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ABSTRACT

The effects of Diminishing Manufacturing Sources and Material Shortages (DMSMS) can be excessively
costly if not addressed in a timely manner. A strategic DMSMS management method that seeks to minimize
the overall life-cycle cost of a system, e.g. an aircraft or ship, is presented. The goal is to select an optimal
scheduling of technology refreshes over a fixed lifetime, using lifetime buys as the mitigation option. A
DMSMS specific cost model is constructed that accounts for costs of multiple, diverse parts in a system
and multiple technology refreshes. This study shows the efficacy of using a ranking and selection method
to identify the optimal technology refresh strategy for a complex and stochastic cost function dependent
upon varying refresh costs. A visual model is presented which provides the ability to quickly compare
other feasible strategies.

1 INTRODUCTION

For sustainment dominated systems, where the system lifetime is much larger than the constituent sub-parts
of the system, accounting for diminishing manufacturing sources and material shortages (DMSMS) issues
in life-cycle planning is critical. If these systems are managed poorly, sustainment costs can dominate
operational costs and diminish the operational readiness of the system. Retiring large systems and replacing
them with newer systems is often extremely costly and should be avoided unless absolutely necessary.
In order to keep military platforms operationally effective and relevant it is often necessary to evaluate
strategies consisting of lower cost alternatives to complete system redesigns. The evaluation, identification,
and implementation of the most cost-effective strategy is the goal of DMSMS management.

DMSMS management can be thought of as consisting of three facets: reactive, proactive, and strategic
(Bartels et al. 2012). Reactive DMSMS management occurs after a part has become obsolete or is known
to become obsolete in the near future. At the disposal of the DMSMS manager are a multitude of reactive
options to mitigate DMSMS issues such as using existing stock, using approved parts, part substitutions,
extending production, developing new sources, lifetime buys (LTBs), and technology refreshes (Defense
Standardization Program Office. 2016; Bartels et al. 2012). LTBs are a commonly used mitigation technique
where a DMSMS manager purchases a large enough quantity of the parts to sustain the product until the next
scheduled technology refresh or the planned end of life. LTBs are also referred to as “life-of-need”, “bridge”,
“last-time”, and “life-of-type” buys. Proactive DMSMS management forecasts the risk for components and
uses reactive options to mitigate obsolescence issues (Sandborn 2008).

Strategic DMSMS management is defined as a “mix of reactive mitigation approaches and [planned
technology] refreshes that minimizes life-cycle costs” (Sandborn 2008). A technology refresh is a predictable
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process for replacing old technology with new assets to avoid technology obsolescence, to save money by
improving system efficiency, and to reduce failures and downtime. Other terms for technology refreshes
are “design refresh”, “redesign”, and “technology insertion”. This paper considers strategic DMSMS
management plans that use a sequence of planned technology refreshes with LTBs as the intermediate
mitigation option between technology refreshes.

An optimal DMSMS management plan minimizes the overall cost of a platform over the operational
lifetime. For each time period (i.e. year), a decision maker must decide whether or not to schedule a
technology refresh each year over the system’s planned lifetime T . The sequence of decisions made at
each time period is considered a strategy represented by the vector y ∈ Y of length T −1. Each element
yt in the vector y is either a 0 or a 1. In DMSMS terms, if yt = 1 this indicates a planned refresh at year
t. The set Y is the set of all 2T−1 possible strategies since it is assumed that a technology refresh will not
be scheduled at year T .

