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ABSTRACT 

There is a dearth of simulation environments that conduct a comprehensive cyber risk assessment and 
provide insights that are accessible for decision makers and operational folks.   During the Winter 
Simulation Conference 2019, a group of experts will discuss the challenges and opportunities for 
developing simulation platforms for cyber risk management. The panel will focus on issues with integrating 
technologies into simulation platforms, loss of fidelity due to lack of access to cyber datasets and 
complexity involved in representing cyber-physical systems. This paper is a collection of position papers 
of the participating experts supporting their viewpoints that will be captured in the panel discussion.  

1 INTRODUCTION 

Critical infrastructures such as, power grid, oil and gas refineries, and water distribution are characterized 
by complex technological networks, and its cyber-physical interconnectivity presents a “surface” for cyber 
attacks. The potential for disruptions in these critical infrastructures can be attributed to the dependence 
and the vulnerability of the networks interconnecting the physical plants and control centers. There is a 
need for deeper insights into cyber risks to critical infrastructures. Researchers and practitioners have 
proposed data driven cyber risk assessment platforms that provide insights into factors that increase cyber 
risk. However, for critical infrastructure, it is not practical to allow assessment tools to gain direct access 
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to mapping and collecting information on the cyber infrastructure. Simulation platforms provide a safe and 
practical means to gain insights about cyber risk to critical infrastructure without impacting operational 
resilience. 
 However, there is a dearth of simulation platforms for cyber risk management that can provide 
quantitative insights into the operational resilience and development of an cyber defense remediation plan. 
It is highly unlikely to gain direct access to data from operational environments. Instead, a simulation 
environment that characterizes the impact of exploiting attack surfaces in cyber environments would be 
applicable and provide useful quantifiable risk metrics which can be useful for decision support systems 
and eventually help formulate an informed mitigation plan. 
 The paper is organized as follows. Section 2 provides the opportunities and challenges in developing 
simulation platforms for cyber risk management. Section 3 presents the need to develop hybrid simulation 
platforms for critical infrastructure risk assessment. Section 4 presents challenges posed by adversarial 
machine learning in developing trusted simulation environments for cyber risk assessment. Section 5 
describes the advantages of using game theoretic based models for cyber risk management. Finally, in 
Section 6 we conclude.  

2 SIMULATION FOR CYBER RISK MANAGEMENT (NURCIN CELIK AND MICHAEL 
MESHAM) 

2.1 Position Statement 
Cyber risk management is a fast pace and complex field, requiring autonomous real-time decision 
capabilities. To achieve this, intelligent and adaptive systems incorporate simulation to become capable of 
evaluating a multitude of possible system configurations to determine which is most effective for a given 
investment level.  

