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ABSTRACT

Running contests has been an effective way to solicit efforts from a large pool of participants. Existing
research mostly focuses on small contests that typically consist of two or several perfectly rational agents.
In practice, however, agents are often founded in complex environments that involve large numbers of
players, and they usually use thresholding policies to make decisions. Despite the fact, there is a surprising
lack of understanding of how contest factors influence their outcomes. Here, we present the first simulation
analysis on how parameters of the contest success function, the population dynamics, and the agents’
cutoff policies influence the outcomes of the contests with thresholding agents that are non-cooperative.
Experimental results demonstrate that stakeholders can design (approximately) optimal contests to satisfy
both their interests and the agents’ by choosing a relatively low bias factor. Our work brings new insights
into how to design proper competitions to coordinate thresholding agents.

1 INTRODUCTION

In many real-world situations, stakeholders often hold contests to solicit efforts from a large pool of
participants by distributing rewards to the winners. Typical examples include sports (Fort and Winfree
2009; Malueg and Yates 2010), advertising competitions (Gordon and Hartmann 2016), crowdsourcing (Shen,
Feng, and Lopes 2019), and diffusion of innovations (Baye and Hoppe 2003). These activities are all
adversarial settings where the outcomes are typically uncertain, but they do depend on the efforts committed
by a player and those by her adversaries. In particular, the outcomes are determined by a contest success
function that takes both the player’s efforts and her adversaries’ (Skaperdas 1996; Corchón and Dahm
2010). Taken all players’ efforts as the input, the contest success function quantifies each contest player’s
probability of winning the contest (Skaperdas 1996). To design efficient contests, it is crucial to understand
how the design of contest success functions influences the contest outcomes (Jia, Skaperdas, and Vaidya
2013; Clark and Riis 1998; Blavatskyy 2010).

Previous literature on contest success functions has focused mainly on small contests that typically
have two or a few perfectly rational agents due to tractability concerns (Jia, Skaperdas, and Vaidya 2013;
Münster 2009; Runkel 2006). Most of the research restricts to theoretical analysis with the solution concepts
of Nash Equilibrium and its variants (Corchón and Dahm 2010; Jia, Skaperdas, and Vaidya 2013; Runkel
2006). This line of research has substantially improved our knowledge of how to design optimal contests
when agents have perfect information and perfect rationality.

However, studies on human behavior show that humans usually use thresholding policies to make
decisions in real-world environments such as sports (Dimant and Deutscher 2015), crowdsourcing con-
tests (Easley and Ghosh 2015), online shopping (Ohannessian, Roozbehani, Materassi, and Dahleh 2014;
Shen, Crandall, Yan, and Lopes 2018; Shen 2019), smart grids (Almahmoud, Crandall, Elbassioni, Nguyen,
and Roozbehani 2018) and social networks (Shen, Feng, and Lopes 2019). On the one hand, agents use
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thresholding policies because they often have informational uncertainties, cognitive limitations or compu-
tational limits (Simon 1997). On the other hand, under certain conditions, thresholding policies are optimal
strategies and thus represent rational behavior (Ohannessian, Roozbehani, Materassi, and Dahleh 2014).
That is, thresholding agents are rational agents when they have optimal (perfect) thresholds. In this sense,
the thresholding behavioral model is more generalized than the rational behavioral model because it extends
the rational behavioral model to the scenarios when agents do not necessarily possess perfect information
or reasoning abilities. Therefore, it is essential and demanding to understand how parameters of success
functions and agents’ behavior influence the performance of the contests with thresholding agents.

In this paper, we present the first simulation analysis to quantify how parameters of contest success
functions, the population dynamics, and agents’ thresholding behavior influence the contest outcomes. In
doing so, we first developed a simulation platform based on real-world contest data. We then conducted four
groups of experiments to study how the bias factor, the number of total rewards, the population dynamics of
the agents, and the coefficient affected the performance of the contests. Experimental results demonstrate
that there are “win-win” situations for both the stakeholders and the agents in contests with thresholding
agents. Specifically, it is feasible for the stakeholders to design (approximately) optimal contests that can
achieve good results for both parties by choosing a relatively low bias factor. Our results complement
the state-of-the-art by offering a new perspective on how to design contests to coordinate agents with
thresholding behaviors. In particular, our study provides a systematic approach for stakeholders to simulate
systems that consists of thresholding agents as well as methods to evaluate the performance of the systems
brought by different incentive mechanisms.

