
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

THE FUNDAMENTALS OF DOMAIN-SPECIFIC SIMULATION LANGUAGE ENGINEERING

Simon Van Mierlo
Hans Vangheluwe

Department of Mathematics and Computer Science
University of Antwerp - Flanders Make vzw

Middelheimlaan 1
Antwerp, 2020, BELGIUM

Joachim Denil

Department of Electronics - ICT
University of Antwerp - Flanders Make vzw

Groenenborgerlaan 171
Antwerp, 2020, BELGIUM

ABSTRACT

Simulationists use a plethora of modelling languages. General-purpose languages such as C, extended
with simulation constructs, give the user access to abstractions for general-purpose computation and
modularization. The learning curve for experts in domains that are far from programming, however, is
steep. Languages such as Modelica and DEVS allow for a more intuitive definition of models, often through
visual notations and with libraries of reusable components for various domains. The semantics of these
languages is fixed. While libraries can be created, the language’s syntax and semantics cannot be adapted
to suit the needs of a particular domain. This tutorial provides an introduction to modelling language
engineering, which allows one to explicitly model all aspects –in particular, syntax and semantics– of a
(domain-specific) modelling and simulation language and to subsequently synthesize appropriate tooling.
We demonstrate the discussed techniques by means of a simple railway network language using AToMPM,
a (meta)modelling tool.

1 INTRODUCTION

This tutorial introduces the fundamentals of language engineering for creating domain-specific simulation
languages.

1.1 Why Domain-Specific Language for Simulation?

The complexity of the systems we develop is continuously increasing. To overcome this complexity,
the designers of the system can employ simulation techniques, building virtual prototypes of the system
that allow for the quick evaluation of candidates. The structure and behaviour of these prototypes are
expressed in models of the system: abstractions that specify a particular view on, or a part of the
system. Such models are implemented in a modelling language, often a general-purpose programming
language such as C or Java. This may lead to certain issues. The domain expert has deep knowledge
of the problem domain, but only a limited understanding of computer programs. This can result in
communication problems, such as the programmer making false assumptions about the domain, or the
domain expert to gloss over details when explaining the problem to the programmer. Furthermore, the
domain experts will finally receive a software component that they don’t fully understand, making it
difficult for them to validate and modify if necessary. There is a conceptual gap in effect between the two
domains, hindering productivity. Alternatively, tools such as FlexSim (https://www.flexsim.com/), Simio
(https://www.simio.com/), or Arena (https://www.arenasimulation.com/) offer a discrete-event abstraction
with the possibility for building (domain-specific) libraries. While these tools already bridge the gap between
concept and implementation partially, their semantics is fixed (discrete-event) and cannot be extended or
changed.

1482978-1-7281-3283-9/19/$31.00 ©2019 IEEE

https://www.flexsim.com/
https://www.simio.com/
https://www.arenasimulation.com/


Van Mierlo, Vangheluwe, and Denil

Concrete
syntax

Abstract
syntax

Semantic
domain

transformation

Graph

Semantic
mapping

m

M(m)

K(m)

Formalism

Syntax Semantics

Concrete Abstract
Semantic
Mapping

Semantic
Domain

Figure 1: Terminology.

Model-Driven Engineering (MDE) (Vangheluwe 2008) tries to bridge this gap, by shifting the level of
specification from computing concepts (the “how”) to conceptual models or abstractions in the problem
domain (the “what”). Domain-Specific Modelling (DSM) (Kelly and Tolvanen 2008) in particular makes
it possible to specify these models in a Domain-Specific Modelling Language (DSML), using concepts
and notations of a specific domain. The goal is to enable domain experts to develop, understand, and
verify models more easily, without having to use concepts outside of their own domain. It allows the use
of a custom visual syntax, which is closer to the problem domain, and therefore more intuitive. Models
created in such DSMLs are used, among others, for simulation, (formal) analysis, documentation, and
code synthesis for different platforms. There is, however, still a need for a language engineer to create the
DSML, which includes defining its syntax, and providing the mapping between the problem domain and
the solution domain.

This tutorial introduces language engineering for domain-specific simulation languages. A DSML is
fully defined (Kleppe 2007) by:

1. Its abstract syntax, defining the DSML constructs and their allowed combinations. This information
is typically captured in a metamodel.