Two example strategies with a combination of LTBs and technology refreshes are shown in Figure 1. The
red, dashed lines represent the years with a planned technology refresh. Arrows represent the procurement
lifetime of a part, or the time that a part is available for procurement in the marketplace. If a part becomes
obsolete prior to a planned refresh, these shortfalls must be covered by a LTB purchase, indicated by the
boxes. Costs are incurred at a planned technology refresh (vertical dashed red lines) and LTBs (boxes).
The purchase quantity of the LTB must be large enough to ensure there are sufficient quantities available
to meet demand until the next planned technology refresh or planned system obsolescence. The figure on
the left depicts a strategy (〈001000100〉) with two technology refreshes. Costs for this strategy are incurred
at the planned refresh years (years three and seven) and to cover the demands represented by the LTB
boxes. The figure on the right depicts a strategy (〈000001000〉) with one technology refresh. This strategy
only incurs one technology refresh cost at year six for the technology refresh, but will incur greater LTB
costs since there is a greater amount of time to cover the LTB periods. Since there is often uncertainty in
the costs for LTBs and technology refreshes, finding the optimal strategy can be difficult. This paper will
introduce uncertainty in the procurement lifetimes but will assume fixed technology refresh and LTB cost
rates.
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Figure 1: An example two-part (P1 and P2) system with two proposed redesign strategies. The figure on
the left depicts a strategy with two technology refreshes; the figure on the right depicts a strategy with one
technology refresh. Technology refreshes are depicted by red dashed lines; LTB by boxes; and procurement
lifetimes by arrows.
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The primary contribution of this paper is identifying the optimal strategy amongst a set of k alternatives,
using a ranking and selection (R&S) method. The mean cost associated with each strategy will be estimated
with Monte Carlo simulation. Assuming a system has a planned operational lifetime of T years, the
above-mentioned strategic DMSMS framework can be translated into a finite horizon program, given by:

min
y∈Y

E[C(y)], (1)

s.t. yt ∈ {0,1},
t ∈ {1,2, . . . ,T −1}

where E[C(y)] is the expected cost associated with strategy y, which is a vector of length T −1. The
optimal strategy is defined as

y∗ def
= argmin

y∈Y
E[C(y)].

The result of solving (1) is an optimal strategy, informing the decision maker of an optimal scheduling
of technology refreshes using LTBs as a mechanism to fill any shortages. A secondary contribution of this
paper is providing a method to visualize strategies and their associated costs for easy comparison and is
described in Section 4.3.

2 RELATED LITERATURE

This section will provide an overview of previous studies related to strategic DMSMS management. These
will discuss how other studies have attempted to address strategic DMSMS management and discuss a
simple cost function using LTBs and technology refreshes. Additionally, an overview of ranking and
selection methods is discussed.

2.1 Strategic DMSMS Background

Other studies have evaluated the use of LTBs and technology refreshes as part of strategic DMSMS
management. One study compares three strategies, programmed technology refreshes, LTBs, and re-
engineering (which is defined as reactive measures other than LTBs) using a Monte-Carlo simulation
(Underwood et al. 2014). They recommend programmed technology refreshes as the most cost effective,
but condition their findings on the reliability characteristics used in their model. Whereas these authors
evaluate three different mitigation options (separately), this paper will evaluate a combination of the two
options that they evaluated (LTB and technology refreshes).

Another study uses graph theory and mixed integer programming with a combination of LTB and
technology refreshes (Meng et al. 2014). They seek an optimal strategy over a fixed lifetime for a
system with multiple parts. They seek to find an optimal schedule for a single technology refresh using a
deterministic model. This paper will follow a similar methodology, but will take a stochastic approach in
calculating the life-cycle costs as well as allowing multiple technology refreshes.

One must consider using a DMSMS specific cost function when solving (1). Feng et al. (2007) and
Teunter and Fortuin (1999) present net-present value (NPV) models that evaluate the effect of the LTB
quantities on the ability to support a system. The models search for an optimal LTB size for multiple parts
in a system to minimize the overall life-cycle cost, accounting for LTBs, technology refreshes, holding,
stock-out, and salvage costs. However, the models evaluate the effects of the overall life-cycle cost for
a single, fixed technology refresh date. This current paper seeks to evaluate life-cycle costs for multiple
combinations of refresh dates, taking into account various operational time-frames. A simpler cost model
is presented by Bartels et al. (2012), that is based on previous work by Porter (1998). The model is a net
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present value model that considers the refresh cost and LTB costs for a single technology refresh date. The
formulation is given by:

C =CT R +CLT B (2)

where the total cost, C, is given by the costs associated with a technology refresh, CT R, and the costs
associated with LTBs, CLT B. The cost for a technology refresh is given by:

CT R = exp(−rYR)cR, (3)

where cR is the technology refresh cost in year 0; r is the discount rate; and YR is the year of the
technology refresh (> 0).

