
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

TIME WARP SIMULATION ON MULTI-CORE PLATFORMS

Philip A. Wilsey

Department of Electrical Engineering and Computer Science
University of Cincinnati

PO Box 210030
Cincinnati, OH 45221-0030, USA

ABSTRACT

Parallel Discrete Event Simulation (PDES) is concerned with the parallel and distributed execution of
discrete event simulation models. This tutorial reviews parallel computing and the properties of Discrete
Event Simulation (DES) models and then examines the construction of PDES solutions that use the Time
Warp Synchronization Mechanism. A review of the general challenges to building high-performance Time
Warp Synchronized PDES on multi-core processors and clusters composed of multi-core processors is
presented. These challenges include considerations of the general quantitative metrics exhibited by DES
simulation models as well as a review of the impact that small overheads and serial portions of a program
can have on the potential peak performance of a parallel solution. Finally, directions for future opportunities
with heterogeneous computing, domain specific hardware solutions, and edge computing will be explored.

1 INTRODUCTION

Parallel computing hardware has become ubiquitious. Outside of inexpensive processors designed for
low-cost embedded work, virtually all processors today are released with multiple-cores and in many
cases also containing simultaneous multi-threading (Hennessy and Patterson 2019). Parallel Discrete Event
Simulation (PDES) attempts to harness these parallel computing platforms. While simulation run time is
often a motivating objective for PDES, numerous other motivating factors for PDES also exist. For example,
PDES enables the exploitation of the multiplicity of resources available from a collection of computers, it
also facilitates the integration (federation) of distinct simulation models, it facilitates the scaling to (and
study of) very large simulation models, and so on (Fujimoto 1990; Fujimoto 2000). Traditionally this
execution is on multi-core/many-core processors, big-iron parallel computing hardware (e.g., IBM Blue
Gene systems) or Beowulf clusters. However, emerging hardware solutions such as GPGPUs (Perumalla
2006), FPGAs (Rahman et al. 2019), Domain Specific Architectures (DSAs) (Hennessy and Patterson
2019), and, more generally, heterogeneous computing platforms provide exciting opportunities for PDES.

Discrete Event Simulation is a good candidate application for parallelization as it is easily decomposed
into a collection of discrete event simulation functions that can concurrently process events. In many cases,
the simulation models are quite large with ample potential parallelism. The design of a concurrent execution
of a DES Model requires that the simulation engine implement some type of synchronization mechanism
that coordinates the concurrent execution to ensure correct execution. There are numerous synchronization
mechanisms including organized as either centralized or distributed solutions (Fujimoto 1990; Fujimoto
2000). The distributed synchronization mechanism are generally classified as either conservative (Bryant
1979; Chandy and Misra 1979; Chandy and Misra 1981) or optimistic (Jefferson 1985; Fujimoto 1990).
This tutorial is concerned with implementing an optimistically synchronized PDES using the Time Warp
Mechanism (Jefferson 1985). The particular focus in this tutorial will be building and deploying a high-
performance solution that operates effectively on multi-core processors and clusters containing multi-core
processors.

1454978-1-7281-3283-9/19/$31.00 ©2019 IEEE

Wilsey

The remainder of this paper is organized as follows. Section 2 contains a background discussion on
parallel simulation and outlines how a discrete event simulation is commonly organized for parallelization.
Section 3 discusses the challenges of parallelism as well as reviewing some of the significant properties of
discrete event simulation that challenge the attainment of speedup. This section also discusses some of the
opportunities that discrete event simulation contribute for effective parallelization. Finally, this section also
discusses some of the parallel hardware and programming structures that can contribute to better or worse
parallel performance for the fine-grained application that PDES is. Section 4 reviews the main components
of a Time Warp simulation and discusses the various sub-algorithms for each. Section 5 discusses some of
the work already performed with GPGPUs, FPGAs and Domain Specific Architectures (DSAs) for PDES.
Finally, Section 6 contains some concluding remarks. Some data and graphs in this tutorial are taken from
(Child and Wilsey 2012; Alt and Wilsey 2014; Crawford et al. 2017).

2 BACKGROUND

A DES model captures the behavior of a real or planned system as discrete actions or transitions through
a simulated time period. These discrete changes in the modeled system can occur at distinct and irregular
simulated time stamps. In general, a physical system is organized as a collection of Physical Processes
(PPs) that are each modeled by a Logical Process (LP) in the DES model. The LPs generally contain state
variables that collectively record the state of of the physical system. State transition triggers are captured
by events that have a time stamp denoting when that state transition is planned to occur. Thus, for example,
a DES model of a logic circuit could represent the logic gates as LPs and the signal changes on the wires
between the gates as events. Simulation of a DES model then orders the events by their time stamps and
uses the LPs to effect the transitions defined by the events. Termination occurs whenever some termination
condition is satisfied.

Conceptually the LPs of a DES model can all be considered independent discrete event simulation
engines that maintain a local simulation time and execute events denoting transitions for that LP. This
concurrent execution requires synchronization of the LPs to ensure that the correct orderly execution of
all events in the system occurs (Lamport 1978). Initially some central synchronization system was used to
provide synchronization (Fujimoto 1990). In one embodiment, this central system would operate something
like a clock broadcasting advances of a global synchronizing time boundary that the parallel LPs would
execute against. In another embodiment, the central system would hold the pool of events to be executed
and in a step-by-step manner distribute a next set of events that could all be executed simultaneously (while
preserving their causal order). As with most systems built around a centralized control unit, the handshaking
and control enforces strict causal orders that inhibits maximal parallelism. These shortcomings lead to the
development of distributed mechanism to synchronize parallel simulation.

