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ABSTRACT 

Discrete-Event Simulation (DES) is a technique in which the simulation engine plays a history following a 

chronology of events in which the processing of each event takes place at discrete points of a continuous 

timeline. The simulator must interact actively with time variables for reproducing the chronology of events 

over positive real numbers, which is usually represented by approximated datatypes as floating-point. Nev-

ertheless, the approximation made by commonly used datatypes in simulations can affect the timeline, pre-

venting the generation of correct results. To overcome this problem, we present two new versatile datatypes 

to represent time variables in DES. These new datatypes provide a wider range of numbers reducing ap-

proximation errors, and if an error occurs, the simulation user is notified. To test our datatypes, we perform 

an empirical evaluation in order to compare their performance. 

1 INTRODUCTION 

Discrete-Event Simulation (DES) is a technique in which a simulation engine plays a history following a 

chronology of events. The technique is called “discrete-event” because the processing of each event of the 

chronology takes place at discrete points of the timeline. The events in the chronology are not needed to 

align to any clock; they could be placed freely over a continuous timeline, usually represented by ℝ+. 

When implementing computer simulators, we need datatypes to represent time and its operators. In the 

most general case, time variables need representing arbitrary numbers in ℝ+. The most common approach 

is to choose a standard fixed-length approximated datatype such as integer or floating-point numbers.  

Fixed-length approximations are adequate (and are widely adopted) for modeling and simulation 

(M&S) of Continuous Systems, as these methods are based on approximated results obtained for approxi-

mated input values, using approximated operations. Furthermore, the errors introduced by such approxima-

tions can be bounded (and its propagation constrained) following well-established concepts and practices 

from Calculus and Numerical Methods, for instance using min-max in a restricted domain (providing an 

interval of possible results by bounding the simulation error, using derivatives and other Calculus concepts). 

In the case of DES, approximating an input can adversely affect the behavior of the model, making its 

trajectory diverge from that point forward. For example, an approximation could cause a permutation in the 

order of two events in the timeline. As we are going to show in Section 2, DES states are products of their 

histories; a change in their histories potentially leads to different events and eventually on errors in the 

results of the simulation. The datatypes adopted by most simulators, such as floating-point datatypes, ap-

proximate the numbers and are silent about the consequences the approximations can have in the result of 

the simulation. 
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In this research we present new datatypes to solve the issues mentioned. The datatypes are suitable to 

represent rational numbers and allow to replace floating-point or other basic datatypes. Even though the 

datatypes can be used on general M&S models, in this work we will focus on the time requirements and 

operations used by the DEVS model. 

The standard way to represent the measure of a time lapse is the product between its magnitude, a time 

unit, and a scale-factor for the unit. The datatypes proposed in this work can represent multiple scale-factors, 

this way the datatypes are able to represent a wider range of numbers according to the models’ requirements. 

This approach over the DEVS model has the characteristic that the time representation can be different on 

different atomic models. To provide a uniform time representation on the models, we propose a novel ap-

proach to find a common scale-factor between different number representation. Four different mechanisms 

to obtain a common scale-factor in coupled models are presented and evaluated. We call this search of a 

common scale-factor for interoperation an “agreement”. 

With these ideas in mind we propose: first, the datatype called Rational-Scaled Floating Point (RSFP), 

which provides a correct representation for all the values that can be represented with existing datatypes. 

Next, we present a second datatype, called Multi-Base Floating Point (MBFP) covers a different set of 

numbers and it has a more compact representation. The main advantages of our datatypes are two, first their 

ability to adjust their representation to cover a wider range of numbers, minimizing the known errors in 

time representation, and second, their ability to warn if any number representation issues arise, this way the 

user can know if the simulation gave a correct result. We also present a performance comparison using a 

Discrete-Event simulator based on the DEVS formalism and the DEVStone benchmark. The results ob-

tained show how these new datatypes can even perform better than existing datatypes adding an accurate 

time representation. 

2 RELATED WORK 

Discrete-Event Simulation (DES) is a technique in which the simulation engine plays a history following a 

chronology of events (Wainer 2009; Zeigler et al. 2000). The technique is called “discrete-event” because 

the processing of each event of the chronology takes place at discrete points of the timeline. The virtual 

time of the simulation does not need any synchronization with real time. This allows to predict future phe-

nomena or study complex process happening in a short time. 

In the earlier days of DES, multiple M&S languages were developed, such as SIMULA (Dahl and 

Nygaard 1966), although according to (Nance 1981) most of these languages lacked formal soundness. The 

earliest approaches for formalizing DES added time semantics to well-known static modeling approaches, 

including well-known methods such as Timed-Automata (Alur and Dill 1994), and Generalized Semi-Mar-

kovian Processes (Glynn 1989). Other formalisms focused on concurrency problems that emerged at the 

time, i.e. Petri-nets (Peterson 1981), Calculus of Communicating Systems (CCS) (Milner 1982) and Com-

municating Sequential Processes (CSP) (Hoare 1978). We are interested in formal methods, and we will 

use DEVS (Zeigler et al. 2000) to conduct our research. DEVS provides a theoretical framework to think 

about Modeling using a hierarchical, modular approach. This formalism is proven universal for DES mod-

eling, meaning that any model described by other DES formalism has an equivalent model in DEVS. Other 

characteristic of DEVS is the clear separation between model and simulation: models are described using 

a formal notation, and simulation algorithms are provided for running any model. 

