
EPiC Series in Computing

Volume 58, 2019, Pages 257–264

Proceedings of 34th International Confer-
ence on Computers and Their Applications

NetLogo and GIS: A Powerful Combination

Broday Walker and Tina V. Johnson

Department of Computer Science, Midwestern State University
Wichita Falls, TX 76308, USA

(bkwalker0728, tina.johnson)@msutexas.edu

Abstract

NetLogo is a popular agent-based modeling system for good reason. It is relatively
easy to learn; it allows an intuitive user interface to be built with predefined objects, such
as buttons, sliders, and monitors; and available documentation is extensive, both on the
NetLogo Website and in public forums. The Geographic Information Systems (GIS) exten-
sion for NetLogo allows real-world geographic or demographic data to be incorporated into
NetLogo projects. When GIS is combined with NetLogo, simulations can be transformed
from a basic representation to one that accurately replicates the characteristics of a map or
population. This paper describes the necessary steps for incorporating GIS within a NetL-
ogo project and the primitive commands used for associating shape properties to NetLogo
patches. A practical example is included that demonstrates how to import a map of Texas
into a NetLogo project and use the vector data in conjunction with NetLogo patches to
randomly color each county.

keywords: Agent-based modeling, ABS, NetLogo, GIS

1 Introduction

Agent-based modeling (ABM) is particularly useful for simulating complex systems in which
agents interact with each other within a given environment. The collective behavior of individual
agents gives rise to patterns which might otherwise go unrecognized. Although ABMs have been
criticized in the past for a lack of reproducibility, recent models have become more formalized
and recognized as a scientific basis for exploring complex systems [2].

NetLogo, developed by Uri Wilensky at Northwestern University’s Center for Connected
Learning and Computer-Based Modeling, is an expert tool for ABM [7, 10]. It has been used
in a variety of disciplines, including biology, environmental modeling, neural computing, and
many others [4, 5, 1]. One of the most powerful aspects of NetLogo is the ability to extend its
capabilities by integrating with other languages, such as Python and R [3, 6]. This paper pro-
vides a brief introduction to NetLogo and the Geographic Information Systems (GIS) extension,
which allows vector and raster data to be directly incorporated into the NetLogo environment.

G. Lee and Y. Jin (eds.), CATA 2019 (EPiC Series in Computing, vol. 58), pp. 257–264



NetLogo and GIS: A Powerful Combination Walker and Johnson

Figure 1: An empty NetLogo project

Figure 2: Generic NetLogo procedure asso-
ciated with a setup button

2 NetLogo Basics

NetLogo has an intuitive user interface that consists of a main menu and three tabs: Interface,
Info, and Code (see Figure 1). The Interface tab (currently active in Figure 1) is used to create
a Graphical User Interface (GUI) for the model being developed. The Info tab is for project
documentation and the Code tab is for the actual model code.

Several GUI objects are available from a dropdown menu in the Interface tab, including
buttons, sliders, monitors, plots, and more. Objects placed in the user interface are connected
to code. For example, a button on the interface is associated with a procedure in code; sliders
and monitors are associated with variables, and plots use variables to render graphs during
execution. This direct connection between the user interface and code allows a sophisticated
interface to be readily developed.

Agents in NetLogo, referred to as turtles, move in a world of patches. Both turtles and
patches can be programmed to meet the requirements of the model. Turtles may represent
any type of agent. For example, in the Wolf Sheep Predation simulation [9] (one of over
100 models that are downloaded with NetLogo), turtles represent both wolves and sheep, and
patches represent land which may or may not contain grass. Patches of grass may be eaten by
sheep and sheep may be eaten wolves. In the Wave Machine simulation [8], agents represent
components of a membrane and patches make up a frame holding the edges of the membrane.

Procedures in NetLogo form the basic building blocks for writing code. Procedures can be
called by clicking on a button or by an explicit procedure call. A procedure begins with the
keyword to, followed by the name of the procedure, the commands that make up the body of
the procedure, and the keyword end. If a procedure is to be called by the click of a button in
the interface, the button must stipulate which procedure to invoke. For example, many models
have a setup button that is used to initialize the simulation. Figure 2 demonstrates a generic
setup procedure that clears the world (the black box shown in Figure 1) and creates 50 turtles
which are placed in random positions in the environment.

In addition to an extensive Models Library, which contains modifiable, fully-functioning
models, the NetLogo website contains a comprehensive dictionary and step-by-step tutorials.
Additionally, there are numerous NetLogo resources through forums and publications. Pro-
grammers who wish to learn NetLogo have an abundance of options from which to choose.

