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ABSTRACT

High-performance computing facilities used for scientific computing draw enormous energy, some of them
consuming many megawatt-hours. Saving the energy consumption of computations on such facilities can
dramatically reduce the total cost of their operation and help reduce environmental effects. Here, we
focus on a way to reduce energy consumption in many ensembles of simulations. Using the method of
simulation cloning to exploit parallelism while also significantly conserving the computational and memory
requirements, we perform a detailed empirical study of energy consumed on a large supercomputer consisting
of hardware accelerator cards (graphical processing units, GPUs). We build on previous insights from
mathematical analysis and implementation of cloned simulations that result in computational and memory
savings by several orders-of-magnitude. Using instrumentation to track the power drawn by thousands of
accelerator cards, we report significant aggregate energy savings from cloned simulations.

1 INTRODUCTION

High-performance computing facilities used for scientific computing draw enormous amounts of energy
for their computing and subsequent cooling requirements. The current fastest supercomputer’s ability to
compute over 140,000 trillion floating-point operations per second comes with a power requirement of
around 10 MW (TOP500 2018). The energy needs of such massive computing infrastructures are currently
in focus (Scogland et al. 2015; Pakin et al. 2016). Several studies have been performed to reduce energy
consumption of big systems using scheduling (Ren, Lan, and van der Schaar 2013), code perforation
(Hoffmann et al. 2009), and performance counters (Chetsa et al. 2014).

1.1 Simulation Cloning

Simulation Cloning is a conceptual approach in which such a tree of many related simulations is efficiently
executed by dynamically minimizing the duplication of memory and computation among the simulations.
The efficiency is achieved by separating the logical view and physical manifestations of the simulations
in terms of their memory usage and computational operations. Logically, each simulation is an entirely
separate simulation of its own. However, using cloning, the physical manifestation of the simulations is
optimized: the common shared content across state space and virtual time along the clone tree hierarchy is
combined at the runtime, thereby dramatically reducing the aggregate amount of computation and memory
consumed by the entire tree.

The basic concept of cloning in computing may be dated back to John von Neumann’s allusion to
it for fault tolerance (Von Neumann 1956) in 1950s. During the 1990s work on cloning was performed
by (Hybinette and Fujimoto 1997) and was applied successfully to problems such as faster-than-real-
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time simulation-based decision tools in missile defense applications. The work happened to be primarily
focused on parallel discrete event simulations (Bestavros and Wang 1993; Heidelberger 1988; Hybinette
and Fujimoto 2001). Cloning has also been recently applied to agent-based simulation and its execution
on GPUs (Li et al. 2017). They identified the potential of cloning on GPUs and showed that cloning can
help in real-time what-if scenario simulations for crowd management and decision systems.

Previously, we had successfully demonstrated that the dynamic cloning of simulations during execution,
to evaluate several different “what-if” scenarios, result in the conservation of computation and memory by
several orders-of-magnitude (Yoginath and Perumalla 2018). However, the equivalent energy conservation
has not been quantified yet. So far, most of the energy efficiency considerations are based on low-
level computing system optimization and efficient device usage, rather than the structure of simulation
systems (Fujimoto 2015). In this paper, we instrument our framework to measure energy consumed during
computations and empirically evaluate the energy conservation promise of the cloned simulation executions.

1.2 CloneX Architecture

Clonable Application
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– Visualize, Batch

Cloning Conceptual Framework Interface
– MPI + CUDA

– Runtime, State Transfer, Synchronize

Management

Optimization

Memory

and
Identi�er

Lookup

E�cient

Mapping and
Computation
Optimization

Dynamic

Balancing
Load Inter-Node

Transfers

E�cient

Clone

Figure 1: CloneX Software Architecture.

CloneX is a novel GPU-based simulation cloning framework that we developed for large-scale high-
performance computing systems, which efficiently and dynamically creates whole logical copies of sim-
ulations without full physical duplication (Yoginath and Perumalla 2018). Figure 1 shows the software
architecture of CloneX. The CloneX framework is developed over efficient GPU architecture specific parallel
computing SIMD algorithms, novel memory management strategies, rapid clone identification and lookup
algorithms, efficient communication algorithms, and scalable load-balancing algorithms. This framework
provides generic application programming interfaces through which several applications could exercise
cloned simulation executions. Currently, CloneX can be readily interfaced with simulation applications
in which the model is dependent on immediate neighborhood to update its simulation state at every time
step. CloneX ensures that the results from any node of the simulation tree are exactly the same as one
would obtain if that node is separately executed from beginning to end with its own independent copy of
simulation state, and with its own initial conditions.