The cost associated with a LTB is given by:

CLT B =

{
0, when t = 0 or if YR = 0,
c∑

YR
t=1 dt , for YR > 0,

(4)

where t is the year after obsolescence; c is the price of the obsolete part in the year of the LTB (t = 0);
dt is the demand at time t.

The model in (2) also assumes that the part under consideration is obsolete at the beginning of the
simulation (t = 0), whereas this paper will allow parts to be procureable. In the DMSMS literature,
there have been multiple studies that seek to minimize overall life-cycle costs for a platform or system.
The majority of these studies evaluate single component DMSMS risk; few evaluate DMSMS risk at the
aggregate or system level (Rojo et al. 2010). This paper expands the cost model provided by Bartels et al.
(2012) to account for systems composed of multiple parts and multiple technology refreshes over a fixed
timeline.

2.2 Ranking and Selection Methods

Ranking and Selection (R&S) methods seek to find an optimal arrangement with respect to a value of
interest (i.e. cost). In terms of DMSMS, this is often identifying the strategy with minimal cost over a set
of alternative strategies. Popular R&S methods involve using an indifference zone (IZ) which identifies
the optimal strategy within a “smallest difference worth detecting” at a given confidence level (Goldsman
2015). In terms of DMSMS the IZ is the dollar amount that the decision maker is indifferent to regarding
the total cost; i.e. they consider the differences to be negligible. The IZ value will change depending upon
the context of the problem, the tolerance of the procurement life distributions, and budget constraints.

Two main R&S methods are used in the case of unknown and unequal variances of the value of interest:
two-stage and fully sequential methods. An example of the first method is presented by Nelson, Swann,
Goldsman, and Song (NSGS) and an example of the second is Kim and Nelson (KN) (Goldsman 2015).
Both methods begin by replicating all strategies an equal number of times then create a subset of the most
promising strategies. The NSGS method determines the number of additional samples required for each
strategy in the sub-set of the most promising strategies and then identifies an optimal strategy. Instead of
performing a batch update as with the NSGS method, the KN method iteratively samples each strategy in
this sub-set once and removes less promising strategies until the sub-set only includes one member. For the
NSGS method, the independence assumption is satisfied by ensuring independent simulation replications
and the normality assumption is reasonably satisfied when using the sample mean to estimate the value
of interest such as in (1) thanks to the central limit theorem. Current work in this field revolves mostly
around computational efficiency as the number of alternatives is “large”; generally speaking, “large” is on
the order of one-million alternatives (Ni et al. 2014, Ni 2013). For this paper, the NSGS method is used
as it is straightforward to implement and supports the DMSMS example in Section 4.
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3 SIMULATION MODEL DEVELOPMENT

This section updates the cost functions in (3) and (4) and provides a DMSMS specific application of the
NSGS method.

3.1 Updated Cost Function

The model in (2) assumes that the part goes obsolete at the beginning of the time period (t = 0) and seeks
to find an optimal time to conduct a single refresh after that time. This paper considers the case where
multiple parts of a system are non-obsolete at the beginning of the simulation (but can be allowed to be
obsolete, if necessary). The technology refresh and LTB cost functions for a system with N parts, over a
finite horizon [0,T ], are given by:

CT R =
T−1

∑
t=1

yt exp(−rt) cR, (5)

CLT B =
T−1

∑
t=1

N

∑
i=1

yt exp(−rZti(y))cidiSti(y)+
N

∑
i=1

exp(−rZTi(y))cidiSTi(y), (6)

respectively, where:

• cR is the cost of a single refresh;
• ci is the per-item cost of part i;
• di is the demand, per unit time, of part i;
• r is the discount factor rate, r ≥ 0;
• Sti(y) is a random variable for the shortage time for part i for a planned refresh at time t. The shortage

time is defined as the time gap between when a part is no longer procurable (obsolete) and the next
planned refresh time. Given a procurement lifetime for part i, Xi, and the time of the previous planned
technology refresh, tprev ∈ [0, t), the shortage time is defined as Sti(y) = max{0, t−Xi− tprev};

• and Zti(y) is a random variable for the time at which part i becomes obsolete in the time period
before t, but after the previous planned refresh. This time can be calculated with: Zti(y) = t−Sti(y).