2.2 Detailed Description 

The overarching goal of the governing body is to improve the system’s situational awareness, threat 
assessments, and allocation of resources. However, all simulations face a similar resources constraint in 
terms of memory, processing power, and battery life (Kim and Mosse, 2008). These resources ultimately 
determine the computation and execution time necessary for a simulation to be performed (Celik at al. 
2010) as well as its resultant accuracies.  
 While simulation continues to advance as the state of the art, further refinement is necessary. Simulation 
continues to race against the clock to deliver accurate results in a timely manner for the data to update. With 
cyber risk management, time is particularly limited due to the consistently changing cyber environment and 
speed of attacks. The computation and execution time is determined by the number of runs necessary to 
reach the desired fidelity. Each run in a simulation tests a different system configuration and determines 
the effectiveness. If each configuration were tested every time the computation and execution time would 
exceed the limited time to react, so simulations must be selective in which runs are performed. 
 Cyber risk management encounters certain unique challenges with the parameters inputted and vast 
complexity of the problem. First, the simulation must account for all possible exploits and cyber-attack 
methods with new ones developing each day (Musman and Turner 2018). Second, numerous attack paths 
must be considered, and the fact that multiple components could be compromised at one time and 
seemingly, non-critical cyber components can be exploited to bypass security controls (e.g., Stuxnet and 
Slammer worm) (Musman and Turner 2018). Finally, the behavior of the attacker must be taken into 
account as each action the defender takes to improve the system’s security will lead the attacker to take a 
corresponding action most promising to the attack (Musman and Turner 2018).  
 Many uncertainties encountered in cyber risk management can be improved through dynamic and 
adaptive simulation. Previous work on simulation has potential applications in cyber risk management. 
Dynamic-Data-Driven Application Systems (DDDAS)  (Darema 2004) were originally applied to supply 
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chain systems (Celik et al. 2010) to adaptively adjust the fidelity of the simulation model against the 
available computational resources. This was done by incorporating dynamic data into the executing model, 
which steers the measurement process for selective data update (Celik et al. 2010). DDDAS was further 
refined to operate on a large scale with Dynamic-Data-Driven Adaptive Multi-Scale Simulations 
(DDDAMS) (Celik and Son 2012). DDDAMS runs similar to DDDAS, but with a novel selection algorithm 
based on a sequential Monte Carlo method embedded into the DDDAMS to enable its ideal fidelity selection 
given large data sets (Celik and Son 2012).  Later on, DDDAS was also applied to the automated control 
in microgrids, facing similar challenges, requiring split second decisions, as those encountered with cyber 
risk management. DDDAS incorporated a multiobjective optimization algorithm to significantly accelerate 
the real time computation of the resource allocation, and control decision to optimize the operational cost, 
energy surety, as well as emissions per MW (Thanos et al. 2017). Overall, the combination of DDDAS and 
the multiobjective optimization algorithm significantly reduced computation time by 50.38% +11.09% 
without compromising quality of the solutions in comparison to a plain optimization problem (Thanos et 
al. 2017).    
 The correlation of these recent research on DDDAS to cyber risk management is also strong. The work 
by (Mesham and Celik  2019) highlights heterogeneous systems addressing the interconnectedness of cyber 
components and physical components, as cybersecurity and physical security become increasingly 
interdependent. Their proposed data-driven adaptive simulation framework would enable managers to 
simulate and evaluate the effectiveness of the integration of physical and cyber securities in complex 
systems.  
 Simulation platforms provide cyber risk management an edge by enabling defenders to prepare for a 
possible attack.  Through simulation, systems can assess and discover vulnerabilities to properly prioritize 
and allocate investment for improvements. Simulation makes this possible by simultaneously evaluating a 
variety of different system configurations to determine which is most effective for the given resources. This 
process enables the measurement of the relative improvement of changes (e.g., new information and 
communication technology (ICT) and different protocols) to the overall system. Knowing the effectiveness 
of improvements is vital to prioritizing investment for the efficient allocation of resources to address the 
most pressing threats. Running through simulations to see how attacks play out provides insight into the 
attacks most likely to occur, to then establish response procedures to minimize the consequences of a 
successful attack. Simulation can then also evaluate the effectiveness of the procedures put in place to help 
further refine them to minimize potential impacts to the system. The most captivating ability of simulation, 
however is the capability to autonomously make real-time decisions without human intervention. This 
ability allows simulation to surpass human capabilities opening new frontiers. Dynamic simulation is 
attempting to take this further as it overcomes the challenge of incorporating dynamic data into the 
executing model similar to DDDAS and DDDAMS (Thanos et al. 2017). 
 Simulation still faces serious challenges and drawbacks in regard to heterogenous systems, data for 
testing, simulation parameters, and resource limitations. Heterogenous systems pose a growing problem as 
systems become more complex as both cyber and physical aspects of security are intertwined. Cybersecurity 
measures can be easily bypassed if physical access to the system can be gained, and physical security relies 
on networked electronics (e.g., surveillance, access control, and communication) to protect the facility. The 
increasing use of ICT systems has introduced a new paradox as the more ICT systems are used, the more 
opportunities there are for intrusions by external and internal malicious actors (Mesham and Celik 2019). 
All the physical devices that contribute to the secure functioning of a system are vulnerable to become tools 
for an attack. Most maintenance services on ICT systems are performed remotely, opening a possibility for 
attack. ICT systems also pose a challenge integrating new ones into an existing simulation environment.  

