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ABSTRACT 

Making adjustments to a logistics network to keep it in good condition is a major challenge. Logistics 
assistance systems are regularly used to support this process. The authors have developed such a logistics 
assistance system that identifies, evaluates, and proposes promising actions to the decision-maker. A sim-
heuristic approach, utilizing a data-driven discrete event simulation in combination with meta-heuristic 
algorithms is used for this purpose. A typical feature of such systems, however, is that the possible changes 
to the logistics network are predefined by the respective logistics assistance system. In order to address this 
aspect, the authors have developed a novel method that allows for modeling, integration, and simulation of 
user-generated actions. The method is based on a domain-specific language for the formal description of 
actions in logistics networks, allowing domain experts to model actions without having in-depth program-
ming knowledge. 

1 INTRODUCTION 

Wholesale logistics networks (WLNs) have complex structures and a multitude of different processes and 
interrelationships. Due to changing internal and external requirements, these WLNs must be continuously 
monitored and controlled, in order not to lose competitiveness. Because of the complexity of WLNs, manual 
monitoring and controlling is virtually impossible. Therefore, logistics assistance systems (LASs) are 
regularly used to support the decision-making process. Such systems may identify promising actions, e.g., 
changing the stock-level of stock keeping units (SKUs) or the adjustment of routes in the network, and 
propose them to the decision-maker.  

The authors developed a LAS for identifying, evaluating, and suggesting promising actions in WLNs. 
This system utilizes a combination of meta-heuristic algorithms with discrete event simulation (DES), 
called a simheuristic approach (Juan et al. 2015). Heuristic algorithms explore a set of actions, searching 
for the most promising ones. The DES serves to evaluate the effects of actions on the performance of the 
logistics network, which is determined by the service level and the total costs. Typical for such LASs, 
nonetheless, is that possible actions are predefined by the system. An enterprise-specific adaptation of these 
actions and their effects to the network is, if at all possible, very time-consuming and associated with high 
costs. To address this problem, the authors have developed a method for modeling and simulating user-
generated actions in WLNs. The main component of this method is a newly developed domain-specific 
language, which abstracts the technical implementation of these actions to a more logistical level. 

The paper is structured as follows: Section 2 introduces the general principles for further understanding 
this paper. The LAS developed by the authors is presented in Section 3, with a focus on the process of 
modeling and implementing user-generated actions. Section 4 sets out the requirements for a formal 
description of action types. On this basis, Section 5 provides a semantic model for representing these action 
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types. Section 6 presents the newly developed domain-specific language, with a focus on new data types, 
language constructs, and other functionalities. Section 7 gives a brief conclusion and an outlook. 

2 RELATED WORK 

2.1 Wholesale Logistics Networks 

Looking at the term logistics network and its definition, it can be seen that in the relevant literature there is 
no clear distinction between supply chains (SCs) and logistics networks (LNWs) (Cordeau et al. 2006; 
Wang et al. 2016). This view is supported by Larson und Halldorsson (2004). On the other hand, there is 
the view that a logistics network is exactly that part of a SC that lies between the SC’s suppliers and its 
customers (Rushton et al. 2010), in other words, the logistics network takes the role of the distributor within 
the SC (Ma und Suo 2006). For the further course of this paper, the authors use the term LNW, as this is 
the term used in the company involved. In principle, however, the findings of this paper can also be 
transferred to SCs. 

This paper is based on a wholesale logistics network, which is a special type of logistics network. A 
wholesaler is a company that purchases goods and then resells them, mainly to industrial customers 
(Seÿffert 1972). WLNs occupy an intermediary position between producer and customer, due to their level 
of trade and the orientation of their business model (Barth et al. 2015). 

2.2 Discrete Event Simulation 

For the investigation and analysis of processes and interactions in the context of production and logistics, 
Discrete Event Simulation (DES) has established itself as the preferred method (Wenzel et al. 2009). In 
DES, state changes of the simulation model occur due to events that can arise at any time, such as an 
incoming order or a completed picking process (Gutenschwager et al. 2017). Usually, the simulation is used 
in conjunction with other methods, e.g., optimization methods. If the optimization is a meta-heuristic and 
the heuristic is used in conjunction with simulation, it is a so-called simheuristic according to Juan et al. 
(2015). 