2 CONTESTS WITH THRESHOLDING AGENTS

This section first describes the decision models that players use to determine the number of efforts invested
in the contests. It then introduces the contest success functions that generate each player’s probability of
success.

2.1 Agents’ Decision Models

We consider a contest in which agents follow thresholding policies to decide how much efforts they should
invest in the contests. Let I be the set of agents in a contest, an agent i ∈ I will exert positive efforts
ei ∈ R≥0 only if her (expected) utility U(ei) ∈ R is greater than or equal to zero. Here, R is the set of real
numbers. The (expected) utility is the difference between the (expected) rewards r(ei) ∈ R≥0 that the agent
will receive and the costs ci ∈ R≥0 she spends. Therefore, agent i’s (expected) utility Uei is calculated as
follows:

U(ei) = r(ei)− ci (1)

where r(i) is determined by the total rewards M ∈ R≥0 and the contest success function P implemented by
the stakeholders, and ci = δi ·ei. Here, δi ∈ R≥0 refers to a private coefficient that determines the marginal
cost that agent i incurs when she invests an extra unit of efforts. Thus, agent i’s (expected) utility can be
computed by:

U(ei) = r(ei)−δi · ei (2)

Note that the thresholding agent model should not be confused with the threshold model of collective
behavior (Granovetter 1978). The threshold model assumed that each agent’s behavior depends on the
number of other agents already adopting that behavior while the thresholding agent model only assumed
that individual agents have their own private thresholds to trigger their behaviors.

In a contest, agent i exerts positive efforts Ei > 0 only if her expected utility U(ei) ≥ 0. Otherwise,
she would be better off by not participating the contest since it would be irrational for her to exert efforts
that bring no good or even harm to her. In practice, agent i’s efforts ei are often bounded by her maximum
ability due to various factors such as time (Giampietro, Bukkens, and Pimentel 1993), psychological
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constraints (Hunter and Schmidt 1983) and working environments (Iverson and Zatzick 2011; Niemelä,
Rautio, Hannula, and Reijula 2002). Therefor, we have ei ≤ êi where êi is the maximum amount of efforts
that agent i can invest in a contest.

2.2 Contest Success Function

A contest success function (CSF) determines the probability of winning for each player as a function of
all the players’ effort (Skaperdas 1996). In general, there are two types of contest success functions: the
ratio form and the difference form (Hirshleifer 1989). The former determines the probability of winning
according to the ratio of the respective efforts committed by each player. In the difference form, however,
the probability of winning is computed as a function of the difference in the efforts that each player has
exerted. In this paper, we focus on the ratio form of contest success functions because it can be naturally
scaled up to large contests that involve millions of players while extending the difference form to these
contests is usually non-trivial and difficult (Jia, Skaperdas, and Vaidya 2013).

The ratio-form CSF usually determines the probability of winning as a function of the ratio of the
efforts that each player has committed. In a contest, agent i’s probability of winning is computed by:

p(ei) =

{ f (ei)

∑ j∈I f(e j)
if ∑ j∈I f (e j)> 0

1
|I| otherwise

(3)

where f (·) is a non-negative, strictly increasing function, and |I| is the number of players in the contest.
The most widely used function for f (·) is f (ei) = eµ

i (0≤ µ ≤ 1) due to Tullock (1980).
In our simulation analysis, we will concentrate on the Tullock function because of its broad applications

in real-world scenarios such as technology race (Baye and Hoppe 2003), sports (Dietl, Franck, and Lang
2008), crowdsourcing (Shen, Feng, and Lopes 2019), lobbying and rent-seeking (Tullock 1980). Agent i’s
(expected) rewards r(ei) for investing ei efforts is calculated by:

r(ei) =

{
(ei)

µ

∑ j∈I eµ

j
·M if ∑ j∈I eµ

j > 0
1
|I| ·M otherwise

(4)

where 0 ≤ µ ≤ 1 is the bias factor. The bias factor µ is often interpreted as the “noise” of a contest. It
quantifies the effect that an increment in an agent’s efforts on her probability of winning (Jia, Skaperdas,
and Vaidya 2013). A contest that has low µ can be viewed as a lowly discriminating contest in which
payers with different levels of efforts may have a similar degree of chance to win. In contrast, a contest that
has high µ is a highly discriminating contest that favors players with high efforts. Despite the substantial
understanding of the contest outcomes when agents are perfectly rational, little has been known about the
contest dynamics with thresholding agents. In this paper, we present the first exploratory study to bridge
the gap.