A key requirement to testing a system’s performance is data to run, but this has become a particular 
challenge in cyber risk management. A lack of data for testing simulations exists as no one wants to 
potentially compromise real, critical data. Simulating realistic data creates another challenge in itself as the 
data must produce both alerts of an intrusion and a control group appearing as normal data (Kuhl et al. 
2007). The method can be very tasking on computational resources and faces accuracy limitations in 
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comparison to realistic data. Cyber risk management also struggles with the parameters inputted into the 
simulation model as previously mentioned. Simulation relies on a database of all the presently known 
threats, but this is continuously changing as new and innovative threats and attack methods emerge each 
day. Some unknown threats already in place may even be missed since many attacks lie in wait. Finally, 
the simulation model must predict the attacker’s behavior, which can be a particularly difficult endeavor as 
humans can be highly irrational.  
 The development of a generic simulation framework could be the ultimate benefit to reduce the effort 
and cost of deployment, testing, and maintenance of systems. This generic framework could support the 
effective use of existing software, rapid introduction and integration of new standards, protocols and 
software platforms through the support of a consistent development environment (Kim and Mosse 2008). 
However, this feat may also prove our greatest challenge as current options available require tremendous 
effort to adapt to different users’ development environments (Kim and Mosse 2008). Generic solutions are 
often thought not to be useful for most applications, because the generality is typically associated with “not-
specific enough” to be ready for use (Kim and Mosse 2008). Most solutions available restrict the 
development environment and reduce flexibility of design by enforcing the use of a specific software 
platform and tightly-coupled tools (Kim and Mosse 2008). This is often attributed to legacy software (e.g., 
wired communications software) integration with new sensor applications, cost issues that require 
optimizing resources (e.g., memory and communications), and modifiability requirements to enable adding 
and adapting various requirements easily (Kim and Mosse 2008). Heterogeneity and scalability also 
introduce challenges due to the level of complexity of the combination of components with the requirement 
of modeling external resources (e.g., light, temperatures, and signals). 

3 HYBRID SIMULATION PLATFORM FOR CYBER RISK MANAGEMENT (SACHIN 
SHETTY) 

3.1 Position Statement 

Critical infrastructures are complex systems and there is lack of visibility for the underlying 
interconnections and message communications due to heterogeneous nature of the system. There is a need 
to develop a simulation platform that can assist to assess the security posture without impacting the 
operations and provide quantitative cyber risk metrics that would influence prioritized mitigation plan. 
Instead, a hybrid simulation environment that characterizes both the cyber and physical environments 
would be applicable and provide useful cyber risk metrics.  