2.3 Logistics Assistance Systems 

LASs are software systems that are used to support decision-making processes in the context of logistics 
(Blutner et al. 2009). In the literature, the terms logistics assistance system and decision support system for 
logistics applications are regularly used synonymously (Kengpol 2008). The authors have chosen the term 
logistics assistance system because it better highlights the application domain.  

A LAS can have different characteristics and applications, e.g., for monitoring or optimizing processes 
in logistics networks. A typical application field of LASs is the automotive industry, e.g., with a focus on 
production (Bockholt et al. 2011) or in combination with other methods, such as simulation (Heilala et al. 
2010). 

2.4 Domain-specific Languages 

Programming languages can basically be divided into two classes. Typical for the first class, the general 
languages (e.g., the Unified Modeling Language, UML) (Object Management Group 2015), is its possible 
use for a large variety of different problems and the resulting power of the language (van Deursen et al. 
2000). 

The second class of programming languages are the so-called domain-specific languages (DSLs), e.g., 
the Structured Query Language (SQL) (Oracle Corporation 2019). Further terms for DSLs are application-
oriented (Sammet 1969), special-purpose (Wexelblat 1981), task-specific (Nardi 1993), microscopic or 
little (Bentley 1986) languages. Yet, the term domain-specific language appears to be the most commonly 
used name. A DSL is essentially used for solving problems of a specific domain (Voelter 2010 – 2013). 

1580



Rabe and Schmitt 
 

 

Syntactic gaps between the problems of the corresponding domain and their implementation are bridged by 
abstraction (Cheng et al. 2015). This allows domain problems to be solved at the domain level (France und 
Rumpe 2007). The DSL’s target group consists of domain experts with little or no programming experience. 

According to Fowler und Parsons (2011), a DSL can also be understood as a thin layer over a semantic 
model. A semantic model consists of data including the model’s semantic and all relevant information of 
the domain. In addition, the behavior, for instance, in the form of functions, is part of the model. In this 
context, a DSL is used to populate the semantic model. In this paper the developed DSL is used for the 
parameterization of a semantic model for the representation of actions in WLNs. 

3 LOGISTICS ASSISTANCE SYSTEM FOR WHOLESALE LOGISTICS NETWORKS 

A LAS for WLNs has been described by the authors in previous publications (Rabe et al. 2018b; Rabe et 
al. 2019). This section gives a brief overview of the simplified architecture of the LAS (see Figure 1).  

Usually, organizations use common standard software to store and access enterprise data, e.g., SAP 
R/3. The author’s LAS extracts the enterprise data and transforms and loads them into the data model of 
the simulation tool used, which is called SimChain (SimPlan AG 2017). SimChain essentially consists of 
two components: a set of generic building blocks for simulating logistics networks and an underlying data 
model stored in a MySQL database. The database contains the information required for the simulation of 
the logistics network under consideration. Based on this information, a simulation model is created dynami-
cally. This approach makes it possible to manipulate the simulation model at the data level by making 
changes to the data in the database. 

The LAS uses an iterative simheuristic (Juan et al. 2015) approach with a data-driven DES as an evalu-
ation function for the configuration of the logistics network stored in the database. In each iteration, a 
simulation model is dynamically instantiated based on the data from the database. Subsequently, a 
simulation experiment is carried out. The simulation results are stored in the database, to which the heuristic 
unit (HU) has access. The HU selects one or more promising actions from the search space, which consists 
of all possible actions for the given state of the WLN. For a detailed description regarding the HU’s 
implementation, the reader is referred to Rabe et al. (2018a, 2018b). The selected actions are forwarded to 
a system component called the execution engine, which transforms the actions into changes to the 
underlying database in the form of SQL statements. Based on the changed data, a new simulation model is 
created and executed in order to evaluate the actions’ effects on the logistics network’s performance, e.g., 
costs and service level. This overall process is run iteratively until a termination criterion is fulfilled, for 
instance, a specific number of iterations or stagnation of the WLN’s performance. After the simulation-
based optimization is terminated, the most promising actions and their effects are suggested to the decision-
maker. 