258



NetLogo and GIS: A Powerful Combination Walker and Johnson

3 GIS Extension

The GIS extension for NetLogo provides users with the ability to import GIS vector and raster
data to be used in conjunction with the myriad standard features already present in NetLogo.
A typical NetLogo simulation utilizes turtles and square patches that interact using predefined
rules. Turtles and patches are aware of each other and able to interact and change as condi-
tions/variables change. These agents may ask other agents to perform a task or procedure. It
is possible to allow the world to wrap in a torus shape and to modify turtle shapes, but the
shape of the patches is fixed as a square [10]. While these characteristics are sufficient for many
tasks, the GIS extension is a powerful tool for creating agent-based models that are extended
to include the use of accurate maps as well as real-world datasets. The extension creates the
ability for vector data to interface with agents in NetLogo much like patches and turtles al-
ready interact. This article focuses on the basic procedures required to import and manipulate
a vector dataset inside a NetLogo model using the GIS extension.

Getting started with the GIS extension requires creating or finding a map and its associated
data. There are several options available for accomplishing this task, including ArcGIS, which
is a paid service, and qGIS, which is open source and free to use. Using a GIS application
allows the user to modify maps found online to include only the information needed to run
their NetLogo model. These applications also allow the user to make their map compatible
with the NetLogo space. Some maps must be converted to a supported extension. Currently,
the GIS extension supports the use of ESRI shapefiles (.shp) for vector files and ESRI ASCII
Grid files (.asc and .grd) for raster data as documented under the GIS Extension link found on
the NetLogo website [10].

Free and open source maps are available from numerous government agencies, including the
United States Geological Survey and the United States Census Bureau. These two resources
are invaluable when starting with GIS in NetLogo, as finding a quality vector or raster map
to use is not always a trivial task. The maps and data given by the U.S. Census bureau are
also valuable as they contain a wealth of real-world data about the United States population,
which can be useful in making agent-based models that are incredibly detailed and realistic. In
this way, the GIS extension offers the opportunity to explore problems and solutions within a
realistic and representational framework.

4 Texas Counties Example

Once the desired map has been selected and the appropriate modifications have been made,
the map can be imported into a NetLogo model. The Texas counties model is included to
illustrate the usefulness of GIS. This model is a practical example that demonstrates tasks such
as importing datasets, assigning vector features to individual patches, drawing polygons, and
filling polygons with different colors based on the value of a variable. Interfacing between the
NetLogo model patches and the vector files is also discussed.

The GIS extension is bundled with the standard NetLogo software download and can be
introduced into the project by including extensions [gis] at the beginning of the code (see
Figure 3). This directive is included at the top of the code much like including a library in any
program.

Once the GIS commands are available, it is necessary to define one or more global variables
that will hold the imported data. As shown in the code, this declaration follows after the in-
clusion of the GIS extension. NetLogo requires global variables to be declared at the beginning

259



NetLogo and GIS: A Powerful Combination Walker and Johnson

Figure 3: NetLogo extensions and variables

Figure 4: setup-map procedure

of the program before any functions are defined. These variables are able to be accessed and
used by every patch and agent in the simulation [10]. In the Texas counties model, the global
variable being used is named tx-counties (see Figure 3). More than one dataset may be included
in a model by using different global variables to hold their data.

Ideally, the map setup procedure is isolated from the setup procedures required for the
model. In other words, it may be helpful to include a setup-maps button and a separate setup-
model button. Because the map, its lines, polygons, and associated data will stay the same
from run to run, it only needs to be imported and assigned to its respective global variable
one time before the first model run. Executing this procedure once saves computation time as
well as time spent drawing each county, as this is much more time consuming than clearing
turtles or patches. This portion of the model is contained in the setup-maps procedure. This
procedure loads the dataset, assigns it to a global variable, then loops through the imported
vector feature list and assigns each one to the patch or patches intersecting that feature.

To accomplish the tasks set out in the setup-maps procedure, some GIS extension primi-
tives must be used. A primitive performs a predefined function specific to the GIS extension.
With these, the user can query vector features or entire datasets to determine if one polygon
contains another, if a patch intersects a specific vector feature, or a limited number of other
GIS operations [10]. GIS primitives are accessed by using the prefix gis followed by a colon
and the primitive to be used. To use the data from the vector or raster dataset, the gis:load-
dataset command is used to assign the dataset to the previously defined global variable named
tx-counties. As shown in Figure 4, the full command is set tx-counties gis:load-dataset “data/tx-
counties.shp” (see figure 4). The included file path specifies the location of the vector or raster
file to be used and any associated projection and database files. If the files are located in the
same directory as the NetLogo model, it is not necessary to include the entire file path.