2. Its concrete syntax, specifying the visual representation of the different constructs. This visual
representation can either be graphical (using icons), or textual.

3. Its semantics, defining the meaning of models created in the domain (Harel and Rumpe 2004).
This encompasses both the semantic domain (what is the meaning of models in the DSML), and
the semantic mapping (how to give meaning to the models in the DSML).

For example, 1+2 and (+ 1 2) can both be seen as textual concrete syntax (i.e., a visualization) for
the abstract syntax concept “addition of 1 and 2” (i.e., what construct it is). The semantic domain of this
operation is the set of natural numbers (i.e., what it evaluates to), with the semantic mapping being the
execution of the operation (i.e., how it is evaluated). Therefore, the semantics, or “meaning”, of 1+2 is 3.

This definition of terminology can be seen in Fig. 1. Each aspect of a formalism is modelled explicitly,
as well as relations between different formalisms.

1.2 Multi-Paradigm Modelling

Multi-Paradigm Modelling (MPM) (Mosterman and Vangheluwe 2004) aims to support the modelling of
complex systems by combining three different directions of research:

• Meta-Modelling, which is the process of modelling formalisms.

1483



Van Mierlo, Vangheluwe, and Denil

VS.

Figure 2: The optimal track length problem illustrated.

• Model Abstraction, concerned with the relationship between models at different levels of abstraction.
• Multi-Formalism Modelling, concerned with the coupling of and transformation between models

described in different formalisms.
• Process Modelling, allowing to describe system development workflows.

This allows developers to model every aspect of interest explicitly, using the most appropriate formal-
ism(s), at the most appropriate level(s) of abstraction, with processes explicitly modelled.

In many cases, an appropriate formalism (with respect to some properties such as the expressiveness,
tool support, and other pragmatics such as the knowledge the development team has of the language)
is readily available. Examples include Matlab/Simulink for specifying the dynamics of system using a
block-diagram abstraction, Modelica for modelling the physics of systems in an acausal way, and DEVS
for discrete-event systems such as queuing systems. In other cases, such a language is not readily available
and one has to be created to serve for a specific domain, or to solve a specific problem. Within MPM,
meta-modelling allows a language engineer to efficiently build such languages and generate domain-specific
modelling environments. Next to the specification of the syntax of the language, a meaning is given to the
models of the language by specifying the semantics of the language.

1.3 Example: Railway Simulation

The tutorial uses an example from the railway domain as an application of the presented techniques. When
designing railway networks, domain experts create the network by connecting railway building blocks,
such as:

• Stations, where people can get on an off the trains.
• Track Segments, connecting other track segments to each other, as well as to stations.
• Straights, a special type of track that has exactly one incoming segment and one outgoing segment.
• Turnouts, a special type of track that splits into two other tracks.
• Junctions, a special type of track that merges two other tracks.
• Lights, controlling whether or not a train can enter the next track segment.

Such models might be subject to evaluation trough virtual experiment (simulation) to see whether some
performance metric is optimal. For example, one could ask the question what the optimal track length is,
given a specific railway network. The track length influences the total cost of the system: very long tracks
mean less infrastructure has to be built (since there are less lights to put next to the tracks), but it also
means that trains might have to wait very long before they are admitted to enter the next track, potentially
causing delays.

To answer such questions, the models are typically encoded in an appropriate modelling language,
where such answers can be easily given. The optimal track length problem is illustrated in Figure 2.
Domain experts might be more comfortable with such visual models, instead of a simulation language
that is specifying how to run the simulation. This can improve understandability, both for expressing the
problem correctly, and for interpreting the results of simulation.

1484



Van Mierlo, Vangheluwe, and Denil

2 WHAT IS A DOMAIN-SPECIFIC MODELLING LANGUAGE?

A domain-specific modelling language is a modelling language, tailored to a specific domain. The concept
of domain-specificity is relative: a language such as HTML/CSS can be viewed as domain-specific, since
it is tailored to the specification of the structure and layout of webpages. However, these languages are
very general, and can specify solutions in many domains. The explanations that follow can be applied to
modelling languages in general, regardless of whether they are viewed as domain-specific or not.