In Figure 2, we show an execution snapshot of cloned simulation executions that use two-dimensional
grids. The CloneX framework provides the flexibility for any executing simulation instance to branch
into desired number of clones. In a time stepped two-dimensional grid-based simulation, it translates to
the initial state of the what-if scenario that needs to be super-imposed on the executing simulation. The
memory occupied by this initial state might be as small as a single grid element, which grows in size as
the simulation clone evolves in time. These simulation clone instances are represented by small brown
rectangles in Figure 2, which can grow to the size of the base simulation. Further, every simulation clone is
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Figure 2: CloneX Architecture.

also able to branch at any time, thus increasing the depth of the simulation clone tree. The depth increases
in terms of levels and the larger the level number the farther the simulation clone is from the base simulation
in the simulation clone tree. The base simulation is at level 1.

Figure 3 gives a schematic of the load-balancing algorithm in CloneX. Here, the simulation starts with
base-simulation executing on each GPU. As the base simulation branches and grows into a tree with six
nodes, our dynamic load-balancing algorithm efficiently distributes the newly spawned nodes across lightly
occupied nodes. This essentially results in multiple cloned simulation sub-trees with each GPU hosting
one sub-tree.
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Figure 3: Distribution of clones among available processors.

1.3 Organization

In this paper, we present our preliminary work measuring, quantifying and evaluating energy gains made
through cloned simulation executions on large-scale computing systems. In Section 2, we discuss the
hardware and software platforms, the benchmark applications, the instrumentation of CloneX to measure
the energy consumed by cloned simulation executions using NVIDIA Management Library (NVML) library.
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In Section 3, we provide a detailed performance numbers for different benchmarks with varying number
of branches and levels of simulation clone execution. We conclude the paper with Section 4.

2 EXPERIMENTAL SETUP AND BENCHMARKS

2.1 Hardware and Software

Our performance study was conducted on Oak Ridge National Laboratory’s (ORNL) Titan machine, which
is a supercomputer based on a hybrid architecture with a power requirement of 8.2 MW. Titan features 18,688
compute nodes, a total system memory of 710 terabytes and Cray’s high-performance Gemini network.
Each node comprises of 16-core AMD Opteron processor with 32GB of host memory and NVIDIA Tesla
K20 GPU accelerator with 2688 CUDA cores with 6 GB of device memory.

We use our CloneX software framework to measure, compare and evaluate the energy utilization of the
cloned simulation executions. This C++ software is developed using CUDA and MPI libraries. We refer
the reader to (Yoginath and Perumalla 2018) for the details on the design and development of CloneX. We
used NVIDIA Management Library (NVML) for energy measurements. The NVML-based power readings
are verified to be within 5% of error margin for the Kepler architecture based GPUs (NVIDIA 2018).

2.2 Benchmark Applications

The following three benchmarks were used in our study
Heat Diffusion Simulation We use two-dimensional (2D) heat diffusion equation as our first

benchmark. Forward time central space (FTCS), an explicit finite-difference scheme was employed for
computation. We use Dirichlet boundary conditions for this application benchmark. This benchmark
simulates to 2D heat-diffusion across a thin sheet of iron (Flaherty 2005). For cloning, each what-if
scenario is represented by a simulation clone that is created by randomly picking a part of the domain as
a new heat source (Yoginath and Perumalla 2018).

Forest Fire Simulation We use the forest fire simulations as our other benchmark to evaluate the
performance of cloned simulation executions. This simplistic realization of forest fire application completely
follows the model of (Balbi, Santoni, and Dupuy 1999). The process of cloning involved modeling the
ignition of a small block of cells. This is achieved by resetting the selected block of cells to the ignition
temperature. Igniting different points in the forest area on fire creates new simulation clones (Yoginath
and Perumalla 2018).

Epidemiological Simulation We use an epidemiological model based on geographical population
distributions. The geographical domain is divided into cells in which each cell contains four key state
variables, each of which is a population count: S for susceptible, E for exposed, I for infected, and R
for recovered. This is known as the SEIR model, to which we also add movement of individuals across
cells. The initial population densities in the cells are assigned based on population databases of countries
made available by the United Nations. The base simulation tracks the propagation dynamics based on the
SEIR model. The clones are spawned based on a variety of what-if scenarios, such as new outbreaks (cells
with increased infected count), quarantines (restricted spatial movement), vaccination (reducing susceptible
counts), and hospitalization (increasing recovered counts) (Perumalla and Seal 2012).