3.1 Utilizing a Domain-specific Modeling Language for User-generated Action Types 

The presented LAS was extended by a method with which users can model their own action types and 
integrate them into the system. The essential component of this method is a specially developed language, 
or more precisely a DSL, which is tailored to the modeling of action types in WLNs. An action type 
represents a set of similar actions, e.g., an action type may describe the change of stock for any SKU in any 
site by any value. A corresponding action can be derived by adding specific parameter values, for example 
a +20 % change in inventory for the SKU with id 5 in the site Dortmund. The DSL for modeling such action 
types can be accessed via an interface, the so-called action type designer. This user interface is implemented 
as an integrated development interface (IDE) for the DSL, which provides a modeler with all benefits of 
common IDEs such as code completion or syntax highlighting. The language constructs of the DSL and 
any previously defined action types can be used to model new action types. All created action types are 
stored in the action type directory and, thus, made accessible to the system. 
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Figure 1: Architecture of the logistics assistance system, based on Rabe et al. (2018a). 

3.2 Process of Deriving Actions from Action Types 

The simulation scenario can be configured in another user interface, the so-called scenario builder. The 
scenario builder has access to the action type directory and, therefore, to all actions types stored in it. The 
user can select any number of action types from the action type directory to be taken into account for the 
current simulation scenario. After each selected action type has been configured, all corresponding actions 
are derived and added to the HU’s search space (Rabe et al. 2018b). 

In addition to the selection and configuration of action types, the user can make further settings. For 
example, scheduling criteria, optimization targets or other general conditions can be defined. Once the con-
figuration of the scenarios has been completed, the simulation-based optimization can be started. 

4 REQUIREMENTS FOR MODELING ACTION TYPES 

The effects of an action type on the respective WLN are company-dependent. In addition, action types are 
subject to constant change and must be continuously adaptable. As a result, a method for modeling action 
types must ensure that it is also possible to address unknown relationships and effects. In the authors' LAS, 
action types represent changes to the simulation model by manipulating the underlying database. Accor-
dingly, it must be ensured that all possible changes, in particular adding and removing entities and changing 
the entities' attribute values, can be mapped to the database using this method. 

LASs are usually used by different users, for example by modelers, simulation experts, or decision-
makers. The traceability of a formal description of action types and the associated effects on the logistics 
network are essential criteria for both acceptance and collaboration. As a result, a method for a formal 
description of action types must be as accessible and comprehensible as possible, e.g., by following a natural 
language flow. 
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Action types can have complex effects on the underlying logistics network, for example when an exist-
ing site is closed. Transferred to the LAS under consideration, this means that a simple and intuitive method 
for the formal description of action types must be ensured, e.g., by providing the most powerful constructs 
possible or by ensuring a natural writing flow during modeling. It should also be noted that it is necessary 
to include existing action types in the modeling of a new and complex action type in order to ensure that 
existing action types can be reused. Such a modular approach also reduces the modeling effort and 
complexity of action types. 

An action type, and thereby corresponding actions, can influence several entities of the underlying 
logistics network, e.g., all SKUs of an assortment. In such a case, an action may change all affected entities 
in the same way, e.g., by increasing the stocks of all affected SKUs by 20 %. However, in some cases, an 
individual change may have to be made for each individual entity. For instance, when the sourcing of SKUs 
is changed, a suitable supplier may have to be found for each SKU and set accordingly as the new supplier 
of this article. A method for the formal description of action types requires the possibility of being able to 
map corresponding distinctions and recurring facts as efficiently as possible, e.g., in the form of case 
distinctions or loops. 

5 SEMANTIC MODEL FOR THE REPRESENTATION OF ACTION TYPES 

Any action type is built upon the same semantic model. Thus, the semantic model needs to be capable to 
represent all necessary information for any possible action type in a wholesale logistics network. Differ-
ences between the characteristics of different action types are exclusively represented by an individual 
parameterization of the semantic model’s attributes. The initialization of these attributes can be done by 
different sources, e.g., by a user or by the system and at different stages of the modeling process. The action 
type’s semantic model shown in Table 1 is described in the following. 