In the following subsections, we explain the building blocks of domain-specific languages.

2.1 Syntax

A syntax defines whether elements are valid in a specified language or not. It does not, however, concern
itself with what the constructs mean. With syntax only, it would be possible to specify whether a construct
is valid, but it might have invalid semantics. A simple, textual example is the expression 1

0 . It is perfectly
valid to write this, as it follows all structural rules: a fraction symbol separates two recursively parsed
expressions. However, its semantics is undefined, since it is a division by zero.

2.1.1 Abstract Syntax

The abstract syntax of a language specifies its constructs and their allowed combinations, and can be
compared to grammars specifying parsing rules. Such definitions are captured in a metamodel, which itself
is again a model of the metametamodel (Kühne 2006). Most commonly, the metametamodel is similar to
UML Class Diagrams, as is also the case in our case study. The metametamodel used in the examples makes
it possible to define classes, associations between classes (with incoming and outgoing multiplicities), and
attributes.

While the abstract syntax reasons about the allowable constructs, it does not state anything about how
they are presented to the user. In this way, it is distinct from textual grammars, as they already offer the
keywords to use (Kleppe 2007). It merely states the concepts that are usable in the domain.

2.1.2 Concrete Syntax

The concrete syntax of a model specifies how elements from the abstract syntax are visually represented.
The relation between abstract and concrete syntax elements is also modelled: each representable abstract
syntax concept has exactly one concrete syntax construct, and vice versa. As such, the mapping between
abstract and concrete syntax needs to be a bijective function. This does not, however, limit the number
of distinct concrete syntax definitions, as long as each combination of concrete and abstract syntax has
a bijective mapping. The definition of the concrete syntax is a determining factor in the usability of the
DSML (Barišić, Amaral, Goulão, and Barroca 2011).

Multiple types of concrete syntaxes exist, though the main distinction is between textual and graphical
languages. Both have their advantages and disadvantages: textual languages are more similar to programming
languages, making it easier for programmers to start using the DSML. On the other hand, visual languages
can represent the problem domain better, due to the use of standardized symbols, despite them being generally
less efficient (Petre 1995). An overview of different types of graphical languages is given in (Costagliola,
Deufemia, and Polese 2004). Different tools have different options for concrete syntax, depending on the
expected target audience of the tool. For example, standard parsers always use a textual language, as their
target audience consists of computer programmers who specify a system in (textual) code.

While the possibilities with textual languages are rather restricted, graphical languages have an almost
infinite number of possibilities. In (Moody 2009), several “rules” are identified for handling this large
number of possibilities. As indicated beforehand, a single model can have different concrete syntax
representations, so it is possible for one to be textual, and another to be graphical.

1485



Van Mierlo, Vangheluwe, and Denil

2.2 Semantics

For a domain-specific language to be called a formalism (Giese, Levendovszky, and Vangheluwe 2007), it
requires a semantic definition. Since the syntax only defines what a valid model looks like, we need to
give a meaning to the models. Even though models might be syntactically valid, their meaning might be
useless or even invalid.

It is possible for humans to come up with intuitive semantics for the visual notations used (e.g., an arrow
between two states means that the state changes from the source to the destination if a certain condition
is satisfied). There is, however, a need to make the semantics explicit for two main reasons:

1. Computers cannot use intuition, and therefore there needs to be some operation defined to convey
the meaning to the machine level.

2. Intuition might only take us that far, and can cause some subtle differences in border cases. Having
semantics explicitly defined makes different interpretations impossible, as there will always be a
“reference implementation”.

Semantics consists of two parts: the domain it maps to, and the mapping itself. While many categories
of semantic mapping exist, as presented in (Zhang and Xu 2004), we only focus on the two main categories
relevant to our case study:

1. Translational semantics, where the semantic mapping translates the model from one formalism to
another, while maintaining an equivalent model with respect to the properties under study. The target
formalism has semantics (again, either translational or operational), meaning that the semantics is
“transferred” to the original model.

