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ABSTRACT

Internet of Things (IoT) refers to a paradigm in which all objects can send information and collaborate with
their computing resources through the Internet. The combination of Fog and Cloud Computing defines
a distributed system composed of heterogeneous resources interconnected by different communication
technologies. Despite its theoretical capacity, using these computational resources poses a challenge to
distributed applications and scheduling policies. In this work, we show the initial steps in developing a tool
to support the creation of scheduling policies combining simulation and validation. We show the details
to be considered when selecting and configuring the different layers of software. To evaluate the proposal,
we use a segmentation method in both platforms and a theoretical model to predict the total compute time.
Our results show that both simulation and validation platforms agree in the obtained results which also can
be explained in terms of a theoretical model.

1 INTRODUCTION

Internet of Things (IoT) refers to a paradigm in which any object can be part of the Internet. From mobile
phones and sensors to smart clothes, these devices can communicate or be contacted to extract information
and collaborate to perform a determined task Aazam and Huh (2016). Cloud Computing emerged to
be an alternative to supply computer power and storage providing computing resources following a pay
as you go model. Notwithstanding, the expected growth of data generated by the increasing amount of
connected devices suggests that the centralized cloud data centers would suffer from network collapse. Fog
Computing was recently proposed in Bonomi et al. (2012) to increase the computation being performed near
the network edge using smart devices. Fog/Edge Computing aims to decrease bandwidth usage keeping the
computation near the source of data and avoiding the movement of information to the cloud data centers.

The combination of Fog and Cloud Computing defines a distributed system composed of heterogeneous
resources interconnected by different network technologies with diverse bandwidth, computer resources,
storage, and latency. Despite its theoretical capacity, taking advantage of the computational resources
included in this large-scale platform poses a challenge to scheduling policies, resource discovery and
interchange of status information Chen et al. (2017).

One of the fundamental characteristics of this ecosystem is the need to reduce heterogeneity in protocols
and policies. This large distributed system has to be accessible by different software applications, hardware
solutions, and middlewares.

In this work, we show the first steps creating a platform to support the design and development
of scheduling algorithms in Fog/Edge environments combining simulation and validation. The ultimate
objective is providing a tool to allow the exploration of new ideas, their testing using different conditions and
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scenarios, and the deployment of experiments in a controlled tested to establish their working conditions,
advantages, and limitations. The study of heuristics to obtain better scheduling policies in distributed
systems has a long and rich history but also new proposals can be easily found and are being developed
by the community. For example, Luo et al. (2019) and Anglano et al. (2019) proposes new scheduling
policies in Fog/Edge/Cloud environments, but both works use simulation tools with no further validation
in real hardware.

As was recently mentioned in Svorobej et al. (2019), the validation of results obtained by simulation
tools is a challenge in Fog/Cloud scenarios. Combining several tools to create a more useful one is the
object of the hybrid simulation field, which has also a long history in different fields of application. Tolk
et al. (2018) present a review which starts discussing the definition of hybrid simulation and gives an
in-depth discussion of this field. Our proposal aims to create a platform which can combine simulation
and validation in an easy way. The user starts the exploration using a simulation tool in which different
configurations, parameters, and scenarios can be tested. Once this stage is finished, our proposal manages
the deployment in the validation platform and supports the recovering of the results. In this way, any user
can program a new scheduling policy, put it under test in the simulation world and then validate it using a
large scale distributed facility with real hardware.

The rest of this paper is organized as follows: in section 2, we introduce the facility used to perform
the validation stage, including its network topology, the available hardware and some measurements of
its network behavior. The simulation engine is presented in section 3, while in section 4 we present the
methodology and the link between both platforms. Section 5 shows the results obtained using simulation
and validation in real hardware. Finally, in section 6 we draw some conclusions.

2 EXPERIMENTAL PLATFORM: FIT/IoT-LAB

Validation stage is usually one of the most critical parts in any scientific development. When designing
scheduling policies for heterogeneous distributed systems like the ones defined in the Fog/Edge paradigm,
the creation, management, and deployment of a distributed infrastructure could become extremely difficult
or even impossible. Notwithstanding that using real hardware to test a proposal in scheduling policies
could provide more insight and robustness about its behavior and properties.

FIT IoT-LAB testbed offers an open access multi-user scientific tool to support design, development,
tuning, and experimentation related to IoT, see Adjih et al. (2015). FIT IoT-LAB testbeds are located at six
different sites across France enabling the use of more than 2700 wireless sensors nodes (see in Figure 1).