3.2 Detailed Description 

The cyber-physical interconnectivity in most critical infrastructures presents an attack surface that has the 
potential to be exploited by adversaries.  For example, exploitation of vulnerabilities in cyber 
infrastructure interconnecting physical plants and control centers can cause catastrophic damage. 
Researchers and practitioners will not be able to access data from operational environments to develop the 
simulation platform. There is a need to develop a simulation platform that can assist to assess the security 
posture without impacting the operations and provide quantitative cyber risk metrics that would influence 
prioritized mitigation plan. Researchers and practitioners will not be able to access data from operational 
environments to develop the simulation platform. Instead, a hybrid simulation environment that 
characterizes both the cyber and physical environments would be applicable and provide useful cyber risk 
metrics.  
 The critical question is how the proposed simulation platform would provide cyber risk metrics that 
would lead to informed decision making. The availability of the cyber risk metrics would provide guidelines 
and directions in the different stages of Cyber Physical Systems (CPS) operations (e.g., design process, 
monitoring, recovery, etc.) and ensure the overall security by pointing to the improvement areas with 
essential recommendations. Including the physical processes and cyber-physical interconnectivity in the 
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simulation platform would be a big challenge, because of system connectivity changes based on the 
application area. Depending on expected level of expected fidelity, physical and cyber-physical components 
can be represented into the simulation platform. It is also possible to add multiple simulation modules where 
each module would serve specific application area (such as smart grid, oil and gas, etc.). Following are the 
challenges with developing hybrid simulations for Cyber risk management 
 There is a need to balance the details in representing the components underpinning the cyber and 
physical infrastructure. A careful examination of  the NIST Industrial Control Systems Reference Defense 
in Depth architecture reveals that not all attacks in the cyber layers leads to an attack on the physical layer. 
For instance, if the attack results in disconnecting the corporate network and does not impact the substation, 
then this type of attack need not be included in the simulator. The focus should be on the attack surfaces 
that lead to impacting the physical plant. The state-of-the art efforts in simulating exploitability and impact 
of attacks on critical infrastructure focus on failures induced by physical faults (Kinney et al. 2005). 
Physical attacks are deterministic in nature and due to the selective nature the impact on the target physical 
system or potential of cascading events have no parallels to cyber-attacks. The timing of physical attack are 
typically precise, which is not a case in cyber attacks. The recovery process after physical and cyber attack 
have divergent timelines. In order to develop a hybrid simulator, the aforementioned issues need to be 
addressed such that the prominent and impactful attack surfaces are represented.   
 The development of the hybrid simulation environment would benefit form a formal cyber resilience 
modeling framework. (Tierney and Bruneau 2007), proposed a R4 framework for disaster resilience across 
the Technological, Organizations, Societal and Environmental (TOSE) dimensions. The R4 framework 
comprises of Robustness (Ability of systems to function under degraded performance), Redundancy 
(identification of substitute elements that satisfy functional requirements in event of significant 
performance degradation), Resourcefulness (initiate solutions by identifying resources based on 
prioritization of problems), and Rapidity (ability to restore functionality in timely fashion). A hybrid 
simulation framework that will allow measurement of the R4 across the TOSE dimensions for cyber 
physical systems will address the diverse perspectives needed to characterize cyber risk (Haque et al 2018). 
The ability to characterize the interplay between the diverse TOSE dimensions will be crucial. The hybrid 
simulation framework is only effective if it provides useful insights to not only the technology stakeholders, 
but also, decision makers, who would like to utilize the outputs from the simulations to develop informed 
decision support systems. 
 The purpose of developing the hybrid simulation framework has to go beyond providing quantifiable 
cyber risk metrics and lead to an actionable mitigation plan. The mitigation strategies should be applicable 
across the TOSE dimensions. The mitigation strategies they are typically dependent on the cyber component 
are not amenable to generalized mitigation plans that also factor in organizational, societal and 
environmental perspectives. However, the organization policies and physical systems do not undergo 
changes at the rapid pace at which cyber technologies evolve. Physical systems follow laws of physics that 
can be leveraged to find out if the physical systems can operate at an acceptable capacity. The inertia 
property provides the latitude to operate even under loss of cyber information. Within the hybrid simulation 
framework, it will be beneficial to observe to what extent cyber attack can be withstood, if the physical 
system can tolerate loss of signals. The simulation framework should be able to answer questions on 
detection (when should we drop), fault isolation (what should be drop), recovery (how soon can we recover 
to known good state). 

4 USING SIMULATION TO TACKLE THE CHALLENGE OF ADVERSARIAL MACHINE 
LEARNING (NATHANIEL D BASTIAN) 

4.1 Position Statement 

Machine learning techniques have the ability to automate cyber risk assessment processes. However, the 
susceptibility of machine learning algorithms to adversarial manipulation will require simulation techniques 
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to tackle the challenge of adversarial machine learning in cybersecurity, which serves as a best practice for 
cyber risk management. 