Distributed synchronization mechanisms for parallel simulation are generally classified as being either
conservative (Bryant 1979; Chandy and Misra 1979; Chandy and Misra 1981) or optimistic (Jefferson 1985;
Chandy and Sherman 1989). Conservatively synchronized PDES implements a distributed synchronization
protocol that strictly maintains the causal order of events throughout their parallel execution. In this case
each LP processes events only when it is certain that the event is the next to be processed and no other
event with an earlier timestamp will arrive for processing. This requires that all events generated and sent
by an LP are sent in their timestamp order and that the message passing subsystem deliver and process
messages in a first-in-first-out (FIFO) order. Each LP then will monitor the FIFO queue from all of the
LPs that send event messages to it and will process the event with the smallest timestamp. If the FIFO
queue from any sending LP is empty, the receiving LP must block until another event message arrives on
that queue. This can lead to deadlock. The deadlock can be broken by having the receiving LP send back a
null message to the LP with an empty FIFO queue to request an updated time boundary for any new event
messages that it might send to the receiving LP. This updated time boundary is generally computed with
the assistance of a lookahead value L . The lookahead value permits an LP to communicate a guarantee of
how much time will occur before another event will be sent to the receiving LP. That is, if the sending LP

1455

Wilsey

LVT

Output Queue

State Queue

Input Queue

Physical
Process
Model

Straggler Message Anti−messages

Restored State

Logical Processes

Figure 1: System view of a Time Warp Simulation.

is at simulation time T and its lookahead value is L , then any event message sent by the sending LP will
have a timestamp of at least T +L . The above conservative synchronization is commonly described as the
Chandy/Misra/Bryant (CMB) algorithm and frequently conservative synchronization is used synonymously
with CMB, there are other conservative mechanisms that will guarantee events are processed in their causal
order. Some examples of other conservative mechanisms are: Bounded Lag (Lubachevsky 1988), YAWNS
(Nicol 1993) and Breathing Time Buckets (Steinman 1991).

In contrast, optimistically synchronized PDES does not strictly enforce the causal order of events and
instead builds some mechanism to repair the system whenever a causal violation occurs. The optimistic
nature of these methods permit the parallel simulation engines to process events aggressively without the
overheads associated with an enforcement of the strict causal order. Optimistic methods assume that the
causal orders are generally satisfied and then implement mechanisms to recover whenever a causal violation
is discovered. Obviously these methods work well when events can be generated and communicated to
the receiving LP before that LP can advance to the timestamp of the incoming events. When this happens
the optimistic methods benefit from the removal of the synchronization overhead. However, when causal
violations occur, there is a performance penalty for its restoration. Probably the most commonly used and
studied optimistic synchronization method is the Time Warp Mechanism that was introduced by (Jefferson
1985). Effective implementation of a Time Warp synchronized parallel simulation engine designed for
high-performance execution on a multi-core processor and cluster is the main topic of this tutorial. A more
detailed description of the Time Warp Mechanism is presented in the next section.

Both conservative and optimistic synchronization methods have been and are widely researched. While
there has historically been a friendly rivalry between researchers of the two camps (Fujimoto et al. 2017),
neither approach has been shown to be consistently superior to the other and work continues to advance
developments and optimizations to each.

2.1 PDES with Time Warp

The Time Warp mechanism is an implementation of the Virtual Time paradigm proposed by Jefferson
(Jefferson 1985). In a Time Warp simulation, the system under investigation is decomposed into a set
of LPs that operate as asynchronously communicating discrete-event simulators (Jefferson 1985). An
illustration of a Time Warp synchronized simulation is shown in Figure 1. This figure depicts a collection
of LPs show as a card deck style stack. Each LP in the stack operates concurrently, processing the input
events in their timestamp order and communicating with other LPs by exchanging timestamped events as
they are generated. Each LP maintains its own simulation clock called the Local Virtual Time (LVT),

1456

Wilsey

which is the timestamp of the event last processed by that LP. To correctly simulate a physical system,
the LPs must process the input events in their timestamp order. An LP continues to receive and process
events from its input event queue until there are no more unprocessed events or until an event arrives whose
timestamp is lower than the LVT of that LP. Such an out-of-order message is called a straggler event (or
simply straggler). When a straggler arrives at an LP, the LP suspends event processing and performs a
rollback. A rollback consists of restoring the state of the LP to the exact point where the straggler should
have been processed (had it arrived in order), and canceling the side-effects of the premature lookahead
computation done by the LP. In order to facilitate a rollback, each LP maintains an Input Queue which
is the event queue of the LP that contains all the processed and unprocessed events, a State Queue that
contains snapshots of the LP’s state after each event has been processed (assuming that the state of the
process is checkpointed every event), and an Output Queue that contains exact negative copies (called
anti-messages) of the messages sent out by the LP. Figure 1 illustrates rollback of the queues (shown in
red) with the blue dashed lines showing the premature advance of the simulation that occurred prior to the
arrival of the straggler.

The purpose of an anti-message is to curtail the spread of the erroneous computation by annihilating the
corresponding positive message (henceforth, the terms event and messages will be used interchangably to
denote a timestamped event) from the input queue of the receiving process. Whenever a positive message
meets its corresponding anti-message they annihilate each other, leaving no trace that either ever existed.
If the annihilated positive message has not yet been processed, then the LP receiving the anti-message
simply discards the two. If the message has been processed, then the LP receiving the anti-message must
first be rolled back to undo the effect of processing the incorrect message. This rollback, may, in turn,
cause other anti-messages to be sent out. Recursively repeating the above procedure allows all the effects
of the erroneous computation to be canceled.