3 SIMULATING CONTESTS

In this section, we introduce the simulation platform that we have used in the experiments. Simulating large
contests often involves updating data objects frequently because agents in the contest have their private
information as well as different decision-making mechanisms. Therefore, it is desirable to simulate the
contests in a modular approach.

We build our simulation platform based on a simulation framework called SpaceTime (Valadares, Lopes,
Achar, and Bowman 2016; Lopes, Achar, and Valadares 2017; Achar and Lopes 2019). SpaceTime was
initially developed for urban simulation in distributed environments (Shen, Achar, and Lopes 2018). In our
paper, we extend it to large-scale contest simulations for the first time. The SpaceTime framework utilizes
a programming language model called Global Object Tracker (GOT) that manages the version of objects
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in a way that is similar to the popular version control tool Git (Spinellis 2012). Objects in SpaceTime
are GOT nodes that consists of a dataframe, an application node, and the data operation component. The
dataframe keeps track of both the object revision history and a snapshot of the current working data. The
application node defines the logical process of the designated procedures. The data operation component
allows the application node to manipulate the dataframe in the four ways: read, modify, add and delete.

In our simulation platform (see Fig. 1), there are two types of roles: the contest manager and the
agents. The contest manager determines the contest success function and the number of the total rewards.
The agents invest efforts and compete with each other for the rewards that are determined by the contest
success function. Each agent is represented as a GOT node. In each node, the dataframe stores the agent’s
private information including the maximum ability êi, the cost coefficient δi, the efforts to commit in the
contest ei and the expected utility U(ei). The decision-making mechanism is the application component
that calculates the agent’s expected utility according to her private information and the public information
obtained from the contest manager.
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Figure 1: An architectural view of the simulation platform.

The contest manager is also a GOT node. The dataframe stores the contest information including the
bias factor µ , and the number of total rewards M. The decision-making mechanism computes the probability
of success for each agent given her invested efforts. The contest manager can request information (i.e.
the number of efforts ei) from the agents. Similarly, the agents can access information (i.e. the rewards
for each player) from the contest manager. As a result, the majority of the data is stored locally and data
communication between the agents and the contest manager reduces to the minimum level. The modular
design makes the simulation platform highly expandable and configurable for large contests that have
thousands of or even millions of players. In what follows, we discuss the role of contest manager and the
individual agent in turn.

• Contest Manager: The contest manger is a representative of the stakeholder. It serves as the
simulation engine.
— Dataframe: The dataframe records initial parameters of the contest.
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— Data operator: The contest manager set the parameters of the contests, update the records of
the efforts, and the probability of winning, the rewards for each participating agent.

— Decision making: The goal of the stakeholder is to maximize the aggregated efforts of all the
agents by selecting the optimal parameters for the contest. The contest manager can observe
individual agents’ decisions.

• Agent: Each agent is an actor in the simulation.
— Dataframe: The dataframe stores the private threshold (the cost coefficient in our simulation

analysis) and the expected rewards of the agent.
— Data operator: The agent updates the expected rewards and the utilities according to the

calculated probability of winning.
— Decision making: The agent decides whether to contribute and how much efforts to invest

according to the thresholding policies.

4 EXPERIMENTAL SETUP

After introducing the dataset used in the simulations, we describe the methods that we took to investigate
how parameters of the contest success function influence the contest outcomes in contests with thresholding
agents.

4.1 Dataset

We used the Kaggle ranked user data (Felipe Salvatore 2019) in our experiments. The dataset was obtained
by a data crawling from the Kaggle competitions. The original dataset contains 4,767 rows. Each row
represents a ranked player. For each row, there are six columns: the register date, the current points, the
current ranking, the highest ranking, the country and the continent. In our work, we removed three irrelevant
columns: the register date, the country, and the continent. That is, we only considered the following three
columns: the current points, the current ranking, and the highest ranking.