To perform an experiment using the FIT IoT-LAB’s resources, it is necessary to reserve them beforehand.
The reservation (slice in terms of FIT IoT-LAB’s terminology) can be obtained to access the resources
immediately (based on their availability) or for a specific time and date in the future. The resources to
use in an experiment can be selected based on their id, architecture, mobility, and site, providing a high
level of traceability and reproducibility. In the rest of this section, we present the hardware and software
characteristics of FIT IoT-LAB including the results of performing monitoring of the network infrastructure
to evaluate its stability.

2.1 Network Infrastructure

The available infrastructure provided by FIT IoT-LAB includes a wide range of sensors, robots and computing
resources distributed in different sites. An experiment could use resources from only one site which are
connected by a local switch or can be composed of distributed resources among two or more sites. Figure 1
shows the current configuration of FIT IoT-LAB: different types and amount of resources are installed in
each site, all of them are connected locally and, by one gateway per site, to the external resources.

The connectivity of the different sites is provided by RENATER which also supports the access of
researchers worldwide through the different advance networks in each country. Each link in Figure 1
has 10 Gbit/s, but this backbone is increased with parallel links to provide more bandwidth like between
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Figure 1: FIT IoT-LAB infrastructure: six sites across France provide IoT resources. These sites are
interconnected using RENATER. All the base links support 10 Gbit Ethernet and some can reach 100 Gbit/s
like Paris 1 - Paris 2 and Paris - Lyon.

Paris and Lyon. For example, the sensor N101@Saclay needs to send data to the actuator N95@Grenoble.
Then, N101@Saclay sends a request to start a connection through the gateway in Saclay (represented by
the transparent cube in the figure). The connection between the gateways in Saclay and Grenoble uses the
RENATER’s infrastructure (based on TCP/IP). Finally, the gateway in Grenoble forwards the request to
N95@Grenoble and establishes the connection delivering the data.

The monitoring and control of the experiments can be performed using usual networks tools and there
is a local NFS-based file system which is available for some of the devices to share files in the same site.
Each site has its own file system which is not shared among different sites, i.e. as a user, you need to copy
files between different sites manually.

As our objective is to create a tool that links simulation and validation, the dynamic behavior of the
network infrastructure should be evaluated. We test the stability of local network infrastructure and intersite
communications to quantify the real latency that an application could experience when running in FIT
IoT-LAB. We set up an experiment to monitor the state and response time (i.e. RTT) of the connections
between all the six sites and their internal behavior. We request resources in each site and monitor the RTT
during the first 10 minutes of each hour for five days. Two scenarios are considered: intrasite (i.e. only
local connectivity) and intersite (i.e. connectivity among resources in different sites). In the first case, only
one hop is necessary to reach the destination while for the second scenario, the routes have more than five
hops including both gateways in the source and destination sites.

Tables 1 and 2 present the results of monitoring measurements for internal traffic (i.e. intrasite). During
the experiment performed in June 2017 (Table 1), all the sites present a local average RTT between 1.5 ms
to 2.0 ms. The difference in the behavior of the sites is in the stability of the measurements, Paris and
Saclay present a similar standard deviation, while Strasbourg has higher deviation than the two previous
sites and Grenoble presents a very unstable behavior with the highest values of standard deviation.

The next experiment was performed during November 2018 after a reconfiguration of FIT IoT-LAB
network configuration update. In Table 2, all the sites present a lower average RTT in the range between
0.8 ms to 1.3 ms. The stability also improved, only Grenoble presents a strong variability during the first
day and a small one during the fourth day. The more stable site is Strasbourg followed by Saclay and Paris.
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Table 1: Experiment 06/2017: Average Round Trip Time (RTT) of near 14000 observations for intrasite
connectivity during June 2017 (expressed in ms).

Grenoble Paris Saclay Strasbourg

Hours avg sd avg sd avg sd avg sd

0-23 1.602 6.203 1.560 0.401 1.539 0.379 1.577 0.74

24-47 1.820 12.460 1.560 0.390 1.538 0.378 1.544 0.723

48-71 1.852 15.925 1.555 0.386 1.569 0.479 1.523 0.151

72-95 1.926 9.945 1.573 1.708 1.546 0.382 1.519 0.151

96-119 1.621 6.706 1.564 0.491 1.551 0.491 1.537 0.147

Table 2: Experiment 11/2018: Average Round Trip Time (RTT) of near 14000 observations for intrasite
connectivity during November 2018 (expressed in ms).