4.2 Detailed Description 

Machine learning capabilities have recently been shown to offer astounding ability to automatically analyze 
and classify large amounts of data in complex scenarios, in many cases matching or surpassing human 
capabilities. However, these same machine learning algorithms have been shown to be vulnerable to 
adversarial manipulation through systematic modification of features, which is also known as adversarial 
examples. In general, these adversarial attacks often take three forms: a) data poisoning attacks inject 
incorrectly or maliciously labeled data points into the training set so that the algorithm learns the wrong 
mapping, 2) evasion attacks perturb correctly classified input samples just enough to cause errors in 
classification, and 3) inference attacks which repeatedly test the trained algorithm with edge-case inputs in 
order to reveal the previously hidden decision boundaries. These adversarial machine learning attacks in 
the domain of cybersecurity can cause the algorithms to misbehave or reveal information about their inner 
workings, which poses significant cyber risk that needs to be managed. 

Within the cybersecurity domain, machine learning algorithms are frequently used for malware 
detection and as part of intrusion detection systems (IDS). For malware detection, machine learning based 
algorithms extract features from programs and use a classification model to classify programs between 
benign and malware. Most of these algorithms are integrated into an antivirus software, making it difficult 
for malware authors (i.e., adversaries) to know which classifier a malware detection system uses and the 
underlying parameters of the classifier. However, these adversaries can figure out what features a malware 
detection algorithm uses and can manually modify them, for example, by changing some API names in the 
import directory table (Hu and Tan 2017). For IDS, machine learning based algorithms are essential to 
detect and defend network attacks, as the objective of these algorithms is to classify the network traffic 
records between normal and malicious. However, adversaries attempt to deceive these machine learning 
algorithms by using adversarial malicious network traffic examples to deceive and evade the IDS (Lin et 
al. 2018). 

Protection against adversarial machine learning attacks include techniques that cleanse training sets of 
outliers in order to thwart data poisoning attempts, and methods that sacrifice up-front algorithm 
performance in order to be robust to evasion attacks. As machine learning based artificial intelligence (AI) 
capabilities become incorporated into facets of everyday life, including protecting cyber assets, the need to 
understand adversarial machine learning and address it becomes clear. Poisoning attacks that inject 
incorrectly labeled malicious traffic or data can be leveraged by the adversary to enable their attacks to go 
undetected, while data evasion attacks can be used to cause false classification of benign traffic as malicious 
thereby eliciting a defense response. If machine learning based AI is to succeed in helping cybersecurity, it 
must be secure and robust to adversarial attacks itself.  

Therefore, in order to ensure effective cyber risk management to protect against the threat of these 
adversarial machine learning attacks, many proactive defense strategies have been developed to serve as 
countermeasures for adversarial examples. These proactive strategies make machine learning based 
algorithms within the cybersecurity domain more robust. One such proactive strategy is known as 
adversarial training, which entails training classification models with adversarial examples to make the 
machine learning algorithm more robust. These adversarial examples must be generated and injected into 
the training data set (Yuan et al. 2019). While there are many different approaches for generating adversarial 
examples, small perturbations are commonly used in practice. Recall that adversarial examples are designed 
to be close to the original samples and imperceptible to a human, which causes performance degradation of 
machine learning algorithms compared to that of a human.  

In order to generate adversarial examples for use in the training data, simulation methods can be used 
quite effectively as a perturbation scheme. In the case of malware detection, for example, the development, 
training and evaluation of machine learning algorithms using a stochastic simulation-based perturbation 
scheme of the training data along with a stacking ensemble method led to malware classifiers robust to 
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adversarial conditions without significantly degrading the model's classification accuracy (Devine and 
Bastian 2019). As a result, simulation techniques can be effectively used to tackle the challenge of 
adversarial machine learning in cybersecurity, which serves as a best practice for cyber risk management. 

5 GAME THEORETIC METHODS FOR CYBER RISK MANAGEMENT (QUANYAN ZHU) 

5.1 Position Statement 

Game theory based modeling framework provides ability to quantify the interactions between attackers and 
defenders, which leads to development of quantitative metrics for cyber risk assessment. The threat of 
adversarial machine learning can be addressed by incorporating game theoretic methods in simulation 
techniques to facilitate quantifying cyber risk measures in a resilient fashion.  