Once the vector dataset has been assigned to a global variable, the user must set the world
envelope. According to the GIS Extension documentation on the NetLogo website, “The easiest
way to define a transformation between GIS space and NetLogo space is to take the union of the
“envelopes” or bounding rectangles of all of your datasets in GIS space and map that directly
to the bounds of the NetLogo world [10].” Setting the world envelope is necessary to ensure the
vector data is properly associated with the model’s world. To set the world envelope, the gis:set-
world-envelope command is used. It is possible to nest this command multiple times to include
all datasets being used. The gis:set-world-envelope command defines a transformation between
the NetLogo space and the GIS data space being used in the model. The Texas Counties model
only requires one transformation to be completed (see figure 4).

After the dataset has been loaded and the world is ready for use, a foreach loop is used to
assign data to the patches that intersect the vector features. Depending on the data used, a
feature may be a polygon or a line that represents anything from a road, to a river, and even

260



NetLogo and GIS: A Powerful Combination Walker and Johnson

a state. The Texas counties model encompasses the state of Texas and its 254 counties, each
represented by one polygon. Before the foreach loop begins, a local counter variable is defined
and initialized to the value of 1. This variable will be incremented by 1 at the end of each cycle
through the loop. It will also be used to set the ID of the patches intersecting a certain feature.

The foreach loop begins by utilizing the gis:feature-list-of tx-counties command (see Figure
5). As the name implies, the tx-counties global variable holds a list of all the features contained
in that dataset. Because this model has very little data associated with it, the feature list is
the collection of all the polygons that make up the Texas counties map. These features will be
passed to the anonymous procedure inside the loop, which will accomplish the task of taking
data from the tx-counties dataset and assigning it to the underlying patches.

Once inside the loop, the anonymous procedure operator is used. Anonymous procedures
are a valuable resource when used in conjunction with the GIS extension because they provide
a simple avenue for looping through a list and doing a certain task specified for (or with)
each item in the list. The basic structure for an anonymous procedure in NetLogo follows the
following format: [[argument(s)] -> commands] [10].

Further into the foreach loop, the patches intersecting the current feature in the list are
asked to set their variable named centroid to the location of the centroid of the polygon that
overlays them. Two GIS primitives, gis:location-of and gis:centroid-of are used to find the
centroid of the polygon. The patch at the centroid of the polygon will serve as a command
center for that polygon. While this seems counter-intuitive at first, it is a necessary step to take
as it is not currently possible to ask a polygon to run a procedure or complete a set of tasks
in the same way that patches, turtles, and agentsets can be addressed. This patch will set its
ID variable to the value of i as well as inherit any variable values assigned to it in the future.
For example, this patch could have a variable that is assigned a number that represents the
population of the county. Other patches under the polygon will not receive this value because
the centroid patch is being used to control the polygon. These ID patches are also used when
calling upon GIS drawing primitives, greatly easing the process of redrawing the filler color of
each polygon at the end of each tick.

After the loop finishes, the Texas county lines are drawn using the gis:set-drawing-color and
gis:draw commands (see Figure 6). This is a simple process that includes selecting the color to
be used and the dataset to draw. It is not necessary to loop through each feature in the list of
features for the dataset to be drawn. Rather, it is only necessary to specify which dataset to
draw and the width of the line to be used. In the Texas counties example, the county lines are
drawn in white with a width of one pixel.

It is important to draw attention to a potential problem that can be quite difficult to spot
when assigning identification numbers to a patch underlying the centroid of a polygon. There is
a chance in NetLogo, which uses the value of 16 as the maximum x- and y-coordinates by default,
for multiple polygons to possess a centroid value that falls on the same patch. When this issue
occurs, it is impossible to determine which values will be assigned from the conflicting polygons
to the underlying patch. This is typically seen when trying to draw or fill in the polygons that
are in conflict with each other. When this issue occurs, it is common to see black, unfilled
polygons or a group of polygons assigned with the incorrect color. The Texas counties model
suffers from this complication at the default NetLogo world size. To remedy this problem, the
model was modified and enlarged to have maximum x- and y-coordinates of 24 units, resolving
the centroid conflicts between polygons. To change the size of the NetLogo world space, simply
navigate to the Interface tab, which is home to the model world, and select the Settings button,
as shown in Figure 7. Once the changes are made, the model is set up and ready to be used to
run simulations. The previous set of tasks only need to be completed one time. Now that map

261



NetLogo and GIS: A Powerful Combination Walker and Johnson

Figure 5: Procedure to associate patches
to county centroids

Figure 6: Commands to draw county lines Figure 7: Dialog box for changing world
size

setup is complete, the rest of the model can be setup.

