated data, testing the trained policy on the complete set of actual 
data (853 days) provides better insights. Note that for scenario 1, the initial inventory state is given, having 
17500 units. For scenario 2 and 3, a random initial inventory is taken within a range of −30000 and 60000 
units. Also the analysis for 𝑂𝐿𝑇 = 28 is performed considering the time needed for backend production. 
Figure 5(c) and Figure 5(d) visualize the daily stock level for scenario 3, using 𝑂𝐿𝑇 = 0 and 28. Figures 
for scenario 2 are not included due to space limitation, however the results are presented in Table 2.  

 

[a]  

[c]  

[b]  

[d]  

Figure 5: Daily Stock Level using RL [a] Scenario 1 using OLT=0; [b] Scenario 1 using OLT=28; [c] 
Scenario 3 using OLT=0; and [d] Scenario 3 using OLT=28. 

 It can be observed, that for 𝑂𝐿𝑇 = 0, the replenishment policy is such that the daily stock level stays 
within the the no-violation state and hardly have any stock violations occuring. For 𝑂𝐿𝑇 = 28, there are 
substantially fewer instances of stock violations even when compared to the daily stock levels of Figure 
4(a), which is a simulated inventory without using RL. Table 2 provides an overview of the achieved 
performance and compare the KPIs for all three scenarios (both for 𝑂𝐿𝑇 = 0 and 𝑂𝐿𝑇 = 28), to the KPIs 
when no policy is used. From the results presented in Table 2, it can be seen that while significant 
improvements have been made in %-age no-violations, this comes at the cost of increased shipments. 
Naturally so, the RL algorithm is set with an objective to improve the inventory, and there exist no constraint 
on the number of shipments. Having said that, the number of shipments could be reduced by consolidating 
consecutive shipments that are suggested by the RL algorithm, while maintaining the same service levels 
and inventory performance. 
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Table 2: Comparison of KPIs. 

 No Policy * Scenario 1 ** Scenario 2 ** Scenario 3 
 * ** OLT 0 OLT 28 OLT 0 OLT 28 OLT 0 OLT 28 
% α Service Level 63.14% 85.13% 100% 88.58% 100% 96.72% 100% 98.01% 
% β Service Level 45.90% 88.45% 100% 82.25% 100% 97.54% 100% 99.02% 
% No-Violation 5% 43% 66% 21% 95% 62% 99% 63% 
Total Shipments 20 80 10 9 227 159 246 253 

* Using Last 30% Data     ** Using Complete Data  

6 CONCLUSION AND NEXT STEPS 

The term VMI is commonly considered as a strategy in which the replenishment decision is shifted to the 
supplier. In this paper, the root-cause enabling VMI performance measurement approach was extended to 
measure the responsibility for poor performance by taking account of the forecast accuracy for the demand 
mutually agreed between the collaborating partners. The approach was tested and validated via simulation 
on a set of company data. Considering room for reduction in stock violations from a supplier’s perspective, 
optimization in the replenishment policy was studied and implemented using DRL algorithm in a simulation 
environment. Result show that the percentage no-violation inventory status improved from 43% to 95% 
and 99% for both scenarios respectively, while maintaining higher α and β service levels. This comes with 
increased transportation costs, could be reduced if consecutive shipments are consolidated outside the RL. 
The challenge ahead would be to investigate additional demand scenarios and conduct a full design of 
experiment taking into account the volatility in demand and demand levels. It would also be very useful to 
extend the scope to multi-stage SC for bullwhip analysis. 
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