The original dataset did not include all the necessary data fields for the experiments. Therefore, we
performed data processing before conducting the experiments. We first normalized the players’ current
points by dividing each value by the maximum value observed in the data samples. We then took each
player’s normalized points as her efforts ei (i.e., ei = i′s normalized points). We estimated each agent’s
maximum ability êi according to the following equation:

êi = ei ·
i′s Current Ranking
i′s Highest Ranking

(5)

In our experiments, agent i’s maximum ability êi served as the upper bound of her efforts ei exerted in a
contest.

To calculate the expected utility, an agent needs to know her cost coefficient. Unfortunately, the original
dataset did not provide such information. We estimated each agent’s cost coefficient δi by assuming her
utility was zero. This is without of loss generality because although agent i’s utility is usually her private
information, it can be integrated into the cost coefficient δi. According to Eq. 2, we have

δi =
r(ei)

ei
=

4767− i′s Current Ranking
4767 · ei

(6)

where ei was estimated as the normalized points number. In our simulation, the cost coefficient served as
the threshold of a player. If a player has a high cost coefficient, then the player needs to exert significant
efforts in order to compete with others and receive the rewards. When the cost coefficient is sufficiently
high, the player would not benefit from contributing to the tasks.
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4.2 Methods

We identified six main performance metrics to quantify how the parameters of the contest success function
affect the performance of the contests. The metrics include:

• the total efforts exerted by all the players (the higher, the better);
• the average efforts exerted by each participating player (the higher, the better);
• the total utility earned by all the players (the higher, the better);
• the maximum efforts exerted by a player in the contest (the higher, the better);
• the average utility earned by each participating player (the higher, the better);
• he maximum utility earned by a player in the contest (the higher, the better).

We also measured the standard deviation of the efforts (the lower, the better) and the standard deviation of
the utility (the lower, the better) to quantify the variation of the efforts and utility, respectively. Note that
all the numbers were normalized by dividing by the maximum value.

We studied how the bias factor µ influenced the contest outcomes by changing µ from 0.0 to 10. with
an increment of 0.01. To investigate how the growth rates of the total rewards affect contest performance,
we let the total rewards M grow linearly with different growth rates from 0.0 to 1.0 with an increasing
step of 0.05.

We performed another two groups of experiments to study if the population of players or coefficients
had any effect on the performance of the contests. To investigate how the number of participating players
affected the contest outcomes, we varied the number of population from 0.25 to 5 times of the original
population (i.e., 4767) with an increasing step of 0.25. If the selected population x was smaller than 4767,
we randomly selected the samples from the current population. If the selected population x was larger than
4767, we first added x/4767 times of the current population, and then selected the remainder (x mod 4767)
randomly. In the second group, we varied the cost coefficient of each player from 0 to 10 with an increment
of 0.1 to study how agents’ thresholding behavior influence the contest performance.

We ran each group of experiments for 100 times and reported the averaged numbers of each metrics
in our paper. All the simulations were conducted on the same 3.7GHz 6-core Linux machine with 32GB
RAM. It took approximately six hours to ran all the simulations.

5 RESULTS

Based on the data points obtained from the numerical simulations, we highlight four main observations.
After presents the results, we summarize our findings.

5.1 Bias Factor

Observation 1 As the bias factor increases, agents’ efforts and utility typically increase significantly to
the peak and then decreases gradually. Contests with a moderately low bias factor typically perform the
best.

This trend was observed in all the metrics: the total efforts, the average efforts, the maximum efforts,
the standard deviation of efforts, the total utility, the average utility, the maximum utility, and the standard
deviation of utility. Figure 2 demonstrates that as the bias factor µ increased from 0.1 to 1.0, the performance
of the contests ( i.e., the total efforts, the average efforts, the maximum efforts) first increased significantly
to the peak and then decreased gradually. Contests with a moderately low bias factor (e.g. 0.1≤ µ ≤ 0.4)
performed the best among the contests with different bias factors. An explanation for this phenomenon is
that the majority of the participating agents are players with low ability, while contests with moderately
low bias factors favor agents with relatively low abilities.