Out-of-order messages are the primary cause of causality errors in a Time Warp simulator. Since
different LPs reside on different processors and since there is no synchronization, it is possible that there
are LPs which may be working in the simulation time future of other LPs. If an LP residing on a processor
in the past sends a message to an LP residing on a processor in the future, the object receiving that message
may have already moved past the message’s receive-time, in which case the work done by the object before
the arrival of straggler may be in error (Reiher et al. 1990). These erroneous messages can have cascading
effects. One out-of-order message can result in the generation of other out-of-order messages containing
erroneous data, which in turn can generate many more, causing the error to spread across the system. For
the simulation to proceed along the correct path, the damage done by these erroneous messages must be
undone.

Cancellation is the mechanism used to remove incorrectly sent output messages from the distributed
computation. Depending on the sending time of the anti-messages, two methods exist for canceling
incorrect messages in a Time Warp simulator, namely Aggressive Cancellation (AC) and Lazy Cancellation
(LC) (Fujimoto 1990; Fujimoto 2000). In AC, anti-messages are dispatched to the receiving processes
immediately upon the arrival of a straggler. AC works under the assumption that an out-of-order event
always produces incorrect output. In LC, the LP waits until it is sure that the messages that it had sent out
during the erroneous lookahead will not also be sent by the proper computation. Anti-messages are sent
for only those output messages which are generated differently after the rollback.

3 CHALLENGES AND OPPORTUNITIES FOR PDES

DES Models provide a number of challenges and opportunities to the construction of high-performance
PDES. On the one hand, they are generally easily decomposable so that a significant number of concurrent
LPs can be defined. It is not difficult to find simulation models containing 10-100K LPs and those of 1M or
more are not uncommon. That said, the execution run time of a single event on one of these LPs is generally
very small, on the order of 10µs or less. While one of the principle ideas of the Time Warp mechanism is
to remove the overhead/synchronization costs of maintaining the strict causal orders of all events as they

1457

Wilsey

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 1 4 16 64 256 1024

S
p

e
e

d
u

p

Number of Processors

Amdhal's Law: The Impact of Overheads

Assuming 99% Parallel
Adding a fixed 1% overhead

1.5x the runtime of the parallel portion
2x the runtime of the parallel portion

Figure 2: Using Amdhal’s Law (Hennessy and Patterson 2019) to illustrate the impacts that small fixed
and variable overheads have on the potential for strong scaling speedups.

are executed, this relaxation is made possible only with some additional costs such as state savings (or at
least the implementation of reverse computation (Carothers et al. 1999)), fossil collection, and global time
management. The Time Warp algorithm also complicates mechanisms to observe global conditions of the
simulation which can lead to additional costs to detect, for example, termination conditions (Chandy and
Lamport 1985). The remainder of this section has two objectives. The first is to examine the above issues
in more detail. The second is to examine some aspects of parallel programming and hardware mechanisms
that are significant to achieving performant PDES implementations.

3.1 Small Overheads Matter

While the promise of parallelism is attractive and seems like it should provide speedups that are nearly linear
in the amount of parallelism, gaining scalable speedup from parallelism is challenging. Minor overheads
can easily destroy any potential speedup. The application level challenges to achieving effective speedup
comes in two forms, namely: (i) the fraction of the original program that is not parallelizable, and (ii) the
overheads added to the sequential components when they are parallelized (e.g, both in terms of additional
instructions: locks and such, as well as contention for shared resources). While the sequential portion may
seem insignificant, even a 1% sequential component has significant impact at scale.

The impact that each of the above characterized overheads has on potential speedup is illustrated in
Figure 2. The curves in the legend (top to bottom) are computed to show: (i) ideal parallelism with no
overheads, (ii) a fixed added overhead of 1% of the original computation added back to the result, (iii) an
overhead of 1.5x added to each parallel task (that is each parallel task executes 1.5 times the sequential
component it replaces), and (iv) an overhead of 2x added to each parallel task. Thus, for example, the fixed
cost might denote the added cost to initiate the parallelism and the variable cost denoting the synchronization
or other additional overheads. Note these curves assume an ideal problem that is decomposed into equal

1458

Wilsey

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 5 10 15 20 25 30 35 40

M
ic

ro
s
e

c
o

n
d

s

Event Granularities (microseconds) on Intel 3.4GHz i7-4770

Event Runtime
Average (4.39)

Std Deviation (3.7)

Figure 3: Event execution run time for a variety of simulation models from the WARPED2 and ROSS
simulation repositories. Run time data captured with simulation kernels configured for sequential execution.

sized compute units without constraints or limits. The curves show that even in the idealized case with
no overheads the speedup the sequential portion limits total speedup to 99 — the sequential component
matters. Equally interesting is that even a small fixed cost added to the sequential portion is more punishing
than a variable cost added to each parallel portion. Thus, while it is important to mange cost additions to
the parallel elements, it is perhaps even more important to address and minimize any remaining sequential
portion of the solution.

3.2 Properties of DES Models

Discrete Event Simulation models (DES Models) appear to be excellent candidates for parallelization and
in many cases, this is true. They generally have a large number of components that are easily parallelized,
they are often scaled to very large sizes (sometimes exceeding the computational and/or memory capacities
a single compute node), and they can have very long execution run times. That said, they also have some
considerations that challenge the attainment of speedup from PDES execution. In particular, the processing
grainularities of discrete event simulation models is generally quite small. Figure 3 shows the run time
costs to process an event for 9 distinct simulation models in 43 different configurations/sizes (sometimes
configuration size can have significant impact on event granularity). These models range in size from 100s
of LPs to 1M LPs. The data shows that the average event execution time is 3.7µs on a 3.4GHz Intel CPU
which translates to approximately 15K instructions per event. Thus, one must be careful to limit expansion
of the code required to execute events, especially when something as simple as an atomic instruction has
a run time cost that is 10–30 times longer than a standard integer instruction. Acquiring locks and lock
contention can easily add significant overhead to process an event.