In DES, the most commonly used datatypes for representing time include floating-point, integers, fixed 

point, rational, and intervals between rational numbers. These datatypes are conveniently implemented in 

processors, or they are easily implementable combining native ones. Here, we focus on simulations that 

represent time as a continuous timeline, defined by ℝ+. The most common datatype to represent this set of 

numbers is floating point. Adopted by many simulators, this leads to variants due to the selection of different 

precision levels. For example, infinity can be mapped onto a reserved value, or an additional variable (e.g., 

a Boolean) can be used to handle the special case of infinity, in a structure or wrapper datatype. 
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 The floating-point datatype was engineered to represent an approximate Real number and to support a 

wide range of values. The basic structure is the use of a fixed length mantissa and a fixed length exponent. 

The main strengths of using floating-point include:  

 

 Compact representation, usually between 32 and 128 bits;  

 Implementation in almost every processor;  

 A large spectrum between the maximum and minimum number represented;  

 Internal representation for infinities;  

 Widely used standards make the simulator code portable;  

 A mechanics of its arithmetic approximations that has been studied in detail.  

 

 On the other hand, floating-point has well known limitations (Goldberg 1991) like rounding errors, 

where operations (including assignment) may round the values; cancellation issues, portability (the same 

operation may be implemented differently in different CPUs or languages, providing different results), 

rounding modes, and flags/exceptions. Likewise, associativity (floating-point arithmetic is not associative, 

but usually used as if it was) and unexpected results for special cases: e.g. in IEEE-754, an addition overflow 

will result in an infinite value. These limitations are often considered an acceptable trade-off in some areas, 

due to their intuitive use and properties guaranteeing the errors of the result obtained could be bounded 

enough to produce the answers needed. In the context of DES this kind of errors can result in representation 

errors. 

 In the most generic DES formalisms, the models’ domain of the time variables is ℝ+. This results in a 

quantization problem at the time of implementing the model in computers. Depending on the datatype cho-

sen for implementation, different approximations or operation restrictions may be observed. 

 The most common errors in DES timelines are time shifting errors (Vicino et al. 2014). These are direct 

consequence of approximating the time values, reproducing events in the simulator slightly earlier or later 

than formally defined, but always maintaining the partial order of the events in the chronology. Time shift-

ing errors usually have a minor impact or no impact at all on the simulation execution. For instance, in the 

case of normalized half-precision floating-point (16 bits) described by the IEEE-754 standard, we have a 

mantissa of 10 bits (plus an implicit bit in 1), an exponent of 5 bits, and a bit for the sign of the number. A 

number is read as sign ∙ 2exp-15 ∙ mantissa. For example the numbers 2.0039062 and 3.9980469 are repre-

sented, respectively, as: 0⏟
𝑠𝑖𝑔𝑛

 10000⏟  
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

 0000000010⏟        
𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

= 1 × 216−15 × 1.0000000010𝑏𝑖𝑛 = 2.0039062  and 

0⏟
𝑠𝑖𝑔𝑛

 10000⏟  
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

 1111111111⏟        
𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

= 1 × 216−15 × 1.1111111111𝑏𝑖𝑛 = 3.9980469. But 2.0039062+3.9980469=6.0019531, 

and to represent 6.0019531 accurately we need a mantissa with more than 10 bits. The result obtained is 6, 

represented as 0⏟
𝑠𝑖𝑔𝑛

 10001⏟  
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

 1000000000⏟        
𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

= 1 × 217−15 × 1.100000000𝑏𝑖𝑛 = 6. In logical time formalisms where 

only the logical order of events is considered to decide the next state (i.e. Petri Nets), this is not a problem. 

Nevertheless, this is a problem for timed formalisms like DEVS where it is legal to use the time elapsed 

since last event to define the new state, and time shifting errors may be enough to make the resulting tra-

jectories diverge. 

 The second problem in time representation is the event reordering, in this case, the approximation leads 

to a different order of events in the timeline than the one expected using exact arithmetic on Real numbers. 

Here, the list of events on the timeline is permuted and the partial order of events is erroneous. In some 

cases, the causality chain breaks, and the resulting trajectory diverges arbitrarily from the expected one, 

since the following events in the chain are not necessarily related to those expected. Sometimes, an event 

reordering error is the result of accumulating multiple time shifting errors. 