Grenoble Paris Saclay Strasbourg

Hours avg sd avg sd avg sd avg sd

0-23 1.164 15.724 1.247 0.287 1.233 0.147 1.280 0.094

24-47 0.933 0.227 1.250 0.468 1.245 0.128 1.274 0.097

48-71 0.845 0.457 1.248 0.232 1.237 0.141 1.273 0.097

72-95 0.855 1.125 1.246 0.346 1.250 0.103 1.276 0.092

96-119 0.932 0.254 1.243 0.237 1.239 0.203 1.279 0.099

Figure 2 shows the measurements of network behavior from Saclay and Strasbourg to the rest of the
sites. Although five days of data were recorded and analyzed, two representative days are included in
this figure to improve legibility. The figure includes data from two experiments: June 2017 (Experiment
06/2017 and November 2018 (Experiment 11/2018), but the intersite behavior does not show changes in
these two experiments. The minimum value for RTT is related to the number of hops contained in the
route to the destination. As Paris is near Saclay (see Figure 1), Figure 2(a) and Figure 2(c) show the lowest
value for RTT between them. To reach Lille from Saclay it is needed to hop through Paris, which explains
the increment in RTT while Grenoble and Strasbourg need more hops with higher RTT. The traffic from
Strasbourg to the rest of the sites is presented in Figure 2(b) and Figure 2(d). Strasbourg is the more remote
site in terms of network connectivity, it is needed several hopes to reach any other site. This is reflected
in the high values of RTT which are considerably higher than Saclay. Paris is the nearest site in terms of
RTT with the rest of sites near it. The path Strasbourg to Lille presents the highest RTT value from all the
analyzed data.

The analysis of the combination of local and intersite traffic patterns regarding expected latency, network
instability which jointly with the availability of resources guided us to select which site fits better the
requirements for each experiment. These considerations should be managed by a tool to help the user define
the experimental conditions coordinating simulation and validation. For example, Strasbourg presents a
more stable traffic pattern intrasite, especially for our latest measurements, but using Strasbourg for intersite
experiments increments the noise and latency involved.

2.2 Hardware Infrastructure

One of the main objectives of FIT IoT-LAB is providing a platform to develop and test applications,
modules, and protocols for small wireless sensor devices and heterogeneous communicating objects. This
facility has a large number of distributed resources, which backbone is based on three types of devices
specifically designed for FIT IoT-LAB:
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Figure 2: Monitoring of RTT between Saclay and Strasbourg with the rest of the available sites during the
first 10 minutes of each hour during seven days (only third and fourth day are shown to improve legibility).
The experiments in (a) and (b) correspond to June 2017 (Experiment 06/2017), while the experiments in
(c) and (d) were performed during November 2018 (Experiment 11/2018).

• WSN430 Node: based on MSP430F1611 MCU and communication with a 802.15.4 PHY Layer
(800 MHz or 2.4 GHz).

• M3 Node: based on STM32F103REY MCU and communication with a 802.15.4 PHY Layer
(2.4 GHz)

• A8 Node: based on TI SITARA AM3505 (ARM Cortex A8) allows to run Linux. This node embeds
also an M3 Node with 802.15.4 comm.

The first two types of devices only support a lightweight operating system (like FreeRTOS, Contiki,
or Riot) while the A8 Node can execute a standard Linux distribution. A8 Nodes consists of a single core
Texas Instruments AM3517 / AM3505 processor executing at 600 MHz with 256 MB of RAM. Additionally,
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FIT IoT-LAB has a wide range of commercial boards installed including Zigduino, BBC micro:bit, and
Zolertia Firefly.

3 SIMULATION PLATFORM: SIMGRID

The next step to build a develop-test-validate framework for scheduling algorithms in IoT is to select an
efficient and versatile simulation tool to support the initial exploration. There are several proposals that
could be used: CloudSim by Calheiros et al. (2011), Simgrid by Casanova (2001), Batsim by Dutot et al.
(2017), iFogSim by Gupta et al. (2017), and pysimgrid by Sukhoroslov et al. (2018).

The main characteristics needed are:

• Processing time: the tool needs to support executing jobs with different complexity (in terms of
computing power needed) considering heterogeneous computing resources.