(Note that the last term in (6) represents the LTB cost that will allow the system to operate up until time
T . Since it is assumed that there will not be a technology refresh at time T , the sum in (5) only includes
t = 1, . . . ,T −1. Also note t ∈ N, but Xi,Sti(y),Zti(y) ∈ R≥0.)

The costs from planned technology refreshes in (5) will incur a discounted cost when yt = 1, at time
t. Likewise, LTB costs will be incurred when yt = 1 and when part i is obsolete, as indicated by Zti(y).
Obsolete parts will be purchased at a discounted cost at the time when part i actually becomes obsolete,
Zti(y). The amount purchased is given by the demand rate, di, multiplied by the shortage time, Sti(y). The
values for the item cost, item demand, and refresh costs are assumed to be fixed in this model. They can
be allowed to be dependent upon current time, t. Updating the model in (2) using the technology refresh
costs in (5) and LTB costs in (6), the cost function, C(y), is given by:

C(y) =
T−1

∑
t=1

yt exp(−rt) cR +
T−1

∑
t=1

N

∑
i=1

yt exp(−rZti(y))cidiSti(y)+
N

∑
i=1

exp(−rZti(y))cidiSti(y). (7)

Figure 2 shows an example system with three parts and two planned technology refresh dates, t = a,b
where 0 < a < b < T . Prior to time a, part 1 and part 2 (P1, P2) experience obsolescence for that particular
part. This difference between the planned technology refresh time and the time of obsolescence is given
by Sa,1 and Sa,2 for parts P1 and P2, respectively. Similarly, the shortages before time b are represented by
Sbi and shortages before time T are given by Sti(y). The LTB costs will only be incurred when Sti(y)> 0
and technology refresh costs at time a and b.
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Figure 2: Example of a system consisting of three parts (P1, P2, P3) with two technology refresh dates,
a and b, where 0 < a < b < T . LTB costs are incurred when values for Sti(y) are positive and technology
refresh costs at the red dashed lines.

3.2 DMSMS Applications of the NSGS Method

Simulating the estimated values to approximately solve (1) will involve some randomness in each set of
samples. The NSGS method ensures the probability of correctly selecting the optimal strategy, within an
indifference zone, is greater than or equal to an overall confidence level (1−α) under the aforementioned
assumptions. The overall significance level is defined as α = α0 +α1, where α0 and α1 are the first stage
and second stage significance levels, respectively. The first stage identifies a set of promising strategies,
subject to the indifference zone, with a probability of at least (1−α0) of containing the optimal strategy.
The second stage consists of sampling the promising set of strategies for an appropriate amount of additional
samples to ensure correctly identifying an optimal strategy at a confidence level of at least (1−α1). A
DMSMS application of the NSGS algorithm is as follows:

1. Select the first and second stage confidence levels, 1−α0,1−α1, such that the overall significance
level is α = α0 +α1. Also, choose a practically significant difference (IZ) parameter, δ , for k
strategies. Set t = t(1−α0)1/(k−1),n0−1 which is the (1−α0)

1/(k−1)100 percentile of the t-distribution
with n0− 1 degrees of freedom. Also set h equal to Rinott’s constant, which will be discussed
below.

2. Evaluate the cost C(y)i j, n0 times for each strategy (i = 1,2, . . . ,k; j = 1,2, . . . ,n0).

3. Compute the first stage sample mean C(y)
(1)
i and sample variance S2

i of the costs for each of the k
strategies. Calculate a weighted t statistic for each paired combination of strategies:

Wii′ = t
(

S2
i +S2

i′

n0

)1/2

, for i 6= i′.

4. Identify the set of strategies that are not significantly greater than the others. The set is identified

by I = {i : 1≤ i≤ k and C(y)
(1)
i ≤C(y)

(1)
i′ +(Wii′−δ )+,∀i′ 6= i}.

5. If the set I only has one strategy, stop and record that strategy as the best. If not, calculate the total
number of replications required for the second stage for each i ∈ I:
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Ni = max

{
n0,

⌈(
hSi

δ

)2
⌉}

, (8)

where d e is the ceiling function.
6. Take Ni−n0 additional replications for each strategy i ∈ I and calculate the second stage sample

means:

C(y)
(2)
i =

1
Ni

Ni

∑
j=1

C(y)i j, i ∈ I.