2.3 Benchmark Scenarios

All the benchmarks start with the grid-based base simulation with a spatial dimension of 2048×2048. All
the dynamically spawned clones start with an initial dimension of 64×64.

Single-node scenario This experimental scenario is used to quantify the energy conserved and compare
it with the computational and memory savings achieved due to cloned execution. In this experiment, we run
all the benchmark applications for 100 timesteps. Each simulation clone spawns 6 clones (branches) after
every 20 timesteps. This essentially results in a 5-level simulation clone tree, with each clone branching
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off 6 ways at every level. This results in the spawning and execution of 1,555 simulation clones, including
the base (full) simulation.

Multinode scenario This experimental scenario was designed to evaluate the strong scaling ability
of CloneX. Here, each simulation clone spawns 4 clones (branches) after every 10 timesteps and the
benchmark applications are run for 100 timesteps. This essentially results in a 10 level simulation clone
tree, with each clone branching off 4 ways at every level. This results in the spawning and execution
349,525 simulation clones, including the base simulation. This experimental scenario is executed on varying
number of GPUs: 128, 256, 512, 1024 and 2048.

2.4 Power and Energy Measurement

Here, we discuss the methods used to obtain real time power-consumption value and to calculate consumed-
energy using the power readings.

Instrumentation To measure the energy consumption of the simulation runs executing on GPUs,
we use NVML API to obtain the power usage of the device in milliwatts. The NVML call to query
power was used after launching the simulation specific CUDA kernels and before a call to the function
cudaDeviceSynchronize(), which synchronizes the CPU execution with GPU kernel completion by
waiting for all GPU threads to complete. Since, CloneX is developed to execute on large-scale GPU-based
computational platforms, we only measure the energy consumption of the GPUs.

Measurement In Figure 4, we show the power curve (red dotted-lines) plotted using the queried
power values during the CloneX benchmark execution scenario involving 5 levels with 6 branches. We
calculate the energy for this execution scenario by measuring the area under power curve (shaded green).
To achieve this, we recorded the time just before and after the execution of CUDA kernels. We calculate
the area under the rectangle formed by period of kernel execution and queried power value to compute
energy consumed at during CUDA kernel execution. These individual energy computations are aggregated
to obtain the total energy consumed by a simulation benchmark execution.
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Figure 4: Power readings from NVML.

Every measured point in Figure 4 represents the instance at which the power was measured. From
Figure 4, the non-uniformity in the power query frequency can be observed. It is at these gaps the CloneX
framework creates the cloned instances. During this period, the data pertaining to cloned instances are
copied to the device memory and there is not much GPU computation being performed. In the multi-node
runs, each GPU queries its power utilization and the energy consumed by each GPU is calculated.
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We would like to note here that the energy utilized by the GPUs is estimated while executing the
simulation benchmarks. The energy lost in the form of heat due to these computations is not measured. The
temperature of the device recorded during computations remained almost constant and this was expected
because of the cooling system. As part of future work, we intend to account for the energy lost as heat,
which provides an increased amount of precision of our measurements. Note that, for this same reason,
the energy consumption estimates are conservative in this paper, and the savings from cloned simulations
could be higher when heat loss is also included.

3 PERFORMANCE RESULTS

3.1 Performance Metrics

We used the following metrics to evaluate the performance of cloned simulation benchmark executions.
Computational Savings (Cs) is calculated as

Cs =
Nc ×C1

P×Cc

Where Nc is the number of simulation clones, C1 is the computational requirement of a single node simulation
execution, P is the number of compute nodes (GPUs) used and, Cc is the computational time required for
cloned simulation execution on P processors. Here, the fraction Nc×C1

P represents the computational need
of replicated simulation runs on P processors. We obtain computational savings by dividing this fraction
by Cc.

Memory Savings (Ms) is calculated as

Ms =
Nc ×µ1

µc

Where, µ1 is the memory requirement of a single simulation execution and µc is the aggregate memory
used by cloned simulation execution. In multinode execution, the aggregate memory is the summation of
memory utilized across all the GPUs.