 Finally, another known representation problem in time for M&S is the Zeno conditions, which occur 

when the definition of instantaneous or close to instantaneous actions are allowed (Lee 2014): it is possible 

to have infinite actions in a finite period. The distance between two events in the timeline can be defined 
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as any Real number, particularly those very close to zero. If the values represented are small enough, when 

added to the current time, they will not produce any change. This behavior can be reproduced indefinitely 

making the system stale. Systems producing this behavior were studied in concurrent systems (Lee 2014; 

Manna and Pnueli 1992). In simulation formalisms like DEVS, legitimate models never reproduce Zeno 

behavior (Zeigler et al. 2000). Once models’ legitimacy is formally proven, the placement of events in the 

timeline is assumed exact. A model theoretically safe may still be unsafe in practice; a simulator using 

fixed-size approximated datatypes recreates the conditions for it. For example, with half-precision floating-

point, adding the number 0⏟
𝑠𝑖𝑔𝑛

 01111⏟  
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

 0000000000⏟        
𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

= 1 × 215−15 × 1.0000000000𝑏𝑖𝑛 = 1  to the number  

0⏟
𝑠𝑖𝑔𝑛

 11011⏟  
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

 0000000000⏟        
𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

= 1 × 227−15 × 1.0000000000𝑏𝑖𝑛 = 2
12 = 4096 results in 4096, but the correct arithmetic 

result is 4097. Here, the result is approximated because 4097 is not that can be represented in this datatype. 

If this addition was to represent the time-advance of the simulation, we could reach a Zeno condition. It is 

important to emphasize that the Zeno problem we will focus in this work is the one that can arise in the 

time advance computation of the simulation in DEVS models. We will not focus on the Zeno problems on 

the models’ internal representation, as we will assume the model is correct. The Zeno problem can easily 

occur in simulators using floating-point variables for representing a global clock, a common design choice 

in many implementations; in this case, if we simulate a metronome (a device repeatedly ticking after fixed 

time intervals), after enough simulation time, the accumulation in the variable renders the subsequent ad-

ditions irrelevant (being too small for affecting the mantissa). 

 Reordering errors and Zeno problem errors are practically impossible to predict. Moreover, they may 

occur in irregular frequency patterns, which, in the worst case, will be undetected during verification. This 

was the case of the popular simulators NS-3, and OMNeT++. In (Lacage, 2010) a case was reported for 

NS-3 where different trajectories were obtained when using different processors to run the same simulation, 

due to the differences in the floating-point arithmetic implementation of each processor, including follow-

ing different standards or differences in the rounding policies implemented. Having different implementa-

tions produce different approximations. A similar case was presented in (Varga and Horning 2008) about 

OMNeT++, the authors stated that “well-known precision problems with floating-point calculations, how-

ever, have caused problems in simulations from time to time”. Neither NS-3 nor OMNeT++ investigated 

the problem further. 

 In DES, the state of the simulation can be thought as a function of its history, producing a causal relation 

between them. When an event in the history is approximated, the evolution of the simulation may diverge 

from the expected one and produce an incorrect sequence of states. When this happens, we say that the 

causality chain was broken. Current simulator implementations are generally silent about these errors, be-

cause usually it is impossible to detect them properly using their time datatypes. The floating-point 

datatypes native in most programming languages do not include any reporting of errors. 

Some of the authors have done previous research in this topic. On (Vicino 2014) a preliminary version 

of the RSFP datatype was introduced. More recently on (Vicino 2016) a new datatype was presented to 

represent irrational numbers. In this paper we extend the previous works by proposing more flexible repre-

sentations for rational numbers. 

3 DATATYPES FOR TIME 

In this section, we present new versatile datatypes for DES. We will make assumptions based in our use of 

the datatypes for DEVS simulators, but the concepts can be easily applied to any other DES. 

 The standard way to represent the measure of a time lapse is the product between its magnitude, a time 

unit, and a scale-factor for the unit. For example, 3 ns have a magnitude of 3, a nano scale-factor (10-9) and 

a unit of seconds. Our proposed datatypes aim at representing magnitude and scale-factor better. As we 

want to represent time, the unit is implicitly assumed to be Seconds, as proposed by Bureau International 

de Poids et Mesures (BIPM) for International Standardization of the Time Unit. Adhering to the interna-

tional standard reduces the complexity of defining conversion functions and calling them at runtime. 
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Our research aims to investigate more versatile datatypes that can change their representation to adapt 

to the values that the model may need to represent time correctly. Nevertheless, in some cases our datatypes 

won’t be able to correctly represent the time advance, and in this case an error will be provided to the user 

to warn about the incorrect time representation occurred. With this information, the user can take actions 

to solve the problem, such as rerun the simulation with a more suited datatype. In any case, as we will show, 

our datatypes can represent any floating-point number and extend their range of numbers represented. This 

way the errors discussed before are less likely to appear. 

 For the datatypes proposed we cover the following functional requirements: 

 

 Supporting multiple scale-factors. 

 Providing additive operation not leading to time shifting errors, event reordering errors, or Zeno 

problems. - providing comparison operators (=, <).  

 Including a range large enough to include every value that can be represented in floating-point and 

rational variables, provide safe arithmetic such that any operation with unsafe result will produce 

an error. 

 Supporting seamlessly the coupling of models allowing the possibility of operating using multiple 

different scale-factors in a single simulation. 

 

 In addition, we have the following non-functional requirements: keep a compact representation, en-

courage optimizing the addition and comparisons over any other; and delay operations deriving from the 

composition of models as much as possible. These operations are known to be expensive. Based in these 

requirements, we propose two datatypes, Rational-Scaled floating-point (RSFP) and Multi-Base floating-

point (MBFP), which are presented as replacement of floating-point and rational datatypes. 