In contrast to the small event granularity, many DES Models have a very large number of LPs that
can be executed in parallel and in many cases, these LPs communicate most of their generated events to a

1459

Wilsey

Figure 4: Heatmap of events communicated between LPs in two different partitions of a simulation model.
The left image is from a random partitioning. The right image is from a profile guided partitioning.

0 10 20 30 40 50

Modularity Class

0

50

100

150

200

250

300

350

400

450

N
um

be
r

of
 L

P
s

Communities in LP Communication Graph
mean
standard deviation

Figure 5: Examples of the Communities found in two simulation models taken from (Crawford et al. 2017).
The model data on the left is epidemic model from the WARPED2 code base (Weber 2016) and the model
data on the right is the PCS model from the ROSS code base (Carothers et al. 2000). The x-axis simply
enumerates the found communities; the y-axis records the number of LPs in each community.

1460

Wilsey

small community of other LPs (Crawford et al. 2017). Thus, it is generally possible to organize the LPs
into semi-distinct partitions for parallel execution. The impact of this is visually illustrated by heatmaps of
event communications between LPs shown in Figure 4 (taken from (Alt and Wilsey 2014)). The left image
is a random partitioning whereas the right image is a partition that is created from profile data captured
in a pre-simulation step. This is more extensively examined in (Crawford et al. 2017). More specifically,
that work examines the modularity of the event communication graph between the LPs. The modularity
measure how well sub-networks (or communities) compose a large network. This study showed that many
simulation models had many (40-250) subnetworks of more frequent communicating LPs. An example of
two of these graphs are shown in Figure 5. These modularity results can be used for partitioning and, as
will be shown later, efficient partitioning is critical to achieving high-performance run time with minimal
rollback.

3.3 Parallel Programming Primitives

Transactional memory (TM) is a concurrency control mechanism that attempts to eliminate the static
sequential execution of a critical section by dynamically determining when accesses to shared resources
can be executed concurrently (Rajwar and Goodman 2001). Transactional memory operates on the same
principles as database transactions (Harris et al. 2010). The processor atomically commits all memory
operations of a successful transaction or discards all memory operations if the transaction should fail (a
collision to the updates by the multiple threads occurs). In order for a transaction to execute successfully, it
must be executed in isolation, i.e., without conflicting with other transactions/threads memory operations.
This is the key principle that allows transactional memory to expose untapped concurrency in multi-threaded
applications. There are both hardware and software solutions to provide transactional memory to the user.

The concept of transactional memory is appealing as it simplifies locks and potentially side-steps some
of the contention issues. Transactional memory works best when concurrent threads access distinct regions
of a shared data structure. Unfortunately, the critical shared resource of PDES is the pool of pending events
which can be a highly contended resource in a multi-threaded environment. As a result, transactional
memory does not significantly improve PDES performance (Hay and Wilsey 2015).

4 TIME WARP

This section addresses implementation strategies for the significant components needed for the implemen-
tation of a Time Warp synchronized PDES solution. By far the most significant of these is the organization
of the pending event set and the binding of event processing threads to LPs. An effective implementation
of the pending event set can result in a nearly 100% commit rate of events in a single SMP processing
node. In clusters, the secondary challenge is message latency and its impact on the late delivery of event
messages communicated between the various cluster nodes.

Overall, the our studies with WARPED2 (Gupta and Wilsey 2017; Gupta 2018) have shown that the best
organization of threading is to organize the threads on each multi-core processing node into worker threads
that strictly execute events (including rollback and state savings) and a single manager thread that maintains
the Time Warp housekeeping functions such as GVT and termination. In general one worker thread per
hardware processing thread delivers the best performance, although scaling drops off significantly once the
number of threads exceeds the physical core count (entering the shared SMT thread space). Oddly enough,
preserving one hardware thread for O/S operation (and binding the O/S to that hardware thread) does not
noticeably impact performance. Likewise, experiments with the WARPED2 kernel show the operation of
the manager thread is sufficiently lightweight and non-intrusive to the operation of the worker threads that
is does not appear to require a separate hardware thread.

1461

Wilsey

Figure 6: Organizing the LPs, Threads, and Pending Event set.

4.1 Logical Processes, Threads, and the Pending Event Set

The original WARPED Time Warp simulation kernel was designed for high-performance execution on a
cluster of single node processors. However, the widespread emergence of multi-core processors motivated
a need to explore the addition of threads to the solution. Two separate studies (Miller 2010; Dickman et al.
2013) gave considerable insights into a general design solution that has formed the basis for the WARPED2
design solution (Weber 2016). The crucial elements of the general solution are depicted in Figure 6. In this
design, the LPs maintain their local simulation time progress as well as their input, output, and state event
queues (only the input queues are shown). The pool of LPs are assigned to a single Lowest TimeStamped
First (LTSF) schedule queue. The input queues and LTSF queues are all shared data structures with mutex
locks controlling their access. As outlined below, this organization has been extensively studied to explore
and contrast the performance of different software architectures and data structures.