5.2 Detailed Description 

The increasingly sophisticated information and communication technologies (ICTs) today have made 
systems and devices highly connected more than ever before. The complexity of large-scale systems and 
their ubiquitous connectivity have created new challenges for cybersecurity risk management. One critical 
example is the cyber-physical systems, where the integration of the ICTs with the physical systems such as 
power plants, vehicles, and manufacturing systems has increased operational efficiency but exposed them 
to cyber vulnerabilities. Lessons from recent attacks such as Stuxnet, Duqu, and Triton have indicated 
a new class of attacks called advanced persistent threats (APTs), where attackers can gain unauthorized 
access to a network and remain undetected for a long period of time. Attackers can leverage sophisticated 
techniques to target a specific asset. Traditional security solutions using cryptography, which relies on the 
secrecy of cryptographic keys, are no longer sufficient for APTs. Hence, managing cybersecurity risks 
is critical to protect targeted assets in the network and mitigate the impact of the attacks if they become 
successful. 
 The first challenge of cyber risk management is to quantify risk measures for the system. Game 
theory recently has become a natural framework to provide a quantitative model to capture the interactions 
between attackers and defenders. The rich literature on game-theoretic methods has offered a variety of 
frameworks to model different security contexts. For example, Stackelberg games have been used to study 
the leader-and-follower-type of security interactions in which the follower can observe and respond to the 
action of the leader, e.g., (Pawlick and Zhu 2016; Zhu and Başar 2013; Zhu et al. 2010a, Zhu et al. 2012b; 
Zhu et al. 2012c, Zhu et al. 2012d, Zhu et al. 2013e; Zhu et al. 2013f; Clark et al. 2012). The two-stage 
interaction game can be extended to dynamic games to model multiple rounds of strategic interactions of 
the attacks and defense across different layers of the system, e.g., (Zhu et al. 2010g; Zhang and Zhu 2017c; 
Huang and Zhu 2018b; Huang and Zhu 2018a; Pawlick et al. 2015; Farhang et al. 2014; Zhu and Başar 
2009; Zhu et al. 2010h; Zhu et al. 2010i). The games of incomplete information are a class of games that 
can capture the asymmetric information between players and have been used to study cyber deception and 
counter-deception, e.g., (Pawlick et al. 2018; Zhang and Zhu 2017c; Horák et al. 2017; Pawlick et al. 
2017; Pawlick and Zhu 2015; Zhuang et al.  2010). The network games offer frameworks that deal with 
security risks over networks, which have been used together with attack trees and graphs to model cyber 
risks for enterprise networks, critical infrastructures, and massive IoT systems, e.g., (Xu and Zhu 2017b; 
Xu and Zhu 2017a; Xu and Zhu 2016; Xu and Zhu 2015; Huang et al. 2017; Chen et al. 2017; Miao et al. 
2018; Yuan et al. 2013). The analysis of the equilibrium of the games provides a quantitative prediction 
of the security outcomes of the game model, which leads to a method to assess long-term risks of the 
network system. 
 With the quantitative measures of security, game theory makes security manageable beyond the strong 
qualitative assurances of cryptographic protections. Extending this approach to mechanism design provides 
system designers freedom to shift the equilibrium and the predicted outcomes toward ones that are favored 
by the defender or the system designer via an elaborate design of the game structure. One example is 
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the design of proactive defense to have a built-in security mechanism to increase the cost of attacks and 
equip with preventive responses. These preventive responses make attackers less impactful when they 
reach their targets. In (Huang and Zhu 2018b), it has been shown that such preventive measures can be 
implemented across multiple layers of the system to protect the targeted asset by holistically taking into 
account interconnections and interdependencies among these layers. 
 Another key application of mechanism design is cyber insurance. Cyber insurance is an important tool 
in risk management to transfer risks. Complementary to the technological solutions to cybersecurity, cyber 
insurance can mitigate the loss of the targeted system and increase the resiliency of the victim by enabling 
quick financial and system recovery from cyber incidents. Such a scheme is particularly helpful to small 
and medium-size infrastructure systems that cannot afford a significant investment in cyber protection. In 
(Zhang et al. 2017), a principal-agent game-theoretic model has been introduced to capture the 
interactions between one insurer and one user. The insurer is deemed as the principal who does not have 
incomplete information about the user’s security policies. The user, which refers to the infrastructure 
operator or the customer, implements his local protection and pays a premium to the insurer. The insurer 
designs an incentive compatible insurance mechanism that includes the premium and the coverage policy, 
while the user determines whether to participate in the insurance and his effort to defend against attacks. The 
mechanism design approach establishes an attack-aware cyber insurance model and addresses economic 
and security issues in one holistic framework. 
 Game-theoretic methods have been promising framework to address many emerging applications such 
as adversarial machine learning (Zhang and Zhu 2017b; Zhang and Zhu 2017a; Zhang and Zhu 2016; 
Zhang and Zhu 2015; Zhang and Zhu 2018), cross-layer cyber-physical security (Miao et al. 2018; 
Pawlick and Zhu 2017c; Chen and Zhu 2017; Zhu and Basar 2015; Xu and Zhu 2017b), cyber deception 
(Pawlick et al. 2018; Zhang and Zhu 2017c; Horák et al. 2017; Pawlick et al. 2017; Pawlick and Zhu 
2015; Zhuang et al. 2010), moving target defense (Zhu and Başar 2013; Jajodia et al. 2011; Maleki et 
al. 2016), critical infrastructure protection (Chen et al. 2017; Rass et al. 2017; Huang et al. 2017; Pawlick 
and Zhu 2017b; Chen and Zhu 2016; Hayel and Zhu 2015; Huang and Zhu 2018a), adversarial machine 
learning (Zhang and Zhu 2018; Wang and Zhu 2017; Zhang and Zhu 2017b; Pawlick and Zhu 2016; 
Pawlick and Zhu 2017a), insider threats (Casey et al. 2016; Casey et  a l .  2015). The diverse methodologies 
from game theory that includes games of incomplete information, dynamic games, mechanism design 
theory offer a modern theoretic underpinning of a science of cybersecurity for risk management. 