3.1 Rational Scaled Floating Point 

The first datatype we propose is the Rational-Scaled floating-point (RSFP), a preliminary version of this 

datatype was presented on (Vicino 2014). A RSFP number is defined by four integer variables, called quan-

tumn, quantumd, magnitude, and exponent. They are combined to form a number as described in Equation 

(1). 

 

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 ∙
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑛

𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑑
 ∙ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡                                                      (1) 

 

The unit, second, is implicit when using it for time. The exponent and quantum variables take care of 

scaling the units when needed. We call this group of variables the scale-factor. The quotient between quan-

tumn and quantumd we call it the ratio. For example, a time lapse of 3 nanoseconds can be expressed in the 

following way: 3 ∙ 
1

59
 ∙ 2-9 ∙ s, where the magnitude is 3, the scale-factor is 10-9 and the unit is second. This 

new datatype provides a correct representation for all the numbers implemented in existing simulators. For 

example, a floating-point value can be converted to a RSFP setting both quantum variables to one matching 

the exponents and assigning the mantissa to the magnitude. Depending on the unit associated to the original 

value, some minor adjustments to the quantum and exponent variables may be needed. For example, the 

binary floating-point 1E-3 
1

8
 milliseconds can be defined in RSFP with quantumn = 1, quantumd= 1000, 

magnitude = 1, and exponent = -3. This equivalence derivation is as follows: 
1

8
 ∙ ms = 1 ∙ 2-3 ∙ ms = 

1

1000
 ∙ 2-

3 ∙s = 1 ∙ 
1

1000
 ∙ 2-3 ∙ s. In addition, RSFP can be used to represent and operate in a large range, covering all 

previously available representation values (floating-point and rational) safely, and introducing new num-

bers not available on any of the previous datatypes. For example, 0.1·2128 can be represented in RSFP, but 
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it has infinite binary periodicity, and therefore it cannot be represented using binary floating-point 

datatypes, and it is too large to be represented as rational. 

3.2 Multi-Based Floating Point 

The RSFP datatype, presented in the previous section, solves basic issues in current simulators; neverthe-

less, it has usability limitations. Our first concern is a representation restriction over large and small num-

bers. We can represent any (binary) floating-point number. Nevertheless, we cannot represent any large or 

small number produced by multiplying only co-primes of 2. For example, the largest odd number being 

represented must use exponent 0 (or its simplification against quantumd be 0), because using any larger 

value makes the number even. Then, an accumulator repeatedly adding an odd number reaches a point 

where next addition result is not that can be represented in RSFP. This is a consequence of not having 

addition-closure in the datatype. 

 To solve these issues, we propose the Multi-Base floating-point datatype (MBFP) as an alternative to 

RSFP. This datatype covers a different set of numbers, and it has a more compact representation. These 

characteristics make MBFP more appropriate than RSFP in some simulation scenarios. In Equation (2) we 

show how to interpret a number represented using MBFP. 

 

                                                                𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ∙ 𝑏𝑎𝑠𝑒𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡                                                          (2) 

  

The MBFP datatype can be implemented using three integer variables representing base, mantissa, and 

exponent. For example, 3-70 can be represented in MBFP setting mantissa to 1, base to 3, and exponent to -

70. Operations are simpler, because only the base needs agreements. A drawback here is the need to work 

with non-binary powers, which are not optimized the same as powers of 2. However, never need to use 

compute power operations using high exponents. We are limited to use exponents below the size of the 

mantissa. Multiplying for a power of the base is seen as shifting digits (left or right) in the mantissa (con-

sidering the base in use).  

 This new datatype also provides a correct representation for all those numbers represented in current 

datatypes for DES. For converting an integer to MBFP, we set the integer value in the mantissa. If the 

integer was representing seconds, we set the exponent to 0, and the base to 2. Otherwise, we need to adjust 

the unit. For example, for milliseconds, we set base to 10, and exponent to -3. Every integer with equal or 

smaller size than the mantissa can be represented using this conversion. Conversion from floating-point is 

also simple. We set the base to 2 and copy the exponent and mantissa. We need to add the implicit 1 when 

writing the MBFP mantissa. An example of a half-precision floating-point converted to MBFP is  
0⏟
𝑠𝑖𝑔𝑛

10001⏟  
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

1100100000⏟        
𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

= 1.1100100000𝑏𝑖𝑛 × 2
17−15 = 1.78125 × 4 = 7.12 = 2−5 × 57 × 22 = 57 × 2−3  = 𝑀𝐵𝐹𝑃: <

57⏟
𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

, 2⏟
𝑏𝑎𝑠𝑒

, −3⏟
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

>. Conversion from Rational can be done by setting the exponent to -1, the denominator 

as the base and the numerator as the mantissa. Conversion from and to RSFP is not always possible, even 

assuming both use same integer size for internal variables. An example of a valid RSFP conversion to 