Contention to the shared data structure holding the pending event set can significantly impede performance
of a PDES solution (Dickman et al. 2013; Gupta and Wilsey 2017; Gupta 2018). Explorations on the
pending event set design with the WARPED (Miller 2010; Dickman et al. 2013) and WARPED2 (Gupta
and Wilsey 2014; Gupta 2018) have evolved a design solution that results a software architecture and
programming solution that is able to commit nearly 100% of events without rollback for many different
DES model types (Gupta 2018). These studies included explorations with transactional memory (Hay and
Wilsey 2015), lock-free data structures (Gupta and Wilsey 2014), partitioning of LPs to separate schedule
queues (Dickman et al. 2013; Gupta 2018), scheduling event groups and bags (Gupta and Wilsey 2017;
Gupta 2018) have all been conducted. Likewise, experiments various with data structures such as the
Calendar Queue (Brown 1988), Ladder Queue (Tang et al. 2005), Splay Tree (Sleator and Tarjan 1985)
or the C++ STL MultiSet have all conducted (Gupta 2018). In all of these experiments, one consistent
result emerges, namely that instantiating one worker threads per hardware thread and partitioning the LPs
to a separate LTSF queue for each worker thread will consistently deliver the best performance. While the
experimental results also favor the Ladder Queue, the performance benefits are less significant or consistent
and in many cases, the MultiSet or Splay tree deliver good performance as well.

The solution with WARPED2 uses profile-guided partitioning to distributed the work evenly among the
worker threads. While this is highly effective, it may prove impractical for very large simulation models
that of a size where the modularity analysis cannot be performed or where the profile data for even a small
pre-simulation run grow very large. To address this issue, the ROSS (Carothers et al. 2000) kernel provides
that capability for a model-based partitioning solution. An alternate is to use some unstructured (or weakly

1462

Wilsey

structured) partitioning solution and rely on load balancing to balance the workload. As described below,
dynamic load balancing is not unknown to the PDES community.

Reiher and Jefferson implemented dynamic load balancing for the Time Warp Operating System
(TWOS) (Reiher and Jefferson 1990). Processes are migrated based on the measurement of a metric called
effective utilization which is intended as a replacement for the raw CPU utilization metric often employed
in conventional load balancing schemes. Effective utilization is the fraction of work being done by an LP
that will not be rolled back, and it is estimated by tracking the CPU cycles spent by an LP doing work that
is not rolled back. LPs with low effective utilization are paired with LPs with high effective utilization at
regular intervals, and some amount of load is transferred.

Schlagenhaft et al migrates clusters of simulation objects between simulators (Schlagenhaft et al. 1995).
A metric called Integrated Virtual Time (IVT) is used to gather information about the virtual time progress
of simulation processes. The rate of change of two IVTs with respect to real time is used as a measure of
load. The load is balanced by moving topology information, states, and events to the new simulator.

Sarkar and Das determine the degree of load imbalance of LPs by calculating the rate of virtual time
progression with respect to real time (Sarkar and Das 1997). Each LP then determines whether it is
over(under) loaded by checking if its LVT is under(over) the min(max) estimate for GVT. Each under(over)
loaded LP finds a neighbor that is over(under) loaded, and transfers some amount of load such that the
LVT of the two LPs is more balanced.

These load balancing approaches all use global information to determine a source and destination of the
load migration. The work presented in this thesis is different in that no load migration occurs, but global
load information is needed to be able to match pairs of LPs for over and under-clocking. The author of this
thesis adopts a rollback-based load information metric as opposed to the virtual time based approaches of
(Schlagenhaft et al. 1995; Sarkar and Das 1997), as it more accurately conveys the amount of real work
being done by each LP (Reiher and Jefferson 1990; Palaniswamy and Wilsey 1996).

4.2 Messages, Anti-Messages, and Cancellation

On a single node shared memory the communication and canceling of events is generally done by direct
insertion and removal of events in the pending event set. One important and useful optimization for
cancellation is to implement direct cancellation (Fujimoto 1989). Under direct cancellation when an event
is generated, a pointer to its location in the input queue of the receiving LP is stored in the sending LPs output
queue (Figure 1). This permits immediate and direct to the shared memory location where an event can be
removed; anti-messages to LPs in other processing nodes must, however, still be sent as a communication
to the remote location. However, it is also possible to send a “block” anti-messages to remote sites that
denotes a range of timestamps for which events should be canceled. Finally, the decision as to when
to generate the anti-messages must be discussed. There are three options for this, namely: aggressive
cancellation, lazy cancellation, or dynamic cancellation (Fujimoto 1990; Fujimoto 2000). Aggressive
cancellation sends the anti-message immediately on rollback; lazy cancellation sends an anti-message only
when re-processing after rollback determines that the original, prematurely sent, message is incorrect; and
dynamic cancellation is a configuration where the cancellation policy (aggressive/lazy) is determined by
each LP at run time based on its past behavior. The chief problem is that neither cancellation strategy is
clearly superior to the other for all applications (Reiher et al. 1990). In general, however, the WARPED2
solution favors an aggressive cancellation policy. This decision is made for two primary reasons. First,
the code is compact and adds less overhead to the event processing (in lazy cancellation new and old
output events must be compared whenever event re-processing occurs after a straggler event). Second, the
general solution of WARPED2 usually experiences few rollbacks on a single node and, in a cluster setting,
the prospect of experiencing cascading rollbacks (Tay et al. 1998) with the long latency in some message
passing frameworks motivations an aggressive stance when it comes to message cancellation.