7. Select the best system with the smallest C(y)
(2)
i .

Rinott’s constant in Step 1 can be found in tables shown in Goldsman (2015). For those values outside
of these tables, it is necessary to numerically calculate the value of h that gives the solution to:

∫
∞

0

∫
∞

0

[
Φ

(
h√

ν(1/p+1/q)

)
fν(p)

]k−1

fν(q)dqdp = 1−α1, (9)

where Φ is the cumulative distribution function of the standard normal distribution, fν(y) is the
probability density function of the chi-squared distribution with ν = k−1 degrees of freedom. Bechhofer
et al. (1995) present FORTRAN code to find a numerical solution to (9), which was later converted into
Java by Ni (2013). The latter version was converted into Python for computational use in this paper.

4 SIMULATION STUDY

This section presents a simulation study to highlight the use of the NSGS method in DMSMS application.
The scenario is that of a DMSMS manager wishing to explore possible strategies for a current system being
replaced by a newer system ten years (T = 10) from now, assuming they only consider the LTB option
to mitigate any obsolescence issues. A simple, five-part system is presented with expected procurement
lifetimes, demands, and costs of the individual parts. In order to explore all alternatives, this simulation
study will enumerate all k = 2T−1 = 512 strategies, representing all exhaustive strategies in a time frame
of 10 years. The results of the simulation are shown in tabular and graphic formats that can provide a
decision maker insights to alternate strategies.

4.1 Scenario Parameters

The procurement lifetime, Xi, for part i ∈ {1, ...,k} is assumed to be exponentially distributed with a mean
procurement lifetime of µXi . The values for the parameters of the mean procurement lifetime (in months),
annual demand, and the per-item cost are shown in Table 1.

The discount factor is set to 10%, r = 0.10 and the refresh costs CR are varied between $10,000,
$100,000, and $500,000 to evaluate the effects on an optimal strategy. Uncertainty in the LTB costs is
captured by the exponentially distributed procurement lifetimes for all five parts and assumes that the annual
demands and per-item costs remain fixed. Future models can allow uncertainty in the annual demand and
per-item costs if desired. For the NSGS method, the overall significance level is set at α = 0.1, with
α0 = α1 = 0.05; the sample size in the first stage is set to 30 replications, n0 = 30; and the IZ value is set to
δ =$50,000, $100,000, and $300,000 for each refresh cost. In this example, the first IZ value represents the
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Table 1: Parameters for simple, five-part system.

mean proc. lifetime (µXi) annual demand (di) per-item cost (ci)
part 1 24 2000 $3
part 2 36 1000 $6
part 3 36 500 $12
part 4 48 200 $50
part 5 60 100 $75

manager being indifferent to costs equal to five technology refreshes; the second IZ value being indifferent
to one technology refresh; and the final IZ value to three-fifths of a technology refresh. In reality, these
values should be discussed iteratively with the DMSMS manager and should be proportionate with the
manager’s preference structure.

4.2 Simulation Results

The results for refresh costs of $10,000, $100,000, and $500,000 with their respective IZ values are shown
in Tables 2-4, respectively. The mean costs, strategies, total number of technology refreshes (∑t yt), and
the second stage number of replications, Ni, are shown. Additional five strategies with the next lowest
sample mean cost values are shown in each table for comparison.

With a lower technology refresh cost of $10,000 and a decision maker is indifferent to five technology
refreshes, Table 2 indicates that it is more preferable to avoid LTBs and to conduct a refresh every year.
The set of competitive strategies identified in the first stage included 45 alternatives (|I| = 45), but after
second stage sampling only seven other strategies’ mean costs were within the IZ of the optimal value.
Of these, six had eight technology refreshes and one had seven refreshes. The overall total number of
replications is 33,435 for both stages.