MBFP is 𝑅𝑆𝐹𝑃: < 3⏟
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑛

, 55⏟
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑑

, 1000⏟  
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

, 5⏟
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

> → 
3000

55
× 25 =

3

3125
× 1000 × 25 = 3000 × 45 × 10−5 =

3072000 × 10−5 → 𝑀𝐵𝐹𝑃: < 3072⏟  
𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

, 10⏟
𝑏𝑎𝑠𝑒

, −2⏟
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

>.  If the RSFP converted has a large exponent, the denom-

inator cannot be defined as a base with a negative exponent, making it impossible to convert to MBFP if 

quantumd is not zero. An example of RSFP that cannot be converted to MBFP is 𝑅𝑆𝐹𝑃: <

1⏟
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑛

, 5⏟
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑑

, 1⏟
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

, 220⏟
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

> → 
1

5
× 1 × 21048576 = 5−1 × 21048576 → 𝑀𝐵𝐹𝑃: ?. In this example, if we set 

the base to 5 and the exponent to -1, the product of the magnitude by the power does not fit in the mantissa, 

and if we set the base to 2, we are not allowed to set a denominator. Finally, some numbers represented in 
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MBFP, as 3−70, cannot be converted to RSFP. This shows that MBFP and RSFP representation domains 

overlap, but they are not equal. In different application domains we may find a better fit for each of them. 

3.3 Balancing the Representation 

An important characteristic of our proposed datatypes is that they have redundant values, like in the rational 

representation. We can exploit this redundancy to work around operation overflows of any component of 

the datatype. For example, to represent a second on RSFP, we can do it as: 1 ∙ 
1

1
 ∙ 20 ∙ s = 2 ∙ 

1

2
 ∙ 20 ∙ s = 1 ∙ 

1

2
 

∙ 21 ∙ s.  

For the RSFP datatype, if an overflow on quantumn occurs, we balance with quantumd. If simplifying 

is not enough, we can transfer weight to the magnitude, dividing quantumn by a divisor and multiply the 

magnitude by the same divisor. Another alternative, if the binary representation ends in 0, magnitude digits 

can be shifted, and the exponent adjusted to compensate. For example, using 32-bit integers, if the result of 

an operation produces <233, 8, 1, 4 >, we cannot fit the value of quantumn. Instead, we can increment the 

exponent to 10 and set quantumn to 227 and it fits. Or we can simplify quantumn against quantumd, setting 

quantumn to 230 and quantumd to 23. Or we can increment the magnitude, for instance to 16, and reduce 

quantumn to 229. Prioritizing any of these tactics over others is an implementation detail. For overflow on 

quantumd, simplification against quantumn, magnitude, or exponent can be used. We can simplify quantumd 

against the magnitude. For example, using 32-bit integers, if the result of an operation produces <8, 233, 4, 

0>, we cannot fit the value of quantumd in its variable. Instead, we can decrement the exponent to -10 and 

set quantumd to 223. Or, we can simplify quantumd against quantumn, setting quantumn to 1 and quantumd 

to 230. Or, we can simplify quantumd against the magnitude, setting magnitude to 1 and quantumd to 231. 

Prioritizing any of these tactics over others is an implementation detail. For an overflow on the magnitude, 

we can simplify it against quantumd. Or, we can transfer some weight to quantumn. In some cases, we can 

shift digits and adjust the exponent. The options for quantumn and magnitude are similar, since numerically 

permuting quantumn and magnitude have the same meaning. The difference between these variables is the 

intended use, which impacts in the design of the operations. For example, using 32-bit integers, if the result 

of an operation produces a quantumn of 1, a quantumd of 8, a magnitude of 233, and an exponent of 4, we 

cannot fit the value of magnitude in its variable. We can increment the exponent to 10 and set the magnitude 

to 227. We can simplify against quantumd, setting magnitude to 230 and quantumd to 64; or we can increment 

the quantumn to some value as 16 and reduce the same factor from magnitude setting it to 229. All these 

manipulations of internal representation should be delayed until they are needed to keep complexity low. 

Running a simplification needs computing expensive algorithms to run as Greater Common Divisor (GCD) 

and Least Common Multiple (LCM). 

 A similar analysis can be done for the MBFP datatype, where the any overflow over the mantissa, base 

or exponent can be handled adjusting the parameters.  

3.4 Agreeing on a Scale-Factor for Representation 

Our proposed datatypes can adapt the representation to cover different sets of numbers needed by the mod-

els. This approach has the drawback that the representation can be different on DEVS atomic models that 

must interact. For the design of our datatypes, we will set every time advance in a model with an identical 

scale-factor. This assumption is a relaxed version of the one made by most current simulators, in which 

every model normally uses the same time unit and scale-factor. Under our assumption, we must find a scale-

factor value for all the coupled models connecting atomic components. We call this search of a common 

scale-factor for interoperation an “agreement”. Having mechanisms to discover a common scale-factor for 

a coupled model, allows us to iterate and find a common scale-factor for the simulation. This globally 

common scale-factor allow us to reduce the complexity of our simulation.  