With the model world properly setup, the setup for each model run must be completed.
Each county in the map of Texas contains a variable at the centroid patch which is assigned a
new random number between 0 and 10 during each tick. In this toy model, the random number
is used to control the changing of each filler color for the counties. If the number is less than
5, the centroid patch instructs the polygon to fill itself with the color blue. If the number is
greater than or equal to 5, the polygon will fill itself with the color red. While this is a toy
example, it demonstrates the ability of the GIS extension to be used for dynamically changing
the color of the space contained within a certain polygon based on ever-changing information.

Re-drawing the filler color for each polygon can be accomplished with basic logic as shown
in Figure 8. In this case, the syntax changes slightly when addressing the individual polygons
rather than the entire list of features. Each centroid patch is asked to update the polygon
it controls to the appropriate color. The color is selected by using the gis:set-drawing-color
primitive. To fill the polygon, the gis:fill primitive is used along with the item specified. To
control this portion of the color-change procedure, the ID variable is used. Because each polygon
is contained in the feature list of the tx-counties dataset, the ID must be subtracted by 1 when
accessing it in this procedure due to NetLogo lists beginning at element 0. For example, the
polygon that has a centroid patch with ID = 1 is the 0th element in the feature list of the
tx-counties dataset. The polygon is then filled with the appropriate color with a line thickness
of 2.0 pixels.

At this stage, the model is complete and ready to run. Using the random numbers that
are assigned to each centroid patch every tick, the counties will update their color and change
according to their assigned value. Though the random numbers are not associated with real
data in this demonstration, the key link for communication between imported vector data and
the NetLogo world has been established and can be extended to other models. Additionally,
data generated from the simulation can be exported for use in GIS software. Figure 9 shows a

262



NetLogo and GIS: A Powerful Combination Walker and Johnson

Figure 8: Procedure to change county col-
ors Figure 9: NetLogo-GIS integration exam-

ple

typical output for this simple NetLogo project.

5 Conclusion

NetLogo is a powerful ABM simulation tool. It allows a programmer to design a visual model
of interacting agents in a simulated environment. Additional libraries can be incorporated to
extend the capabilities of the basic NetLogo model. The GIS extension discussed in this paper
is useful for providing a realistic environment within the NetLogo world. Although the example
in this paper used a shape file of a Texas map, any NetLogo supported vector format may
be incorporated. Pairing NetLogo with GIS greatly increases the look and functionality of
location-based simulations. The complete code for the project and the associated files referred
to in this paper can be found at .

References

[1] Thomas Banitz, Anna Gras, and Marta Ginovart. Individual-based modeling of soil organic matter
in netlogo. Environ. Model. Softw., 71(C):39–45, September 2015.

[2] Volker Grimm, Uta Berger, Donald Deangelis, J Polhill, Jarl Giske, and Steven F. Railsback. The
odd protocol: A review and first update. Ecological Modelling, 221:2760–2768, 11 2010.

[3] Marc Jaxa-Rozen and Jan H. Kwakkel. Pynetlogo: Linking netlogo with python. J. Artificial
Societies and Social Simulation, 21(2), 2018.

[4] Cristian Jimenez-Romero and Jeffrey Johnson. Spikinglab: modelling agents controlled by spiking
neural networks in netlogo. Neural Computing and Applications, 28(1):755–764, Dec 2017.

[5] Jerry Rhee and Philip Iannaccone. Mapping mouse hemangioblast maturation from headfold
stages. Developmental biology, 365:1–13, 02 2012.

[6] Jan C. Thiele. R Marries NetLogo: Introduction to the RNetLogo Package. Journal of Statistical
Software, 58(2), 2014.

[7] Seth Tisue and Uri Wilensky. Netlogo: A simple environment for modeling complexity. In in
International Conference on Complex Systems, pages 16–21, 2004.

263

https://github.com/BrodayWalker/NetLogoGIS


NetLogo and GIS: A Powerful Combination Walker and Johnson

[8] U. Wilensky. Netlogo wave machine model. http://ccl.northwestern.edu/netlogo/, Center for
Connected Learning and Computer-Based Modeling, 1997.

[9] U. Wilensky and K. Reisman. Connected science: Learning biology through constructing and test-
ing computational theories - an emboidied modeling approach. International Journal of Complex
Systems, 234:1–12, 1999.

[10] Uri Wilensky. Netlogo. http://ccl.northwestern.edu/netlogo/, Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL, 1999.

264


	Introduction
	NetLogo Basics
	GIS Extension
	Texas Counties Example
	Conclusion