The number of efforts invested by each agent dispersed widely: while the maximum efforts could reach
above 3.5, the average efforts were below 0.02 (see Figures 2c and 2b). A possible explanation is that the
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agents’ coefficients and maximum ability varied substantially, resulting in a wide range of variations on
the effort values (see Figure 8d). Agents’ committed efforts varied the most when the noise factor was low
(e.g. µ = 0.1).

Figure 3 shows that with the bias increasing, agents’ total utility, average utility, and maximum utility
also experienced the same trend as the efforts. They also climbed to the peak when the bias factor was
relatively low (e.g. 0.1≤ µ ≤ 0.4).

Observation 1 indicates that it is possible to implement a contest success function that serves the
interests of both the stakeholders and the participating agents in contests with thresholding agents. That is,
there can be a “win-win” situation when the stakeholders select a moderately low bias factor. This finding
is surprisingly different from contests (with perfectly rational agents) in which the stakeholders’ interests
and the players’ are usually conflicting.
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Figure 2: A comparison of four effort metrics by varying the bias factor from 0.0 to 1.0.
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Figure 3: A comparison of four utility metrics by varying the bias factor from 0.0 to 1.0.

5.2 Total Rewards

Observation 2 Increasing the amount of rewards according the total efforts has little impact on the contest
outcomes in contests with different bias factors.

Figures 4 and 5 shows that the total efforts, the average efforts, the total utility, and the average utility
rarely changed when the reward growth parameter increased. That is, when the total amount of rewards
grows linearly in the total efforts, the contest outcomes remained unchanged. Figures 4d and 5d confirmed
that the variances of agents’ individual efforts and utility kept almost unaltered. Among contests with all
the four bias factors, the one with the lowest bias factor (i.e., µ = 0.1) performed the best while the one
with the highest bias factor (µ = 0.4) performed the worst. When it came to the maximum efforts and
maximum utility, however, the results were quite the opposite: the contest with the highest bias factor
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(µ = 0.4) performed the best while the one with the lowest bias factor (µ = 0.1) performed the worst. Two
reasons contribute to this trend. First, the majority of the players are the ones with low abilities. Second,
when the bias factor µ is low, the contest favors the players with low skills. As a result, the contest can
solicit efforts from more players. When the bias factor is high, the contest favors the players with high
abilities. Because of it, the contest becomes much more appealing to top performers.

Observation 2 indicates that it is more beneficial for the stakeholders to choose a low bias factor when
the total amount of rewards grows linearly in the total efforts. However, if the stakeholders’ goal is to
solicit the maximum individual efforts, a high bias factor is more desirable.
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Figure 4: A comparison of four effort metrics by varying the reward growth parameter from 0.0 to 1.0 for
contests with four bias factor (0.1, 0.2, 0.3, and 0.4).
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Figure 5: A comparison of four utility metrics by varying the reward growth parameter from 0.0 to 1.0 for
contests with four bias factor (0.1, 0.2, 0.3, and 0.4).

5.3 Population Dynamics

Observation 3 As the number of participating agents increases, agents’ total efforts and maximum efforts
fluctuate, while agents’ utility typically decreases.

Figure 6 shows that the total efforts fluctuated heavily at around 3 for contests with all the four bias
factors (i.e. µ = 0.1,0.2,0.3, and 0.4), and the maximum efforts changed back and forth between 0.3
and 2.8. Agents’ individual efforts changed drastically (see Figure 6d). However, the average efforts first
dropped significantly to a low level (0.0002) and then varied moderately. A reason for this trend is that
the increase in the player population changed the degree of competition in the contests and subsequently
changed the contest dynamics. As a result, it was possible that some agents would be better off not to
participate (i.e. their expected utility becomes negative) under one contest dynamics while they would have
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higher incentives to exert more efforts under another contest dynamics It is worth noting that stakeholders
can usually obtain a positive amount of efforts from the agents. Stakeholders’ ability to solicit efforts is
independent of the bias factors and the population of the players.