6 DISCUSSION 

The expert position papers compiled in this contribution address modeling and simulation challenges that 
need to be addressed for cyber risk management. The position papers address challenges in developing the 
simulation platform that can provide cyber risk assessment by balancing fidelity, accuracy and complexity. 
The panelists are in agreement that the cyber risk management field is constantly evolving and there is a 
need for autonomous real-time decision capabilities. The position paper starts by providing the benefits of 
a simulation platform that is capable of evaluating diverse configurations with the goal to improve system’s 
situational awareness, threat assessments, and allocation of resources. The benefit of a simulation platform 
would lead to reduction in effort and cost of deployment, testing, and maintenance of systems by effective 
use of existing environment resources.  We also discussed the need for assessing cyber risk for critical 
infrastructure will result in differentiating between high and low impact cyber attacks. The necessity to 
agree on a unifying formalism to allow for standardized cyber risk assessment for critical infrastructure is 
a common theme, but there is no consensus on how to accomplish this. We need to address challenges with 
cyber risk modeling, achieving right balance between fidelity and actionable intelligence and ensuring trust 
in the simulation processes to realize the formalism.  The use of machine learning models for cyber threat 
assessment provides meaningful insights into risk metrics and mitigation plans. However, the threat of 
adversarial attacks on the machine learning model building process has the potential to impact the integrity 
of the risk metrics and result in incorrect mitigation plans.  There is a need for simulation techniques can 
be effectively used to tackle the challenge of adversarial machine learning in cybersecurity that can lead to 
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best practices for cyber risk management. Finally, the need for quantitative metrics for cyber risk 
assessment requires game theoretic based methods. These methods have the ability to provide the metrics 
in presence of adversarial attacks. 

The contributions from the Modeling & Simulation (M&S) domain can significantly benefit the 
development of simulation environments for cyber risk assessment. The panelists agree that we need to 
conduct research in this direction and disseminate research results in the cyber and M&S communities that 
would lead to increase in interdisciplinary contributions. 
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