2. Operational semantics, where the semantic mapping effectively executes, or simulates, the model
being mapped. Operational semantics can be implemented with an external simulator, or through
model transformations that simulate the model by modifying its state. The advantage of in-place
model transformations is that semantics are also defined completely in the problem domain, making
it suitable for use by domain experts. For our case study, this means implementing a simulator
using model transformations.

Both the semantic domain and the possible semantic mappings (operational and translational) will be
covered in the next subsections.

2.2.1 Semantic Domain

The semantic domain is the target of the semantic mapping. As such, the semantic mapping will map
every valid language instance to a (not necessarily unique) instance of the semantic domain. Many
semantic domains exist, as basically every language with semantics of its own can act as a semantic
domain. The choice of semantic domain depends on which properties need to be conserved. For example,
DEVS (Zeigler, Praehofer, and Kim 2000) can be used for simulation, Petri nets (Murata 1989) for
verification, Statecharts (Harel 1987) for code synthesis, and Causal Block Diagrams (Cellier 1991)
for continuous systems using differential equations. A single model might even have different semantic
domains, each targeted at a specific goal.

For the example simulation language developed during the tutorial, we will use DEVS as the semantic
domain; we want to run several simulations to analyze the optimal track length, which requires to look
at the overall cost of the system using the throughput of the track by regarding it as a queueing system.
DEVS is a popular formalism for modelling complex dynamic systems using a discrete-event abstraction.

1486



Van Mierlo, Vangheluwe, and Denil

Atomic DEVS models are the behavioural atomic blocks of a DEVS model. Their structure is described
by:

AM = 〈X ,Y,S,qinit ,δint ,δext ,λ , ta〉
X set of input events

Y set of output events

S set of sequential states

qinit ∈ Q initial total state

Q = {(s,e)|s ∈ S,0≤ e≤ ta(s)} set of total states

δint : S→ S internal transition function

δext : Q×X → S external transition function

λ : S→ Y ∪{φ} output function

ta : S→ R+
0,+∞

time advance

Simulating an atomic DEVS model results in a (discrete-event) trace of output events. This allows a
modeller to check the behaviour of the system by, for example, computing some performance metric.

Coupled DEVS models as the structuring concept of DEVS. Their structure is described by:

CM = 〈Xself,Yself,D,MS, IS,ZS,select〉
Xself set of input events

Yself set of output events

D set of model instance labels

MS = {AMi|i ∈ D} set of submodels

IS = {Ii|i ∈ D∪{self}} topology

Ii = 2D∪{self}\{i} set of influencees’ labels

ZS = {Zi, j|i ∈ D∪{self}, j ∈ Ii} translation

Zself, j : Xself→ X j input-to-input translation

Zi, j : Yi→ X j output-to-input translation

Zi,self : Yi→ Yself output-to-output translation

select : 2D→ D select function

DEVS is closed under coupling, so models can be nested up to arbitrary depth.
The semantics of DEVS, a discrete-event formalism are well known (Zeigler, Praehofer, and Kim 2000)

and implemented in a number of tools such as PythonPDEVS (Van Tendeloo and Vangheluwe 2015). In
the tutorial, we will use DEVS as the semantic domain for our railway language to evaluate its behaviour
by looking at it as a queuing network and extracting throughput information from the different scenarios.

2.2.2 Translational Semantics

With translational semantics, the source model is translated to a target model, expressed in a different
formalism, which has its own semantic definition. The (partial) semantics of the source model then
correspond to the semantics of the target model. As the rule uses both concepts of the problem domain
and the target domain (DEVS in our case), the modeller should be familiar with both domains.

1487



Van Mierlo, Vangheluwe, and Denil

2.2.3 Operational Semantics

A formalism is operationalized by defining a simulator for that formalism. This simulator can be modelled
as a model transformation that executes the model by continuously updating its state (effectively defining
a “stepping” function). The next state of the model is computed from the current state, the information
captured in the model (such as state transitions and conditions), and the current state of the environment.
Contrary to translational semantics, the source model of operational semantics is often augmented with
runtime information. This requires the creation of both a “design formalism” and a “runtime formalism”.
In our case study, for example, the runtime formalism is equivalent to the design formalism augmented with
information on the current state and the simulated time, as well as a list of inputs from the environment.