Figure 7 demonstrates that agents’ utility first dropped substantially and then kept at a similar level
as the number of participating agents increased. This observation was expected because with the player
population growing, the competition among the agents became more fierce. However, the total amount of
rewards M remained unchanged. After the population had increased to a sufficiently large number (e.g.
1.5 times of the original population), the contest became less appealing to the many players because the
competition was so stiff that these players could hardly make profits from participating in it.
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Figure 6: A comparison of four effort metrics by varying the population from 0.25 to 5 times of the original
value for contests with four bias factor (0.1, 0.2, 0.3, and 0.4).
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Figure 7: A comparison of four utility metrics by varying the population from 0.25 to 5 times of the original
value for contests with four bias factor (0.1, 0.2, 0.3, and 0.4).

Observation 3 demonstrates that the population of participating agents has a tremendous impact on the
contest outcomes. Despite it, stakeholders can usually have a guarantee that they receive a positive amount
of efforts in contests with thresholding agents.

5.4 Coefficients

Observation 4 As agents’ coefficients increase, both their efforts and utility drop sharply to the lowest
level and then kept steady.

Figures 8 and 9 demonstrate that agents’ efforts and utility decreased abruptly to the lowest level and
then kept steady. This trend was observed in all the metrics for contests with all the four different bias
factors. The underline reason for this trend is that the marginal cost for an agent to invest an additional unit
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of efforts grows significantly as the coefficient increases. When the coefficient exceeds a level (e.g. 0.1), it
becomes unprofitable for agents to participate in the contests. As a result, the majority of the participants
chose to exert no efforts.

Observation 4 indicates that agents’ coefficients have a significant impact on the performance of the
contest outcomes before they become sufficiently large. When the coefficients go above the level, they do
not affect the performance of the contest outcomes as most of the agents commit no efforts.
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Figure 8: A comparison of four effort metrics by varying the coefficient from 0.1 to 10 times of the original
value for contests with four bias factor (0.1, 0.2, 0.3, and 0.4).
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Figure 9: A comparison of four utility metrics by varying the coefficient from 0.1 to 10 times of the original
value for contests with four bias factor (0.1, 0.2, 0.3, and 0.4).

5.5 Discussion

The four observations tell a similar story: in contests with thresholding agents, the contest outcomes are
jointly influenced by the bias factor, the population dynamics, and each agent’s coefficient; it is feasible
for the stakeholders to select a bias factor that is (approximately) optimal for both the stakeholders and the
agents. To this end, it is usually more desirable for the stakeholders to set the bias factor to be moderately
low (e.g. 0.1≤ µ ≤ 0.4). This finding complements previous research on contests with perfectly rational
agents that the stakeholders of the contests and the agents are often in a conflicting situation. While
illuminating, our simulation analysis is by no means an exhaustive one due to the huge space of agents’
private information.

Our study is intended to open a new line of research that can deepen our understanding of how to
optimally coordinate thresholding agents. In doing so, we must build high-fidelity simulations based on
real-world data, and develop new methods to efficiently learn and infer agents’ decision models based on
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their actual behavior. Addressing these challenges will augment humans’ ability to coordinate systems with
large populations of self-interested agents better.

6 CONCLUSION

In this paper, we describe a simulation study that quantifies how parameters of a contest success function
and the agents influence the contest outcomes when non-cooperative agents use thresholding policies. We
performed a series of experiments on a simulation platform that was built on top of a framework called
SpaceTime. Experimental results demonstrate that although contest outcomes are jointly influenced by
the bias factor, the population dynamics, and agents’ coefficients, it is feasible for a stakeholder to design
an (approximately) optimal contest that serves both the stakeholder’s interests as well as the agents’ by
choosing a moderately low bias factor when the agents use thresholding policies. Our research sheds light
on how to design proper competitions to coordinate thresholding agents’ behavior for desirable outcomes.

Our work opens several exciting avenues for future research. In this paper, the thresholding agents do
not adapt their coefficients dynamically based on experience. It would be interesting to study the scenarios
when agents learn to adjust their coefficients. Our work is focused on one-stage contests. In practice,
however, players need to go through multi-stage contests before they can win (Fu and Lu 2012). It would
be worth investigating how to design optimal contests with thresholding agents. Another fruitful area is
to develop new methods to select the bias factor for a given contest automatically. It is also interesting
to investigate how to design incentive mechanisms to encourage thresholding agents to participate in the
contests.
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