• Network traffic: the sending and receiving of data and commands use the network infrastructure to
travel from the source node (i.e. scheduler in our case) to destination (i.e. worker). The simulation
tool has to consider the latency and bandwidth of the link to incorporate the effects of latency
and congestion. Moreover, usually wireless with different flavors is one of the preferred ways to
communicate IoT devices.

The event-based simulator Cloudsim and iFogSim families are focused on the evaluation of virtualization
techniques or distributed applications development in Fog/Cloud environments, but these tools use high-
level abstract models for communication and computing, and lack of support for wireless communication.
These tools are implemented in Java and to adding new modules or models to them imposes using this
technology.

Simgrid is also an event-based simulation engine which is widely used worldwide having an active and
large community of users. In spite of lacking support for wireless communication, the communication and
computing models are more sophisticated and versatile than other tools. Simgrid is natively programmed
in C/C++ but it has a clear API that can be used to interact with it from other languages. Pysimgrid is a
Python-based framework to support interacting with SimGrid and Batsim is a new layer on top of SimGrid
focused on scheduling, but currently, this project is under heavy development.

Our proposal is designed to be flexible to use different simulation tools, but for this initial prototype,
we need to adopt one simulation platform. Based on the state of maturity, our previous experience with
the tool, the size of the community and versatility of the solution, we select SimGrid as the simulation
engine and pysimgrid to interact with it taking advantage of Python.

3.1 Hardware and Network Infrastructure

As we already mentioned, the simulation tool needs to support realistic models for heterogeneous devices
and communication network. Simgrid allows configuring of the network topology using an input file in
which the topology, bandwidth, and latency for each link are defined. The computing power of all the
resources is also specified in this configuration file. Simgrid uses these values to compute the time needed
to complete a job based on the declared requirements of the task and the resources used to solve it. SimGrid
has several communication models to choose when computing the time required for a message to reach its
destination. In these models, latency and bandwidth are combined with the message size and the considered
conditions of the network infrastructure to compute the communication time.

For any scenario, compute power and network details need to be defined. Moreover, when using an
experimental platform as a validation stage for simulation results, both properties have to be carefully
selected to match the real hardware and network topology (i.e. FIT IoT-LAB) with the simulation tool.

The network parameters of the validation platform can be extracted from the measurements presented
in Figure 2 and Tables 1 and 2. The computing power of the available devices needs to be precisely defined
in the configuration of the simulation tool in terms of FLOPS. For example, Aroca and Gonçalves (2012)
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estimate the peak performance of an ARM Cortex-A8 in 33 MFLOPS and an average of 25 MFLOPS,
while in Fürlinger et al. (2011), the authors obtain 66.7 MFLOPS but only 40 MFLOPS when running the
Linpack benchmark. Rajovic et al. (2014) conclude that the Cortex-A8 can deliver near 60 MFLOPS at
most, which is similar to the value found by Cloutier et al. (2016).

This wide range of possibilities neglects the selection of a single value representing the behavior, even
for only one type of computing resource. In our case, the procedure to select this value is based on executing
a representative task. Based on the performed measurements, we estimate 60 MFLOPS as the computing
power of the available Cortex-A8.

4 SIMULATION MODEL DEVELOPMENT

The creation of a platform to develop, test and validate scheduling policies in Fog/Edge/Cloud environments
requires not only access to the validation platform (in our case, FIT IoT-LAB) and the simulation engine
but also software modules to support their use.

As a first step in creating the glue between these technologies and resources, we present Watsapi,
which is a software tool created in the top of Simgrid and aimed to offer a simulation platform to execute
simulations in Fog/Edge environments which then can be easily deployed in the validation platform provided
by FIT IoT-LAB.

Watsapi uses the Simgrid’ module s4u to manage communication between entities, which is a recent
replacement for the older MSG interface. Figure 3(a) presents the current software modules developed
to support the simulation of scheduling policies while Figure 3(b) shows the relationship between all the
software modules. The main entity is the Host Watsapi which can be specialized to become a scheduler
or a worker. The tool is also prepared to add resource discovery and monitoring support, but to simplify
this first prototype and its analysis, we disabled this functionality for this work.

(a) Software modules used and developed. (b) Interactions between entities.

Figure 3: Modules involved in the definition of the tool which combines the simulation engine with the
validation platform.

Host Watsapi can be used as a scheduler (allowing the definition of multiple schedulers in a scenario)
or a worker. It is also possible to use a scheduler as a worker too, but as the validation platform only
has single core resources, assigning multiple roles to a node could impact negatively on the results. In
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terms of SimGrid, each of these entities is an Actor executing at one Host Watsapi. We use the registration
mechanism to assign the functions to each entity which are defined in the configuration file.