 On the RSFP datatype for finding an agreement between two numbers A and B, and agreement on the 

ratio and exponent must be found. To achieve this, first a common denominator is found with the LCM of 
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the quantumd values from A and B. The exponent is the minimal between A and B, then the quantumn and 

magnitude should be adjusted. An example of an agreement for addition between two RSFP numbers is 

showed next. 𝐴: < 3⏟
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑛

, 5⏟
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑑

, 1⏟
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

, 5⏟
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

> , 𝐵: < 5⏟
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑛

, 10⏟
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑑

, 2⏟
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

, 6⏟
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

> , 

𝐿𝐶𝑀 (5,10) = 10 , min(5,6) = 5 , After Adjustment: 𝐴:< 1⏟
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑛

, 10⏟
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑑

, 6⏟
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

, 5⏟
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

> ,  𝐵:<

1⏟
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑛

, 10⏟
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑑

, 20⏟
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

, 5⏟
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

>, 𝑅𝑒𝑠𝑢𝑙𝑡: A + B = < 1⏟
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑛

, 10⏟
𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑑

, 26⏟
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

, 5⏟
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

>. 

 On the MBFP datatype the rule for agreement between two numbers A and B is the following: the 

common base is the LCM of the bases of A and B, the exponent is the minimal exponent between A and B, 

and the mantissa needs to be adjusted for compensation shifting digits. Next, we show an example of an 

agreement for addition between two MBFP.  
𝐴: < 2⏟

𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

, 3⏟
𝑏𝑎𝑠𝑒

, −2⏟
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

> , 𝐵: < 4⏟
𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

, 4⏟
𝑏𝑎𝑠𝑒

, 2⏟
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

> , 𝐿𝐶𝑀 (3,4) = 12 , min(−2,2) = −2 

𝐴𝑓𝑡𝑒𝑟 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡: 32 × 12−2⏟      
𝐴

+ 11520 × 12−2⏟        
𝐵

= 11552 × 12−2⏟          
𝑅𝑒𝑠𝑢𝑙𝑡

 , 𝑅𝑒𝑠𝑢𝑙𝑡:< 11520⏟  
𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

, 12⏟
𝑏𝑎𝑠𝑒

, −2⏟
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

>. 

  

 To reach a globally common scale-factor agreement on a DEVS model several approaches can be im-

plemented. We propose four approaches the two datatypes proposed: static, dynamic-initialization, local, 

and global. 

 In the static approaches, called RSFP-static and MBFP-static, the modeler needs to declare the scale-

factor in advance for each atomic model, and then a preprocessor or compiler computes the common scale-

factor. After finding it, every value in the models is adjusted. Before the simulation starts, we define a 

variable for each scale-factor, and we call the establish-static-scale-factor function based on template pa-

rameters. This approach can be implemented only in languages that allow processing operations at compile 

time, like C++. 

 In the dynamic-initialization approach, called RSFP-init and MBFP-init, each variable internally keeps 

a scale-factor. We must declare at least one variable of each scale-factor to be used. Each variable is regis-

tered in a global queue. After declaring all the scale-factors, and before the simulation starts, an agreement 

is negotiated, and every variable in the queue is adjusted. Like the static approach, it is possible to relax our 

assumption of single scale-factor per model as far as every scale-factor is declared before the simulation 

starts. Like in the static approach, we still need to declare scale-factors in advance, and there is no straight-

forward way to prevent the use of balancing the representation, adding overhead. Unlike the static approach, 

it can be implemented in languages like Python or PHP, which do not support the evaluation of expressions 

at compile time. 

 In the local approaches, called RSFP-local and MBFP-local, we find agreements between parameters 

of binary operations. A global agreement may never be reached, but that does not affect the results of the 

simulation. Interaction between models is the driving force of the propagation. Thus, models with low level 

or no interaction may create clusters of scale-factors (i.e., a group of variables sharing a common scale-

factor). As we use a single scale-factor per model, after the models interact with them each will reach a 

stable factor. We do not need casting operations or calling to a common established scale-factor, as each 

variable has its own. For binary operations, the scale-factors of operands are checked and adjusted to a 

common scale-factor if needed.  

 Finally, in the global approaches, called RSFP-global and MBFP-global, a globally accessible scale-

factor variable is defined. For each operation, each operand scale-factor is compared with the global. In 

case it does not match the global, an agreement is searched and registered. The agreement eventually 

reaches a global consensus. In many cases, the global approach converges faster than the local one, but it 

has limitations for concurrency. Using global variables may not be suitable for distributed simulators, and 

it is a bottleneck in multi-threading. The global approach gets to a scale-factor representation agreement 

faster because it only needs setting each model scale-factor representation to the global once. After this, to 

propagate the scale-factor, only one operation with each variable is needed. In contrast, in the local approach 
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the agreement is driven by the operations, and a chain of operations between local agreements is needed to 

obtain higher level agreements and a chain of binary operations involving every variable is needed for 

propagating the representation. 

 For the local and global approaches, we do not need to declare scale-factors in advance. Their perfor-

mance penalty is only significant until the scale-factors of the simulation stabilizes. In the worst-case sce-

nario, every operation produces a penalty for computing Greatest Common Divisor (GCD) and Lowest 

Common Multiple (LCM) during the agreement. However, under our assumption of a single scale-factor 

per model, finding agreements is easier, because each GCD and LCM work as accumulators of information. 