Energy Savings (Es) is calculated as

Es =
Nc × ε1

εc

Where, ε1 is the energy requirement of a single simulation execution and εc is the aggregate energy utilized
by cloned simulation execution. In multinode execution, the aggregate energy is the summation of energy
utilized across all the GPUs.

3.2 Single Node Execution

In Figure 5a, Figure 5b, and Figure 5c we show the performance trends of the benchmark diffusion,
forest fire and epidemiological simulations. The X-axis of these plots represent levels and at each level
every simulation clone spawns six new simulation clones. The Y-axis represents Cs, Ms and Es, which are
dimensionless and are identified by the legends in the figures.

These plots confirm that the amount of energy savings due to cloned simulation executions closely
follows the trends of computation and memory, and can be expected to result in orders-of-magnitude energy
savings on a single GPU. As seen in the Figure 5a, Figure 5b, and Figure 5c, the energy conservation
appear to be either equivalent or slightly better than computational gains.

3.3 Multinode Execution

Effects of Load Balancing The multinode execution involves distribution of simulation clones across
different computational nodes or GPUs. To assess the performance of parallel multinode execution it becomes
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Figure 5: Relative computation, memory and energy conserved with each clone spawning six branches at
every level, for (a) Diffusion simulations, (b) Forest fire simulations, and (c) Epidemiological simulations.

necessary to evaluate the performance of the load-balancing algorithm that distributes the simulation clones
across multiple nodes. In Figure 6a, Figure 6b, and Figure 6c, we show the per-node simulation clone
population, per-node device memory utilization and per-node energy utilization, respectively, for all the nodes
involved in multinode cloned simulation execution. Each of the simulation clone benchmark applications
(Section 2.2) were executed on 128, 256, 512, 1024, and 2048 GPUs. The benchmark applications namely,
diffusion, forest fire and epidemiological simulations are identified as diff, ff, and epi, respectively.
In the plots, the legend diff 128 refer to multinode execution of the diffusion simulation benchmark
on 128 GPUs. Similar representations are used to present multinode execution data of other simulation
benchmarks.

In Figure 6a, we provide the curves that show the distribution of simulation clones across the parallel
nodes for all the three benchmarks executing the multinode benchmark scenario. This plot confirms
that distribution of number of clones on the GPUs are same across all the benchmarks, suggesting the
load-balancing algorithm behaved in a consistent manner across all the benchmark applications. The load-
balancing algorithm executes when new simulation clones are spawned and takes the memory occupancy
of each node involved in the parallel computation into consideration before moving the new simulation
clones from the spawning node to the execution node. The memory-occupancy of each node at the end of
the benchmark execution is shown in Figure 6b. This load-balancing strategy appears to do better in terms
of per-node energy utilization for large number of execution nodes (512 to 2048), as seen in Figure 6c
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Figure 6: (a) Number of Clones, (b) GPU memory, and (c) Energy consumption, of each execution node
in strong-scaling evaluation of all the benchmarks using 128 to 2048 nodes. Here and in the following
plots diff, ff, epi represent diffusion, forest fire, and epidemiological simulations, respectively.
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Further, we also observed that the inclusion of power polling instrumentation to the source code made
no significant impact on the runtime performance of the benchmarks. This is significant because new
load balancing algorithms can be designed directly based on the energy measurements made. This can
be helpful when newly spawned simulation clones significantly differ from each other and the simulation
clone branching are random and runtime dependent.

Strong Scaling Results In Figure 7a the parallel execution show good runtime gains with the increase
in number of GPUs. Each of the simulation runs were replicated 5 times to avoid random noises. In this
plot we use the average runtime of the replicated runs with a 95% confidence interval error bars. As seen
from the plot, the runtime is very consistent among replicated runs.
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Figure 7: Execution time, Memory utilization, and Aggregated energy, utilized by all the nodes in the
strong-scaling evaluation of all the benchmarks using 128 to 2048 nodes.

In Figure 7b the aggregate memory utilization increases with the increase in number of GPUs used
in cloned memory execution, this is because of the replicated root simulation along with other replicated
parent clones that result with the increase in the number of GPUs used in cloned simulation execution. We
aggregated the memory used by each GPU during parallel computation of cloned simulation execution and
calculated Ms using single simulation execution memory requirement and number of clones the scenario.