Table 2: Simulation results for technology refresh cost of $10,000 with an IZ value of $50,000.

mean cost strategy ∑t yt Ni

$723,464 〈111111111〉 9 140
$745028 〈111111110〉 8 226
$757010 〈111110111〉 8 308
$759787 〈111101111〉 8 222
$760304 〈111111011〉 8 260
$763959 〈111111101〉 8 256

When the decision maker is indifferent to one technology refresh with a moderate cost of $100,000,
Table 3 indicates that the optimal strategy is to conduct a technology refresh twice, at years four and
seven. The set of second stage strategies included 53 alternatives (|I|= 53) with 20 strategies within the
IZ of the optimal value after second stage sampling. Of these, one strategy recommended one refresh, ten
recommended 2 refreshes, and nine recommended three refreshes. The total number of replications was
34,372.

When the decision maker is indifferent to 3/5 of a technology refresh with a higher cost of $500,000,
Table 4 indicates that it is preferable to not conduct any technology refreshes and to only rely on LTB
options to remedy any obsolescence issues. For this particular set of parameters, the optimal strategy
did not recommend any additional second stage samples (|I| = 1). This will arise in the case where an
optimal strategy’s cost is much smaller, in the statistically significant sense, than the other alternatives. For
comparison, the next five closest alternatives all had only one recommended technology refresh, but were
outside of the indifference zone.
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Table 3: Simulation results for technology refresh cost of $100,000 with an IZ value of $100,000.

mean cost strategy ∑t yt Ni

$2,012,328 〈000100100〉 2 612
$2,013,061 〈001001000〉 2 310
$2,029,043 〈000100010〉 2 383
$2,032,522 〈000101000〉 2 386
$2,045,531 〈001010000〉 2 190
$2,047,271 〈001000100〉 2 190

Table 4: Simulation results for technology refresh cost of $500,000 with an IZ value of $300,000.

mean cost strategy ∑t yt Ni

$3,562,830 〈000000000〉 0 30
$3,928,527 〈000001000〉 1 30
$3,998,173 〈000000100〉 1 30
$4,002,652 〈000010000〉 1 30
$4,138,701 〈000000010〉 1 30
$4,218,997 〈000100000〉 1 30

The total number of samples for each part Ni for i ∈ I is a function of the IZ parameter, the standard
deviation of the samples, and the number of initial samples as indicated by (8). As the desired confidence
level increases, or the indifference to cost decreases, the number of second stage samples will generally
increase. The combination of these parameters must be chosen with an understanding of the practical
implications to identify an optimal strategy.

4.3 Visualization of Strategies

Since the purpose of enumerating all strategies is to explore the set of (unconstrained) alternatives, the
DMSMS manager may want to consider other alternatives relative to a chosen IZ value. Tabulating the
strategies can provide some insights, but if the number of strategies is large it may be difficult to compare
the different sequences of technology refreshes. One option to display these strategies, presented by
Kiatsupaibul et al. (2016), is a one-to-one mapping of an infinite sequence y′ to x ∈ [0,1/2], using a base-3
expansion:

x(y′) =
∞

∑
t=1

y′t
3t , ∀y′ ∈ Y ′, (10)

with y′t ∈{0,1} andY ′=∏
∞
t=1{0,1} for t ∈{1,2, . . .}. This mapping allows for a graphical representation,

where an optimal first decision at t = 1 can be identified quickly, and is similar to a binary decision tree. If
an optimal solution, x∗, for minimizing the cost is in the interval [0,1/6], then the optimal first decision is
to not conduct a technology refresh; if x∗ is in the interval [1/3,1/2], then a technology refresh is optimal
in the first decision. This can be seen by mapping the strategies where all of the decisions are 0’s, the first
decision is a 0 followed by all 1’s, the first decision is a 1 followed by all 0’s, and where all decisions are
1’s, respectively:

x(00̄) = 0, x(01̄) = 1/6, x(10̄) = 1/3, x(11̄) = 1/2.

Conditioning on an optimal first decision, one can determine the optimal second decision; likewise,
one can determine the optimal third decision by conditioning on the optimal first two decisions, and so
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on. For example, if the first decision was to not perform a technology refresh, y1 = 0, focusing in on the
interval [0,1/6] allows the user to graphically determine the optimal second decision. Conditioning on the
optimal first decision of no technology refresh (y1 = 0):

x(000̄) = 0, x(001̄) = 1/18, x(010̄) = 2/18 = 1/9, x(011̄) = 3/18 = 1/6,

if x∗ falls between [0,1/18], then the optimal second decision is to not conduct a technology refresh;
if x∗ falls between [1/9,1/6], the second decision is to conduct a technology refresh. Although described
for an infinite series, using (10) for a finite series maintains the one-to-one mapping.