The standard use scenario for this tool can be briefly defined as: each scheduler has a set of tasks to
execute and a list of computing resources. It uses a scheduling policy to select the resource (i.e. worker) to
send the task to be served. The workers are initially waiting to execute a task. They start serving the first
task to arrive and, in the case of receiving more, the new tasks are queued until they finish the current one.

The interactions defined in Figure 3(b) are: a) The network topology, link bandwidth and latency, and
type and amount of nodes are described in a config file (i.e. platform) which is then read by Simgrid to
define the scenario. b) The functions to be executed in each node and variables to monitor are specified
in another configuration file (i.e. deploy), which is also an input for Simgrid. The functions for each
host are defined in this file, which then are assigned to objects of the class s4u::Actor. c) Simgrid’s host
class is extended to support new funcionalities to become HostWatsapi class. This new class supports new
specific logging details and managing of known computing resources. In Fog/Edge environment, on-the-fly
clustering is one possible strategy to deal with complex tasks, the knowledge of near resources could be
necessary for scheduling, but also for workers to offload tasks in case of need. d) The Scheduler is an
extension to HostWatsapi. It needs to maintain the list of pending tasks, available resources, and tasks
currently being solved in remote resources. To be able to communicate with other entities, this class has to
define a Simgrid communication port (i.e. mailbox). e) The Worker usually waits for a task to compute. f)
To receive one task, a worker uses the communication infrastructure provided by Simgrid. It starts waiting
until a message is received in its mailbox. Once the task is received, it continues busy until its end. g) A
scheduler uses the Simgrid communication layer to send the tasks to a worker and to receive the results.
h) The list of tasks to be served is managed by a container class implemented.

The relationship between simulation and validation stages is introduced in Figure 4, which corresponds
to two consecutive time steps in the dynamics of the involved entities during simulation and validation.

In these figures, some of the events are marked in both stages to show how they are linked: I) One of
the nodes in this example is a scheduler, it has to match tasks to solve and available computing resources.
II) The tasks to be solved are received by the scheduler and stored in memory. III) The scheduler has
information about the state of the available resources. IV) Based on the resource information and the
scheduling policy, the node selects a computing resource to send the task to be executed. V) The computing
resources have a list of pending tasks. VI) After some time (∆t), a node finishes the execution of a task
and sends the results to the scheduler. In the case of the simulation, the node uses Simgrid infrastructure
to send it, while in the validation platform, the shared file system is used to communicate the results. VII)
The scheduler detects the end of a task and moves it from the pending to the ended list. VIII) The resources
information is updated by the scheduler.

This methodology enables the development and testing of scheduling policies for heterogeneous scenarios
in terms of computing resources and network communication infrastructure. In the next section, we propose
an example to test this proposal and evaluate its behavior.

5 RESULTS

The next step is proposing a scenario to demonstrate the potentiality of this proposal. The image segmentation
procedure is an extended methodology which takes an image or set of images and generates a representation
which should be easier to process or analyze. In the case of an IoT scenario, a set of devices could be
installed to process images or other sensor data, for example the Array of Things project, which is being
deployed in Chicago (US), aims to install a large number of devices with a set of sensors (including video
camera) and computing resources to process images in the edge. It is easy to imagine a large number of
similar projects relaying in this kind of resources to process images or other complex data in the edge
trying to detect objects or situations of interest without the need to transfer the data to a centralized data
center. In the case of the array of things project, the images have to be processed in each node due to
privacy concerns.
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(a) Active information share strategy (b) Receiving of resource information

Figure 4: Implementation in simulation and validation platforms. At time tk the scheduler has some
pending tasks and available resources. It sends a task to N3, one of the available resources. After some time
(represented by ∆t), N2 sends the results of a previously assigned task with a message in the the simulation
platform, while in the validation platform it uses an available local file system to communicate it.

Image segmentation is widely used in many diverse areas like pattern and text recognition Lyu et al.
(2005), document image processing Farrahi Moghaddam and Cheriet (2012), crack concrete structures
detection Talab et al. (2016), and medical image Manikandan et al. (2014). One of the methods established
for this objective is the method by Otsu (1979). It can be applied independently to each frame belonging
to a sequence (i.e. defines an embarrassingly parallel workload).