2.2.4 Terminology

The difference between a language and a formalism is not always clear. To scope our work, we define the
vocabulary that we use:

• A language is the set of abstract syntax models. No meaning is given to these models.
• A concrete language comprises both the abstract syntax and a concrete syntax mapping function.

Obviously, a single language may have several concrete languages associated with it.
• A formalism consists of a language, a semantic domain and a semantic mapping function giving

meaning to model in the language.
• A concrete formalism comprises a formalism together with a concrete syntax mapping function.

Whenever we use the term domain-specific language in this tutorial, we assume it is a concrete
formalism; this ensures that the commonly known term DSL is used.

3 HOW IS A DOMAIN-SPECIFIC LANGUAGE CREATED?

Now that we explained how a DSL is built up of syntax and semantics, we show technology with which
it is possible to define these building blocks. By defining a DSL, a language engineer has the intention of
building a tool that allows users of the language to build models, check whether they are valid instances
of the model, simulate them, debug them, . . . To efficiently do this, metamodelling environments offer
a framework within which the syntax can be described in a metamodel, and the semantics using model
transformation.

This section explains how to create a new DSL, both its syntax and its semantics. We use the
metamodelling environment AToMPM (Syriani, Vangheluwe, Mannadiar, Hansen, Van Mierlo, and Ergin
2013) to demonstrate these language engineering techniques. The presented techniques are general enough
to apply them in other metamodelling environments with similar capabilities as AToMPM.

3.1 Generating a Syntax-Directed Modelling Environment

The idea behind a domain-specific language is generating a domain-specific editing environment. This
environment is a tool, used by domain experts, that helps them to define models that are valid according
to the rules defined in the language. One way of achieving this is offering a free-hand editor (such as a
text editor), equipped with parsers, syntax checkers, and compilers configured for the language. These
work in a similar way to integrated development environments, such as Eclipse. They offer freedom with
respect to the editing of the syntax, but, as a downside, one can only confirm the model is correct with
respect to the language definition after a manual “check” is performed. Another way of achieving this is
through a so-called syntax-directed modelling environment. These environments are specifically configured
to the modelling language and have a model of its syntax that is continuously checked. This allows for the
environment to only allow operations on the model that lead to a syntactically valid model. This constrains
the user more, but since the language is tailored to a specific domain, the domain’s constraints can be

1488



Van Mierlo, Vangheluwe, and Denil

Figure 3: Example model in the domain-specific editing environment for the railway language.

encoded in this way and improve the efficiency of users. Often, such environments are graphical; they
offer the user a set of domain-specific icons and links in a toolbar that can be placed on a canvas. For
domain experts, this often coincides with their intuition, especially for technical drawings in the electrical,
mechanical, . . . domains.

We focus in this tutorial on generating syntax-directed graphical modelling environments. An example,
for the railway language, is shown in Figure 3. It consists of a toolbar, listing the valid language element
that the user of the language can instantiate. For the railway language, this includes the notions of straights,
junctions, turnouts, stations, lights, and trains. On the canvas, the modeller can instantiate the graphical
representation of these elements. In the example, a railway network is built consisting of a number of
segments that connect stations.

To obtain such a modelling environment, we need to specify the syntax of the language, shown in
Figure 4. The metamodel (shown in 4(a)) defines the language constructs of the railway language. It also
lists the allowed associations between abstract syntax elements (e.g., a train cannot be connected to a light,
but a segment can be connected to a train). While we don’t yet give semantics to our language, we already
limit the set of valid models (i.e., for which semantics need to be defined). By preventing ambiguous
situations in the abstract syntax, we do not need to take them into account in the semantic definition, as
they represent invalid configurations.

A possible concrete syntax for the railway language, shown in Figure 4(b), assigns an icon to each
langauge element. Each of the constructs shown in the concrete syntax model corresponds to the abstract
syntax element with the same name. Every construct receives a visual representation that tries to be as
close as possible to the mental model of the domain experts using the language. In case of standardized
icons or symbols, it would be trivial to define a new concrete syntax model.