If we find an agreement c between A and B, the agreements between c and A, c and B, are again c. 

3.5 Operations 

The abstract DEVS simulator presented in (Zeigler et al, 2000), which we use, only operate on time varia-

bles through four operations: addition, subtraction, equality comparison, and “lower than” comparison: 

comparison for deciding which transition to execute next, addition for advancing the chronology, and sub-

traction for obtaining the elapsed time.  

 To compare if two RSFP datatype numbers are equal, checking the variables is enough to provide a 

positive answer. If any of the variables differ, we cannot decide, then we produce an agreement for the 

scale-factor and compare their magnitudes. If there is no agreement, we know that the numbers are not 

equal. Else, we compare their magnitudes. In contrast, to compare if two MBFP datatypes are equal, after 

finding an agreement for the bases, the exponent of both operands must be matched. The difference between 

exponents is compensated by shifting digits in the mantissa. Then the mantissas can be compared to obtain 

an answer. 

 On RSFP when comparing by lower-than, several things need to be checked.  

 

 Check if the operands are equal. If they are, we can give a negative answer.  

 If not, one of them is lower than the other. If an agreement can be found, we compare the magni-

tudes. 

 If an agreement cannot be found (i.e., the difference between two operands is large), we can still 

compute the comparison by lower than.  

 We check if the signs of both numbers match; otherwise the negative is lower than the positive.  

 We search for a partial agreement by adjusting the operands to have the same quantumd, and the 

closest possible exponents without rounding. Having a common quantumd, we can compare num-

bers looking at their exponents’ difference. If the difference between their exponents is larger than 

two times the size of the integers used to represent the internal values, then the large exponent 

correspond to larger value in positive numbers, and lower exponent corresponds to larger value in 

negative numbers.  

 If not, we can use a temporary larger datatype for comparing the magnitude, quantumn and expo-

nents. In this case, a common scale-factor is not produced, and the exponent difference is not 

enough to decide using the common quantumd. Then, we must compare quantumn and magnitude 

values too. On MBFP when compare by lower-than, the algorithm is like the one for comparison, 

given than an agreement for the base was made, the exponents of both operands must be matched. 

After these steps comparing the mantissas will give a result.  

 

 Finally, for RSFP, the addition operation usually adds the magnitudes of numbers in agreement. A 

special case is overflow. In this case we can return a result that is not represented in the same scale-factor 

or raise an error. The introduction of a new scale-factor may cascade in a global readjustment of variables. 

In case the scale-factor of the operands have different exponent, we first check their difference. If the dif-

ference is larger than two times the bits of the magnitude, we raise an error. Otherwise, we use a temporary 

variable to compute the addition using the lower exponent in both variables and balance the result. If the 

2709



Vicino, Wainer, and Trabes 

 

 

result does not fit the original variable after balancing, an error is raised. On MBFP the addition can be 

made between numbers in agreement by matching their exponents. The difference between exponents is 

compensated by shifting digits in the mantissa. If we must shift more digits than the size of the mantissa, 

the mantissa losses values. In this case a balance on the representation can be made and if it is not possible 

an error is notified. 

3.6 Handling Errors 

Comparison operators always return a result, but the addition may throw an error. This occurs when we fail 

to reach an agreement on the result’s scale-factor, because our datatype does not have addition-closure. 

Nevertheless, this problem happens less in RSFP and MBFP than in floating-point, because the timeline 

represented by our datatypes is denser, and balancing can prevent it. If the issue arises, we detect and notify 

the error, as opposed to floating-point that silently approximates and continues. 

 In the case an error is notified, we have options to complete the simulation. First, we can increase the 

representation of our datatypes by using a larger datatype on any of the parameters. If a proper representa-

tion cannot be estimated, or the programming language does not allow it, a dynamic arbitrary length can be 

used, i.e. the BigInt provided by the Boost multi-precision library. We do not use this kind of datatype by 

default because of their low performance. A second alternative would be to introduce approximation algo-

rithms to run when the error is detected. This would allow the simulation to incorrectly advance the trajec-

tory, but it should still mark in the timeline where and what errors were introduced for after-run analysis. 

4 EXPERIMENTAL EVALUATION AND RESULTS 

Predicting when representation errors will appear is not an easy task, and we propose to study analytically 

and empirically this problem as future work. In this paper we will focus on an empirical evaluation of how 

our datatypes perform. The main drawback of our datatypes is that a more complex representation can lead 

to a more expensive computation time to execute a model. Also, the agreement for the scale-factor needed 

by our datatypes can create an additional overhead.  

 To evaluate the performance of our proposed datatypes empirically, we implemented every proposed 

datatype in C++14 and compared them against the native datatype double. We used the DEVStone synthetic 

benchmark (Wainer et al. 2011) implemented for a customized version of aDEVS-2.8. DEVStone helps 

automating the evaluation of DEVS based simulators, and it can be adapted to other DES engines. It gen-

erates a suite of models of different sizes, complexities and behaviors like diverse applications that exist in 

the real world. Different types of models with different internal and external structure can be used. For this 

work we will use the following ones: 

 

 LI: Models with a low level of interconnections for each coupled model. Each coupled component 

has only one input and one output port. The input port is connected to each component but only 

one component produced an output through the output port. 