We apply this method to a dataset based on Le Ballon Rouge sequence (Lamorisse 1956) previously
processed to convert it to grayscale and modified with Gaussian noise. This dataset has 4520 frames, each
one with 480 pixels×360 pixels as is exemplified in Figure 5. Figure 5(a) is the original frame in grayscale,
while in Figure 5(b) Gaussian noise is added and Figure 5(c) represents the result of the segmentation
procedure in black and white. We select 100 frames to decrease the amount of time needed to execute
these tests in the hardware platform and the disk space needed to store it. We propose two scenarios to
execute the test:

• Intrasite: the scheduler and all the computing resources are located on the same site. In this case,
all the entities experience the same latency.

• Intersite: the scheduler and the computing resources are in different sites: the scheduler is in
one site and it uses resources located in two other sites. The entities have different access time
depending on the site they are deployed.

In both scenarios, we solve the workload composed of 100 frames using from one to ten computing
devices. The selection of resources is performed using Random and Round-Robin scheduling policies.
Intrasite experiments are performed in Grenoble while the intersite are based on Grenoble, Saclay, and
Strasbourg. As all the frames in the workload can be processed independently, the compute time for all
the dataset can be obtained by the following equation:

Expected Time(n) =
single time · tasks count

n
+ tasks count · (t1 + t2)− (t1 + t2) (1)

where n is the number of workers collaborating to solve the workload, single time is compute time for a
single frame, task count is the number of frame to be processed, t1 corresponds to the scheduling overhead
and t2 is the communication overhead.
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(a) Original (b) Noised (c) Segmented

Figure 5: One of the frames of Le Ballon Rouge sequence: (a) is the original in grayscale, while (b) is
modified with Gaussian noise and (c) is the result of the segmentation method in black and white.

For each number of workers and scheduling policy, the experiments in the validation platform are
repeated ten times to keep the use of FIT IoT-LAB under a reasonable limit. In the case of the simulation
stage, each case is repeated 1000 times.
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Figure 6: Intrasite experiments: total time needed to process 100 frames with the Otsu segmentation method
using an increasing number of computing resources in the same site: (a) and (c) present the results of
executing in the simulation platform, while (b) and (d) show the results in real hardware. The continuous
lines corresponds to the model presented in Equation 1 with and without considering overheads.

Figure 6 shows the total amount of time to solve the workload using an increasing number of computing
resources in simulation and validation platforms. As can be seen, both platforms reasonably agree with
the total time needed to solve the workload. On the other hand, the predicted computing time obtained
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using Equation 1 without considering overheads (labeled Expected time(w/o comm) in the figure) shows
strong differences with both platforms especially when the number of involved resources increases. As
the scenario of Figures 6(a) and 6(b) has very low latency, we can unify the overhead setting t1 = 2.65 s
and keeping t2 = 0. With this improvement, the predicted value (labeled Expected Time (w/comm) in the
figures) fits with the obtained results in both platforms.

Figures 6(c) and 6(d) present the results for solving the same dataset in a scenario in which the
scheduler and the resources are in different sites (intersite experiment). Both platforms agree in the time
needed to complete the workload. Once again, not considering the overhead in Equation 1 leads to a
disagreement with the measurements and simulation. In this case, as the entities are deployed in different
sites, the communication overhead (t2) needs to be incorporated. With a value for t2 =0.55 s, the line
labeled Expected Time (w/comm) is obtained agreeing with measurements in both platforms.

6 CONCLUSIONS

In the Internet of Things (IoT) paradigm, all the devices can send data and collaborate with their computing
resources. Developing applications, protocols, and algorithms to take advantage of the complexity emerged
in the combination of devices and communication characteristics is not a trivial task.

In this work, we present an initial effort to support the development of scheduling policies in Fog/Edge
environments. We show the details about the implementation of the simulation platform based on Simgrid
and a validation platform which uses the resources available in FIT IoT-LAB open distributed facility.
We show how both platforms can be linked based on measurements of network behavior and computing
performance of the available resources.

To evaluate our proposal, we segment images using the Otsu method with an increasing number of
resources in both simulation and validation platforms. A theoretical model explains the obtained results
in terms of the communication and scheduling overhead. We configure two scenarios: one in which all
the computing resources and the scheduler share the same site and another in which they are deployed
in different ones increasing the impact of latency. The results show that this methodology is promising
to support the development and testing of new strategies focused on the complex system defined in the
Fog/Edge/Cloud environment.
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