1463

Wilsey

4.3 Maintaining LP State

Mechanisms to support rollback of an LP state must be implemented in a Time Warp solution. The three
key solutions to address this issue are: (i) reverse computation (Carothers et al. 1999; Carothers et al.
2000), (ii) incremental state savings (Bauer and Sporrer 1993), and (iii) full copy state savings (Fleischmann
and Wilsey 1995). Full copy state savings will make a complete copy of the LP state that can be restored
on a rollback (Fujimoto 1990). A complete copy can be made after each event processed by the LP or
after some number of events are processed (called periodic state savings). When periodic state savings is
performed, it is necessary to implement a coast-forward phase where the events between the saved state
and the straggler event must be reprocessed to generate the correct state for the straggler. During this coast
forward time, any re-generated events are suppressed. Incremental state savings saves only the subparts
of the state that are changed when an event is processed. On rollback, the simulator must rebuild the state
stepwise using the incremental state information. Reverse computation operates by defining an inverse
function for each LP step backward through each undone event. In cases where the LP function does not
have an inverse, incremental state savings is performed. Reverse computation works very well whenever
the LPs have inverse functions. If the LPs do not have inverse functions, reverse computation reduces to
incremental state savings. Depending on the size of the state and the amount it changes with each event
processed will help dictate the choice between incremental and periodic state savings. Periodic state savings
can provide great benefit if the saving period can be lengthened so that the time spent saving is less than
incremental. That said, if rollbacks are frequent, then the coasting forward costs can accumulate under
periodic checkpointing. In the WARPED2 kernel, a periodic state saving implementation is used. This is
due to the relatively low rollback frequency that the WARPED2 kernel incurs with most simulation models.

4.4 GVT, Fossil Collection, and Termination

Global Virtual Time (GVT) records the global progress of the entire simulation. GVT is used whenever
some global understanding of the simulated system progress is required. For example, the ability to commit
output file writes is governed by GVT; likewise, the ability to perform fossil collection to reclaim saved
state and event information that is no longer necessary to sustain rollback is guided by GVT. GVT can
be computed exactly by stopping the simulation temporarily to determine its value (Bauer et al. 2005).
Alternatively, GVT can be estimated by an on-line algorithm that operates simultaneously with normal
event processing (Mattern 1993; Tomlinson and Garg 1993). While many algorithms have been developed
to compute/estimate GVT, unless memory is at a premium, generally any lightweight algorithm will suffice.
The frequency and speed of GVT estimation can be adjusted by prioritizing (or de-prioritizing) the estimation
algorithm. If highly accurate GVT is needed due to memory considerations, a synchronous method can
be triggered by memory availability. Alternatively, the optimistic fossil collection (Young and Wilsey
1996; Young et al. 1998) algorithm has a tight lower memory bound; although it introduces the notion of
catastrophic failure of the simulation that can be recovered by file based checkpointing. The WARPED2
system using a lightweight variant of Mattern’s algorithm (Mattern 1993).

5 HETEROGENEOUS PLATFORMS

Recently there has been an increasing effort to build, deploy, and exploit heterogeneous parallel computing
platforms. While work with GPGPUs has been popular for a number of years, more recent directions have
been to integrate even more exotic plugin cards containing FPGAs, custom ASICs, and tightly coupled
general purpose parallel hardware (e.g., Knights Landing). GPGPUs and FPGAs for PDES have been
studied by a number of investigators (Perumalla 2006; Rahman et al. 2019). Likewise PDES experiences
with parallel hardware PCIe daughter cards have been reported (Williams et al. 2017). Many of these
studies report speedups under certain constrained situations. The primary challenges to speedups lie with
limitations of memory or slow data transfer rates over the PCIe backplane. However, new hardware with
larger memories and next generation PCIe standards are currently emerging. The 4.0 PCIe standard doubles

1464

Wilsey

the unidirectional bandwidth to 32GB/s and 5.0 doubles it again to 63GB/s. These higher transport speeds
coupled with larger onboard memories for these plugin cards may well make heterogeneous solutions
highly effective. Finally, new directions with Domain Specific Architectures deployed as PCIe plugin cards
are receiving considerable attention by the architecture and machine learning communities (Hennessy and
Patterson 2019). While these platforms are targeting machine learning at least one (the Microsoft Catapult)
is a general purpose FPGA/NIC card that has custom programming capabilities. The future holds much
promise for heterogeneous PDES computing.

6 CONCLUSIONS

Parallel and distributed discrete-event simulation is an important research area that is ripe for the effective
exploitation of parallel heterogeneous computing hardware. That said, the effective exploitation of the
hardware still requires careful design considerations with a disciplined focus on the management of
overheads (both fixed and variable). On a single node multi-core platform, a Time Warp PDES solution can
be developed with minimal lock contention and will a nearly zero rollbacks. The depolyment on muti-core
cluster platforms must also contend with message latency issues between nodes. Fortunately opportunities
for higher performance/lower-latency solutions my lie with domain specific architecture solutions. As these
hardware platforms become faster, with larger memories, and more unique capabilities additional research
will need to be performed to better understand how to exploit these systems.

ACKNOWLEDGMENTS

This material is based upon work supported by the AFOSR under award No FA9550–15–1–0384.

REFERENCES

Alt, A., and P. A. Wilsey. 2014. “Profile Driven Partitioning of Parallel Simulation Models”. In Proceedings of the
2014 Winter Simulation Conference, edited by A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and
J. A. Miller, 2750–2761. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Bauer, D., G. Yaun, C. D. Carothers, M. Yuksel, and S. Kalyanaraman. 2005. “Seven-O’Clock: A New Distributed
GVT Algorithm Using Network Atomic Operations”. In Proceedings of the Workshop on Parallel and Distributed
Simulation, PADS ’05, 39–48. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Bauer, H., and C. Sporrer. 1993. “Reducing Rollback Overhead in Time-Warp Based Distributed Simulation
with Optimized Incremental State Saving”. In Proceedings of the 26th Annual Simulation Symposium, 12–20.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Brown, R. 1988. “Calendar Queues: A Fast O(1) Priority Queue Implementation for the Simulation Event Set
Problem”. Communications of the ACM 31(10):1220–1227.