Tge metamodel together with the concrete syntax definition is used by AToMPM to generate a domain-
specific syntax-directed modelling environment, which means that only valid instances can be created. For
example, if the abstract syntax model specifies that a segment can only be connected to one light, trying
to connect that segment to a second light will result in an error. This maximally constrains the modeller
and ensures the models are (syntactically) correct by construction. Once we have defined the concrete and
abstract syntax of the language, we can generate a graphical modelling environment, shown in Figure 3.

1489



Van Mierlo, Vangheluwe, and Denil

(a) The metamodel of the railway language.

(b) The icon definition of the railway language.

Figure 4: The syntax definition of the railway language: (a) abstract syntax and (b) concrete syntax.

1490



Van Mierlo, Vangheluwe, and Denil

Figure 5: Example rule of the operational semantics.

3.2 Modelling the Operational Semantics

The operational semantics of a language define a simulator for that language, which defines a number of
simulation steps that a model has to go through. It allows to obtain a simulation trace from any valid
model in the language. The operational semantics are commonly expressed using model transformations,
which are often called the heart and soul of Model-Driven Engineering (Sendall and Kozaczynski 2003).
A model transformation is defined using a set of transformation rules, and a schedule.

A rule consists of a Left-Hand Side (LHS) pattern (transformation pre-condition), Right-Hand Side
(RHS) pattern (transformation post-condition), and possible Negative Application Condition (NAC) patterns
(patterns which, if found, stop rule application). The rule is applicable on a graph (the host graph), if each
element in the LHS can be matched in the model, without being able to match any of the NAC patterns.
When applying a rule, the elements matched by the LHS are replaced by elements of the RHS in the host
graph. Elements of the LHS that don’t appear in the RHS are removed, and elements of the RHS that don’t
appear in the LHS are created. Elements can be labelled in order to correctly link elements from the LHS
and RHS.

A schedule determines the order in which transformation rules are applied. For our purpose, we use
MoTiF (Syriani and Vangheluwe 2013), which defines a set of basic building blocks for transformation
rule scheduling. We limit ourself to three types of rules: the ARule (apply a rule once), the FRule (apply
a rule for all matches simultaneously), and the CRule (for nesting transformation schedules).

An example rule of the operational semantics of the railway formalism is shown in Figure 5. The
left-hand side of the rule tries to find two connected tracks, where a train is currently on one of the tracks.
In the right-hand side of the rule, the train is moved to the next track. This rule would appear in a schedule,
that implements the complete semantics of the language. The schedule operationalizes a railway network
by switching lights to red when a train enters a track, and to green again when the train leaves the track. It
then moves trains along the network according to which station they want to go to, and how they want to
get there (their schedule). It makes sure to check that no trains will collide by entering a track at the same

1491



Van Mierlo, Vangheluwe, and Denil

Q_send
Q_rack

train_out

Generator

Q_send
Q_rack

train_out

RailwaySegment

Q_recv
Q_sack

train_in

Q_send
Q_rack

train_out

RailwaySegment

Q_recv
Q_sack

train_in train_in

Collector

Q_recv
Q_sack

Figure 6: Result of mapping a railway model to DEVS.

Figure 7: Analyzing the results of simulation.

time (in particular also when two trains want to enter a junction). These operational semantics “bring the
system to life” and allows for users to quickly assess the behaviour of the system by visually inspecting
the trace. The simulator can, moreover, compute metrics while the simulation is running, for analysis.

3.3 DEVS as a Semantic Domain for Simulation

DEVS (Zeigler, Praehofer, and Kim 2000) can be used to build queuing systems, and analyze their behaviour.
For the railway system language, a particular analysis might look at the railway network as a queuing
system, by looking at the tracks as connected nodes with a specific capacity; trains travel between these
nodes from a start to end destination. In between, they might have to wait for red lights, causing a delay in
their arrival. To analyze such properties, we could make use of the operational semantics of the language,
encoding the appropriate behaviour. But sometimes, it might be easier to map to a language that already
has capabilities (both syntactically and semantically) for analyzing such properties. That allows us to reuse
existing infrastructure, avoiding the overhead of having to reimplement it.