The results shown in Tables 2-4 only provide a handful of the overall strategies considered in the
simulation; using the mapping in (10) can allow many more strategies to be plotted visually, with the
capability to provide insights to alternate technology refresh schedules. Figures 3-5 show the results for
the three refresh costs, $10,000, $100,000, and $500,000. Figure 3 shows the optimal strategy (the larger
red dot) near the value of x = 1/2, indicating a series of technology refreshes every year, which is the same
result shown in Table 2 for a technology refresh cost of $10,0000 with an IZ value of $50,000. The seven
other strategies that are within the IZ as mentioned in Section 4.2 can be identified by the dots below the
dashed line and indicate that the first decision should be to conduct a refresh.
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Figure 3: Visualization of the mean total costs of alternative strategies with a refresh cost of $10,000 with
an IZ value of $50,000.

Increasing the refresh cost and IZ values to $100,000 changes the optimal first choice to not recommend
a technology refresh in the first time period. Figure 4 shows a larger number of strategies will have a lower
cost when not performing a technology refresh during the first period and the optimal time to conduct the
first technology refresh is in the fourth year. The 20 strategies within the IZ value are also shown in the
figure and indicate that the first decision should be to not conduct a technology refresh.

When the refresh cost is increased to $500,000 with an IZ value of $300,000, Figure 5 shows that
relying on LTB options is ideal. The optimal minimal cost and strategy are easily seen in this figure, where
the mapping x(0 · · ·0) = 0 is on the far left of the figure. The figure shows the alternatives that may be
included if the IZ were raised to a larger value.

5 DISCUSSION

This paper shows how a ranking and selection method can be used to identify the optimal strategy for
strategic DMSMS management relative to changing technology refresh costs and IZ values. The tabular and
visual results can assist the DMSMS manager in planning the sequence of technology refreshes, particularly
when exploring strategies to adopt. Actual technology refresh costs should be dictated by data while the
IZ parameter should be chosen by a decision maker and tied to actual budget values.
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Figure 4: Visualization of the mean total costs of alternative strategies with a refresh cost of $100,000 with
an IZ value of $100,000.
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Figure 5: Visualization of the mean total costs of alternative strategies with a refresh cost of $500,000 with
an IZ value of $300,000.

The results in Section 4 provide insights to the relationship between the LTB costs and the technology
refresh costs. In general, as the technology refresh costs increase, the optimal strategy will include less
refreshes and rely more on LTBs. Factoring out the similar items in (7),

C(y) =
T−1

∑
t=1

yt exp(−rt)

[
cR +

N

∑
i=1

exp(rSti(y))cidiSti(y)

]
+

N

∑
i=1

exp(−rZTi(y))cidiSTi(y),

allows for a better view of the relationship between the two costs. Since the objective is to minimize
the overall costs over all strategies, there is a trade-off between the refresh costs cR and the LTB costs (the
second term in the brackets and last term). As the number of technology refreshes (∑t yt) increases the
overall technology refresh costs will also increase; however, the overall LTB costs will tend to decrease
as the shortage times (Sti(y)) will also decrease. This trade-off between technology refresh and LTB costs
can be investigated further in future research.

Evaluating strategies over a longer time period would not be possible to do so exhaustively as it would
involve 2T−1 strategies. Thus, it would be necessary to limit the number of alternatives by only considering
strategies that would be feasible in reality. One such example is removing strategies with successive (back
to back) technology refreshes. Such constraints can be applied in situations where additional information
is known about the particular DMSMS problem.
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Future applications of the NSGS method to DMSMS applications can include uncertainty in the annual
demand and the item costs. The cost function (7) can be expanded to accommodate additional mitigation
options beyond LTBs, and additional costs such as holding, stock-out, and salvage costs. Examples of
DMSMS specific models provided by Meng et al. (2014) can be useful for including these pertinent costs
in the model if desired.
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