Bryant, R. E. 1979. “Simulation on a Distributed System”. In Proceedings of the 1st International Conference
on Distributed Computing Systems, 544–552. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Carothers, C. D., D. Bauer, and S. Pearce. 2000. “ROSS: A High-performance, Low Memory, Modular Time Warp
System”. In Proceedings of the Fourteenth Workshop on Parallel and Distributed Simulation, PADS ’00, 53–60.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Carothers, C. D., K. S. Perumalla, and R. M. Fujimoto. 1999. “Efficient Optimistic Parallel Simulations Using
Reverse Computation”. ACM Transactions on Modeling and Computer Simulation 9(3):224–253.

Chandy, K. M., and L. Lamport. 1985. “Distributed Snapshots: Determining Global States of Distributed Systems”.
ACM Transactions on Computer Systems 3(1):63–75.

Chandy, K. M., and J. Misra. 1979. “Distributed Simulation: A Case Study in Design and Verification of Distributed
Programs”. IEEE Transactions on Software Engineering 5(5):440–452.

Chandy, K. M., and J. Misra. 1981. “Asynchronous Distributed Simulation via a Sequence of Parallel Computations”.
Communications of the ACM 24(11):198–206.

1465

Wilsey

Chandy, K. M., and R. Sherman. 1989. “Space-Time and Simulation”. In Proceedings of the SCS Multiconference
on Distributed Simulation, Volume 21, 53–57. San Diego, CA: Society for Computer Simulation.

Child, R., and P. A. Wilsey. 2012. “Using DVFS to Optimize Time Warp Simulations”. In Proceedings of the 2012
Winter Simulation Conference, 1–12. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Crawford, P., S. J. Eidenbenz, P. D. Barnes Jr., and P. A. Wilsey. 2017. “Some Properties of Communication
Behaviors in Discrete-Event Simulation Models”. In Proceedings of the 2017 Winter Simulation Conference,
edited by W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, , and E. Page, 1025–1036.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Dickman, T., S. Gupta, and P. A. Wilsey. 2013. “Event Pool Structures for PDES on Many-Core Beowulf Clusters”.
In Proceedings of the ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM PADS
’13, 103–114. New York, NY, USA: Association of Computing Machinery.

Fleischmann, J., and P. A. Wilsey. 1995. “Comparative Analysis of Periodic State Saving Techniques in Time Warp
Simulators”. In Proceedings of the 9th Workshop on Parallel and Distributed Simulation (PADS 95), 50–58.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Fujimoto, R. 1990. “Parallel Discrete Event Simulation”. Communications of the ACM 33(10):30–53.
Fujimoto, R. M. 1989. “Time Warp on a Shared Memory Multiprocessor”. Transactions of Society for Computer

Simulation 6(3):211–239.
Fujimoto, R. M. 2000. Parallel and Distribution Simulation Systems. New York, NY, USA: John Wiley & Sons,

Inc.
Fujimoto, R. M., R. Bagrodia, R. E. Bryant, K. M. Chandy, D. Jefferson, J. Misra, D. Nicol, and B. Unger. 2017.

“Parallel Discrete Event Simulation: The Making of a Field”. In Proceedings of the 2017 Winter Simulation
Conference, edited by W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, , and E. Page,
262–291. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Gupta, S. 2018. Pending Event Set Management in Parallel Discrete Event Simulation. Ph. D. thesis, Department of
Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio. http://rave.ohiolink.
edu/etdc/view?acc num=ucin1535701778479768, accessed September 2019.

Gupta, S., and P. A. Wilsey. 2014. “Lock-free Pending Event Set Management in Time Warp”. In Proceedings of
the ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, PADS 2014, 15–26. New York,
NY, USA: Association of Computing Machinery.

Gupta, S., and P. A. Wilsey. 2017. “Quantitative Driven Optimization of a Time Warp Kernel”. In Proceedings of
the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, PADS 17, 27–38. New
York, NY, USA: Association of Computing Machinery.

Harris, T., J. R. Laurus, and R. Rajwar. 2010. “Transactional Memory, 2nd ed.”. Synthesis Lectures on Computer
Architecture 5(1):1–263.

Hay, J., and P. A. Wilsey. 2015. “Experiments with Hardware-Based Transactional Memory in Parallel Simulation”.
In Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, edited by
S. J. E. Taylor, N. Mustafee, and Y.-J. Son, 75–86. New York, NY, USA: Association of Computing Machinery.

Hennessy, J. L., and D. A. Patterson. 2019. Computer Architecture: A Quantitative Approach. 6th ed. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Jefferson, D. 1985. “Virtual Time”. ACM Transactions on Programming Languages and Systems 7(3):405–425.
Lamport, L. 1978. “Time, Clocks, and the Ordering of Events in a Distributed System”. Communications of

ACM 21(7):558–565.
Lubachevsky, B. D. 1988. “Bounded Lag Distributed Discrete Event Simulation”. In Proceedings of the 1988 SCS

Multiconference on Distributed Simulation, 183–191. San Diego, CA: Society for Computer Simulation.
Mattern, F. 1993. “Efficient Algorithms for Distributed Snapshots and Global Virtual Time Approximation”. Journal

of Parallel and Distributed Computing 18(4):423–434.
Miller, R. J. 2010. “Optimistic Parallel Discrete Event Simulation on a Beowulf Cluster of Multi-core Machines”.

Master’s thesis, Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati,
Ohio. http://rave.ohiolink.edu/etdc/view?acc num=ucin1282322836, accessed September 2019.

Nicol, D. M. 1993. “The Cost of Conservative Synchronization in Parallel Discrete Event Simulations”. Journal of
the ACM 40(2):304–333.

1466

http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535701778479768
http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535701778479768
http://rave.ohiolink.edu/etdc/view?acc_num=ucin1282322836

Wilsey

Palaniswamy, A., and P. A. Wilsey. 1996. “Parameterized Time Warp: An Integrated Adaptive Solution to Optimistic
PDES”. Journal of Parallel and Distributed Computing 37(2):134–145.