As with operational semantics, we make use of model transformations for realizing this mapping. The
basic idea of the mapping is to take each building block of the model (in our case, segments, trains, and
lights) and map them onto building blocks of a model in the target language. The result of mapping a
particular railway segment, modelled in our domain-specific language, to DEVS, is shown in Figure 6.
The queuing system consists of a generator, that generates trains according to some distribution. The trains
then flow through the network of segments (represented by atomic DEVS models) until they reach the
collector (or end station). Along the way, a train will travel through a track by trying to accelerate (at some
predefined maximum acceleration) to its preferred speed. When the train is close to the next segment, a
query will be sent to the next segment, for checking whether or not the segment can be entered (i.e., its
light is green). If the light is red, the train will start to slow down, potentially stopping altogether. Once
the light becomes green, a message will be sent, signifying that the train can continue.

1492



Van Mierlo, Vangheluwe, and Denil

While the simulation is running, multiple metrics are collected, such as the average speed of trains,
the average time it takes them to traverse the complete railway network, the average time spent in one
segment, etc. Such metrics can be used to calculate a cost metric. In our example, cost is calculated by
looking at the average time it takes trains to pass through the complete railway network, as well as the
track length. These two properties are in conflict: as tracks become longer, the cost goes down, but the
travel time will go up as trains will frequently be waiting for a red light. Looking at the simulation results,
shown in Figure 7, there is a mimimum at a segment length of around 200 meter: the simulations were
run for a complete tack length of 10 kilometers, and the local minimum is at around 50 track segments.

By mapping the model onto a language with known semantics, we can perform analysis of certain
behavioural properties by reusing the semantics and the tooling (in particular, simulators) of that formalism.

4 CONCLUSION

In this tutorial, we presented the use of domain-specific modelling languages for simulation. We motivated
the use of such languages in specific domains to improve understanding and to improve the efficiency of
domain experts in defining their models, instead of having to use general-purpose languages.

We presented the different aspects of a domain-specific modelling language:

1. abstract syntax to define the allowable constructs;
2. concrete syntax to define the visual representation of abstract syntax constructs;
3. semantic domain to define the domain in which the semantics is expressed;
4. semantic mapping to define the mapping to a model in the semantic domain that defines the (partial)

semantics of the domain-specific model.

Each of these aspects was explained and applied to our case study: modelling and analysing the
behaviour of a railway network. The behaviour of the railway network is defined using both operational
semantics (“simulation”) and translational semantics (“mapping”, for analysis). A generative approach is
used, in order to limit the development overhead.

REFERENCES
Barišić, A., V. Amaral, M. Goulão, and B. Barroca. 2011. “Quality in Use of Domain-specific Languages: A Case Study”.

In Proceedings of the 3rd ACM SIGPLAN Workshop on Evaluation and Usability of Programming Languages and Tools,
PLATEAU ’11, 65–72. New York, NY: Association for Computing Machinery.

Cellier, F. E. 1991. Continuous System Modeling. New York, NY: Springer-Verlag.
Costagliola, G., V. Deufemia, and G. Polese. 2004. “A Framework for Modeling and Implementing Visual Notations with

Applications to Software Engineering”. ACM Transactions on Software Engineering Methodology 13(4):431–487.
Giese, H., T. Levendovszky, and H. Vangheluwe. 2007. “Summary of the Workshop on Multi-Paradigm Modeling: Concepts and

Tools”. In Models in Software Engineering, edited by T. Kühne, 252–262. Berlin, Heidelberg: Springer Berlin Heidelberg.
Harel, D. 1987. “Statecharts: A Visual Formalism for Complex Systems”. Science of Computer Programming 8(3):231–274.
Harel, D., and B. Rumpe. 2004. “Meaningful Modeling: What’s the Semantics of “Semantics”?”. Computer 37(10):64–72.
Kelly, S., and J.-P. Tolvanen. 2008. Domain-Specific Modeling: Enabling Full Code Generation. New York, NY: John Wiley

& Sons Inc.
Kleppe, A. 2007, October. “A language description is more than a metamodel”. In Fourth International Workshop on Software

Language Engineering. Nashville, TA.
Kühne, T. 2006. “Matters of (Meta-)Modeling”. Software and System Modeling 5(4):369–385.
Moody, D. 2009. “The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual Notations in Software

Engineering”. IEEE Transactions on Software Engineering 35(6):756–779.
Mosterman, P. J., and H. Vangheluwe. 2004. “Computer Automated Multi-Paradigm Modeling: An Introduction”. SIMULA-

TION 80(9):433–450.
Murata, T. 1989. “Petri Nets: Properties, Analysis and Applications”. Proceedings of the IEEE 77(4):541–580.
Petre, M. 1995. “Why Looking Isn’t Always Seeing: Readership Skills and Graphical Programming”. Communications of the

ACM 38(6):33–44.