 HI: Models with a high level of input couplings. HI models have the same number of atomic com-

ponents with more interconnections: each atomic component (a) connects its output port to the 

input port of the (a+1)th component. 

 

 All experiments were compiled using clang 4.1 over the x86-64 version of FreeBSD 10.1-18 operating 

system. The compiler was used with level 2 optimization. To compare the different implementations, the 

four scale-factor agreement techniques discussed in Section 3.1.1 were used on the experiments (static, init, 

local and global) for the RSFP and for the MBFP datatypes. 

 Table 1 shows the results obtained for each datatype in four Low-level of Interconnections (LI) config-

uration experiments, and in four High-level of Input coupling (HI) configuration experiments. To simplify 

comparisons, the overhead is measured relatively to the one obtained for double. In these experiments, the 
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period of time-advance used by the DEVStone models was handpicked to produce correct results using any 

datatypes being compared. Every experiment was executed 20 times, with no significant variance in the 

results. In Table 2, we show the theoretical number of transitions being executed according to the DEVStone 

formulas to show how our experimentation was performed over a representative set of different models but 

with a similar amount of internal and external transitions. 

 From the obtained results, we see RSFP-static and MBFP-local are leading the performance compari-

son. And, they produce even better results on LI than HI. We attribute this to the fact that HI configurations 

make more intensive use of comparison than arithmetic operations. The worst performance obtained in the 

LI configurations is MBFP-static. This is attributed to power function used for adjusting the mantissa when 

the exponents are different in the operands. This is not a problem for RSFP-static because it removes any 

adjustment by fixing the scale-factor at compile time. The difference with others in the MBFP family is due 

to our implementation using C++ templates preventing some optimization in the compiler. This is a point 

that should be looked further to fully understand its implications. 

Table 1: DEVStone comparing time datatypes in aDEVS. 

Table 2: DEVStone theoretical transitions on experiments. 

 

 In both datatypes, RSFP and MBFP, the init and global implementations are doing worse than others 

in performance. We attribute this to the loss of locality affecting the cache. We believe in the value of these 

datatypes for context were CPU have lower sizes of cache. 

5 CONCLUSIONS AND FUTURE WORK 

In this work we presented the problems that arise in time representation in DES in current simulators. To 

solve these problems two new datatypes were presented. We also presented four different mechanisms to 

assure a globally common scale-factor on a DEVS model. We discussed these datatypes limitations and 

presented an empirical evaluation of their performance using the DEVStone benchmark. The results ob-

tained from the empirical evaluation show how these new types can be used in simulations without creating 

 LI 

datatype width depth Overhead width depth overhead width depth overhead width depth overhead 

RSFP-static 
RSFP-init 

RSFP-global 
RSFP-local 

double 

MBFP-static 
MBFP-init 

MBFP-global 

MBFP-local 

51 10001 

-12.35 % 
12.55 % 

19.56 % 
-4.90 % 

 0.00 % 

37.99 % 
6.62 % 

3.95 % 

-7.39 % 

501 1001 

-10.77 % 
12.98 % 

-19.56 % 
-7.08 % 

0.00 % 

73.23 % 
15.09 % 

7.58 % 

-9.43 % 

5001 101 

-11.33 % 
19.40 % 

19.56 % 
-6.80 % 

0.00 % 

81.39 % 
18.36 % 

6.95 % 

-9.97 % 

50001 11 

-7.48 % 
17.25 % 

19.56 % 
-5.87 % 

0.00 % 

78.97 % 
20.08 % 

8.32 % 

-7.34 % 

 HI 

datatype width depth overhead width depth overhead width depth overhead width depth overhead 

RSFP static 

RSFP-init 

RSFP-global 
RSFP-local 

double 

MBFP-static 
MBFP-init 

MBFP-global 

MBFP-local 

100 200 

-27.89 % 

11.28 % 

-1.06 % 
-25.17 % 

0.00 % 

-16.29 % 
-3.11 % 

-15.74 % 

-30.61 % 

142 100 

-21.81 % 

31.28 % 

8.67 % 
-17.20 % 

0.00 % 

-10.82 % 
4.24 % 

-3.91 % 

-17.89 % 

205 50 

-36.67 % 

-1.12 % 

-11.71 % 
-28.91 % 

0.00 % 

-28.42 % 
-18.54 % 

-16.01 % 

-34.46 % 

720 5 

-42.77 % 

12.71 % 

-13.00 % 
-21.14 % 

0.00 % 

6.15 % 
23.50 % 

16.35 % 

-40.47 % 

configuration width depth int transitions ext transitions configuration width depth #int transitions ext transitions 

LI 

51 10001 499999 499999 

HI 

100 200 1004651 1004651 

501 1001 499999 499999 142 100 1005148 1005148 

5001 101 499999 499999 205 50 1034636 1034636 

50001 11 499999 499999 720 5 1038241 1038241 
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significant overhead. As future work we propose to extend the work with mathematical analysis of the 

datatypes and how they solve the representation problems and to evaluate these datatypes on different plat-

forms. 
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