Similar to aggregated memory calculations, we aggregated the energy consumed by each GPU in
the parallel execution for each multinode benchmark execution and the corresponding plots are shown in
Figure 7c. Each of the simulation runs were replicated 5 times to avoid noise. The average aggregated
energy of the replicated runs along with the 95% confidence interval is shown in the plot.

In these multinode execution runs, we observe increase in the overall energy consumption with increase
in number of nodes, as seen in Figure 7c. This behavior can be expected since each of the nodes execute
the root simulation along with other simulation clones. A higher energy consumption with an increase in
number of GPUs is observed in epidemiological simulations. This is because the kernels are computationally
more intensive than in the other benchmark applications. In contrast the diffusion and forest fire simulation
benchmarks demonstrate low energy consumption with increase in the number of GPUs. Similarly, the
forest fire simulations show higher memory utilization in comparison with other simulation benchmarks,
which is coming from a slightly higher number of parameters handled by each spatial component.

3.4 Overall Conservation

In this section we quantify the computational, memory and energy gains as we move beyond single node
executions. Figure 8a, Figure 8b and Figure 8c, show the conservation trends for computation, memory
and energy in relation to replicated runs. These curves were generated utilizing the runtime, memory and
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Figure 8: Relative computation, memory and energy conserved in multinode execution for simulation
benchmark scenarios (a) Diffusion simulations (b) Forest fire simulations (c) Epidemiological simulations.

energy utilization values of a single simulation run. As mentioned in Section 2.3 the multinode benchmark
scenario computes 349,525 simulation clones.

We observe that even with tapering energy conservation curve across all the simulation benchmarks,
we still see an energy gain of over two orders of magnitude with cloned simulation executions over
replicated simulation executions. We observe that the memory gains slightly taper as the number of GPUs
used in CloneX simulation executions increase. However the memory gains of over couple of orders of
magnitude can be seen across all the cloned simulation benchmark executions over replicated simulation
executions. However, the runtime appears to relatively suffer due to replicated root simulation executions
and communication costs incurred in the multinode executions. With the increase in number of GPU nodes
the best observed gain in computational savings over replicated runs is just over an order-of-magnitude
for multinode execution scenarios. Further, the strong scaling performance evaluation scenario yield in
relatively low computational savings with the increase in number of GPUs.

4 DISCUSSION AND CONCLUSION

Using actual implementation of simulation cloning in software, we empirically evaluated the energy benefits
from cloned execution of ensembles of GPU-based simulations. We found that the energy savings observed
in actual runs are in line with those predicted from theoretical analyses of computational savings and memory
conservation, which essentially result in orders-of-magnitude reduction in energy consumed on a single
GPU. The results show that simulation cloning is an effective approach to perform ensembles of what-if
decision simulations in an energy-efficient simulation. This is especially pertinent on high-performance
computing systems that extensively rely on accelerators such as GPUs to achieve peak performance. On
large-scale executions, we found that the instrumentation overhead for probing the power consumption is
negligible. Due to the low overhead of tracking the power draw across many processors, it is possible to
adopt new designs of energy-efficient load-balancing algorithms based on the energy consumption data
of each GPU device across thousands of computational nodes. Further, we observed retention of energy
savings with the increase in the number of GPUs for large-scale runs are more promising in comparison
with the computation and memory savings.

The main objective of this paper is to indicate the potential for a large amount of computational/memory/energy
gains possible with the concept of simulation cloning. Our paper has been focused on highlighting the
potential in the simple setting of evaluating all the nodes of the clone tree. A complete treatment of this
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concept in future would exercise the range of techniques that cloning covers, including pruning and merging
clones dynamically in the course of real-time execution of large ensemble runs.

Due to the special requirements of ensembles needed to effectively exploit the cloning approach, not
all applications may exhibit similar energy improvements. Specifically, our implementation of cloning
for grid-based domains is ideally suited in scenarios where changes across clones are spatially localized
in nature. We intend to investigate new methods to relax this requirement in the future by defining a
permutation matrix that serves as grid-based indices into non-contiguous changes to domains such as
contact network-based graphs. Additional future work includes testing on latest supercomputing platforms
that contain six or more GPUs within each node across multiple nodes. It also remains to be analyzed which
hardware elements (computational processing, memory storage/retrieval, and communication within/across
nodes) contribute the what part to the energy consumption. We plan to perform detailed profiling to help
us understand at this lower level of detail in future.
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