Perumalla, K. S. 2006. “Discrete-event Execution Alternatives on General Purpose Graphical Processing Units
(GPGPUs)”. In Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation, PADS
’06, 74–81. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Rahman, S., N. Abu-Ghazaleh, and W. Najjar. 2019. “PDES-A: Accelerators for Parallel Discrete Event Simulation
Implemented on FPGAs”. ACM Transactions on Modeling and Computer Simulation 29(2):12:1–12:25.

Rajwar, R., and J. R. Goodman. 2001. “Speculative Lock Elision: Enabling Highly Concurrent Multithreaded
Execution”. In Proceedings of the 34th Annual ACM/IEEE International Symposium on Microarchitecture
(MICRO-34), 294–305.

Reiher, P. L., R. M. Fujimoto, S. Bellenot, and D. Jefferson. 1990. “Cancellation Strategies in Optimistic Execution
Systems”. In Proceedings of the SCS Multiconference on Distributed Simulation, Volume 22, 112–121. San
Diego, CA: Society for Computer Simulation.

Reiher, P. L., and D. Jefferson. 1990. “Dynamic load management in the Time Warp Operating System”. Transactions
of the Society for Computer Simulation 7(2):91–120.

Sarkar, F., and S. K. Das. 1997. “Design and Implementation of Dynamic Load Balancing Algorithms for Rollback
Reduction in Optimistic PDES”. In Proceedings of the 5th International Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems, MASCOTS ’97, 26–31. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc. Computer Society.

Schlagenhaft, R., M. Ruhwandl, C. Sporrer, and H. Bauer. 1995. “Dynamic Load Balancing of a Multi-Cluster
Simulator on a Network of Workstations”. In Proceedings of the Ninth Workshop on Parallel and Distributed
Simulation, PADS ’95, 175–180. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.
Computer Society.

Sleator, D., and R. Tarjan. 1985. “Self Adjusting Binary Search Trees”. Journal of the ACM 32(3):652–686.
Steinman, J. S. 1991. “SPEEDES: A Unified Approach to Parallel Simulation”. In 6th Workshop on Parallel and

Distributed Simulation, 75–84. San Diego, CA: Society for Computer Simulation.
Tang, W. T., R. S. M. Goh, and I. L.-J. Thng. 2005. “Ladder Queue: An O(1) Priority Queue Structure for Large-Scale

Discrete Event Simulation”. ACM Transactions on Modeling and Computer Simulation 15(3):175–204.
Tay, S. C., Y. M. Teo, and R. Ayani. 1998. “Performance Analysis of Time Warp Simulation with Cascading

Rollbacks”. In Proceedings of the Twelfth Workshop on Parallel and Distributed Simulation, PADS ’98, 30–37.
Tomlinson, A. I., and V. K. Garg. 1993. “An Algorithm for Minimally Latent Global Virtual Time”. In Proc of the

7th Workshop on Parallel and Distributed Simulation (PADS), 35–42. San Diego, CA: Society for Computer
Simulation.

Weber, D. 2016. “Time Warp Simulation on Multi-core Processors and Clusters”. Master’s thesis, University of
Cincinnati, Cincinnati, OH.

Williams, B., D. Ponomarev, N. Abu-Ghazaleh, and P. A. Wilsey. 2017. “Performance Characterization of Parallel
Discrete Event Simulation on Knights Landing Processor”. In Proceedings of the 2017 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation, SIGSIM-PADS ’17, 121–132. New York, NY, USA: Association
of Computing Machinery.

Young, C. H., N. B. Abu-Ghazaleh, and P. A. Wilsey. 1998. “OFC: A Distributed Fossil-Collection Algorithm for
Time-Warp”. In 12th International Symposium on Distributed Computing, DISC’98 (formerly WDAG).

Young, C. H., and P. A. Wilsey. 1996. “A Distributed Method to Bound Rollback Lengths for Fossil Collection in
Time Warp Simulators”. Information Processing Letters 59(4):191–196.

AUTHOR BIOGRAPHIES

PHILIP A. WILSEY is a Professor in the Department of Electrical Engineering and Computer Science at the
University of Cincinnati. His research interests are in High Performance Computing with applications to Parallel
Discrete-Event Simulation and Data Science. He also has interests in Privacy Preserving Data Mining, Embedded
Systems, and Point-of-Care medical devices. In the field of Parallel and Distributed Simulation (PDES), he is
currently studying the design of solutions for the pending event set problem for high performance parallel and
distributed simulation on single node and clusters of multi-core and many-core processors. Finally, he is pursuing

1467

Wilsey

studies to extract profile data from discrete event simulation models to obtain quantitative data on their run time
characteristics. The principle objective of these studies is to support quantitative based optimization of PDES
simulation kernels. His email address is wilseypa@gmail.com, his web pages are at: http://secs.ceas.uc.edu/∼paw,
and his research software is released from git repositories at: http://github.com/wilseypa.

1468

mailto://wilseypa@gmail.com
http://secs.ceas.uc.edu/~paw
http://github.com/wilseypa

	INTRODUCTION
	BACKGROUND
	PDES with Time Warp

	CHALLENGES AND OPPORTUNITIES FOR PDES
	Small Overheads Matter
	Properties of DES Models
	Parallel Programming Primitives

	TIME WARP
	Logical Processes, Threads, and the Pending Event Set
	Messages, Anti-Messages, and Cancellation
	Maintaining LP State
	GVT, Fossil Collection, and Termination

	HETEROGENEOUS PLATFORMS
	CONCLUSIONS