1493



Van Mierlo, Vangheluwe, and Denil

Sendall, S., and W. Kozaczynski. 2003. “Model Transformation: The Heart and Soul of Model-Driven Software Development”.
IEEE Software 20(5):42–45.

Syriani, E., and H. Vangheluwe. 2013. “A Modular Timed Graph Transformation Language for Simulation-Based Design”.
Software and System Modeling 12(2):387–414.

Syriani, E., H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, and H. Ergin. 2013. “AToMPM: A Web-based Modeling
Environment”. In Joint Proceedings of MODELS’13 Invited Talks, Demonstration Session, Poster Session, and ACM Student
Research Competition co-located with the 16th International Conference on Model Driven Engineering Languages and
Systems (MODELS 2013), edited by Y. Liu and S. Zschaler, Volume 1115, 21–25. Aachen, Germany: CEUR-WS.

Van Tendeloo, Y., and H. Vangheluwe. 2015. “PythonPDEVS: a Distributed Parallel DEVS Simulator”. In Proceedings of
the 2015 Spring Simulation Multiconference, SpringSim ’15, 844–851. San Diego, CA: Society for Computer Simulation
International.

Vangheluwe, H. 2008. “Foundations of Modelling and Simulation of Complex Systems”. ECEASST 10: Graph Transformation
and Visual Modeling Techniques 2008.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of Modeling and Simulation. 2nd ed. San Diego, CA: Academic
Press.

Zhang, Y., and B. Xu. 2004. “A Survey of Semantic Description Frameworks for Programming Languages”. SIGPLAN
Notices 39(3):14–30.

AUTHOR BIOGRAPHIES
SIMON VAN MIERLO is a post-doctoral researcher at the University of Antwerp (Belgium). He is a member of the modeling,
Simulation and Design (MSDL) research lab. For his PhD thesis, he developed debugging techniques for modeling and simulation
formalisms by explicitly modeling their executor’s control flow using Statecharts. He is the main developer and maintainer of
SCCD, a hybrid formalism that combines Statecharts with class diagrams. His e-mail address is simon.vanmierlo@uantwerpen.be.

HANS VANGHELUWE is a Full Professor at the University of Antwerp (Belgium). He heads the modeling, Simulation
and Design (MSDL) research lab. In a variety of projects, often with industrial partners, he develops and applies the
model-based theory and techniques of Multi-Paradigm modeling (MPM). His current interests are in domain-specific mod-
eling and simulation, including the development of graphical user interfaces for multiple platforms. His e-mail address is
hans.vangheluwe@uantwerpen.be.

JOACHIM DENIL is an Assistant Professor at the University of Antwerp. He is also the AnSyMo-CoSyS-lab core-lab
manager within Flanders Make. His research combines aspects from computer science, electronics and simulation to support
engineers in the model-based design of cyber-physical systems. His e-mail address is joachim.denil@uantwerpen.be.

1494

mailto://simon.vanmierlo@uantwerpen.be
mailto://hans.vangheluwe@uantwerpen.be
mailto://joachim.denil@uantwerpen.be

	INTRODUCTION
	Why Domain-Specific Language for Simulation?
	Multi-Paradigm Modelling
	Example: Railway Simulation

	WHAT IS A DOMAIN-SPECIFIC MODELLING LANGUAGE?
	Syntax
	  Abstract Syntax
	  Concrete Syntax

	Semantics
	  Semantic Domain
	  Translational Semantics
	  Operational Semantics
	  Terminology


	HOW IS A DOMAIN-SPECIFIC LANGUAGE CREATED?
	Generating a Syntax-Directed Modelling Environment
	Modelling the Operational Semantics
	DEVS as a Semantic Domain for Simulation

	CONCLUSION