The attributes of the semantic model are serving various purposes and, therefore, are divided into 
different categories. The first group of attributes have an informative objective, such as an action type’s id, 
a name, a description, and a list of ids of one or more involved modelers, as well as the owner’s id. An 
action type’s id is used as a system-internal identifier and set automatically during the modeling process. 
The action type’s description is given by the modeler and utilized to improve the understanding of the 
action type’s implementation and its effects on the underlying wholesale logistics network. The action 
type’s name, set by the modeler, and the modelers’ ids, set by the system, are used by the users of the LAS 
in order to identify and recognize an action type. In addition, access permissions, e.g., for editing or deleting 
an action type, can be managed based on the owner’s and modelers’ ids. 

Action types are representing changes to the simulation model and, therefore, to the underlying whole-
sale logistics network. For the specification of these changes, functional attributes are used. An action type 
describes a set of similar actions that differ in the entities they affect. The attribute input is used to provide 
a mechanism for specifying these entities by representing a list of input parameters. In addition, a list of 
statements is used to characterize the type of changes that are applied to these entities. These functional 
attributes are implemented by the modeler during the modeling process. 

Realizing actions in the real wholesale logistics network can entail costs. The total costs of an action 
type are stored in the attribute total costs. Equivalent to the costs, the conversion duration is stored in the 
attribute time till effect. These attributes, representing information related to the execution of an action type, 
are set by the modeler. 

Between the modeling and implementation, an action type passes through several stages, e.g., on hold 
or under review. The current stage of an action type is stored in the attribute status which is updated auto-
matically by the system. The implementation of an action type – the DSL program – is stored in the attribute 
program code automatically. Thus, the code can be reviewed and loaded into an IDE easily, without any 
compilation or translation. Some action types cannot be executed on their own, but only in connection with 
other action types. Thus, this information is stored in the attribute autonomous, which needs to be defined 
by a modeler during the modeling process. 
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Domain-specific information, e.g., the frequency or the action type’s impact on the WLN’s perfor-
mance, can be stored in corresponding attributes. These parameters are set be the modeler. In addition, the 
sort of changes of the underlying WLN can be divided into two groups: first, structural changes, such as 
adding or removing entities, and second, configurational changes, such as changing attribute values. This 
information is stored in the attributes structural and configurational, accordingly. The sort of changes is 
determined by the system and set accordingly. Correlations between different action types can also be 
modeled, e.g., when centralizing an SKU in a site, increasing the stock and safety stock level of that SKU 
in the given site or increasing the transport frequency of affected routes may be promising candidates for 
further actions. The correlation between different action types must be specified manually. These domain-
specific information can be utilized to guide the search for promising action plans and, therefore, to reduce 
computational time of the LAS (Rabe et al. 2018a).  

For further processing of an action type, any action derived is automatically stored in an attribute called 
actions. These actions depend on the action type’s input parameters’ values and the current state of the 
wholesale logistics network. The number of actions across all action types determines the search space of 
the heuristic unit. 

Table 1: The semantic model for the representation of action types in wholesale logistics networks. 

Attribute Description Source 
Actions List with all derived actions, depending on the logistics network’s state. System 
Autonomous Specifies whether the action type can be used on its own or only in 

combination with other action types. 
Modeler 

Configurational 
 

Domain-specific information that specifies, for an action type, whether 
the corresponding changes are configurational. 

System 

Correlation Domain-specific information that specifies possible correlations and 
their correlation factor with other action types. 

Modeler 

Description Free description of the action type. Modeler 
Frequency Domain-specific information that specifies the frequency of the 

implementation of derived actions. 
Modeler 

Id Id of the action type. System 
Impact Domain-specific information that specifies the impact of derived 

actions to the underlying logistics network’s performance. 
Modeler 

Input List of input parameters. Modeler 
Modelers List with ids of the involved modelers. System 
Name Name of the action type. Modeler 
Owner Owner of the action type. System 
Program code DSL script that represents the program code of the action type System 
Statements List of statements, representing changes to the underlying logistics 

network. 
Modeler 

Status Status of the action type. System 
Structural Domain-specific information that specifies whether the corresponding 

changes of the action type are structurally. 
System 

Time till effect Required time for a corresponding action to take effect. Modeler 
Total costs The costs associated with the implementation of derived actions. Modeler 

 
Any attributes of the semantic model assigned to a modeler are implemented during the modeling 

process using a domain-specific modeling language. Thus, language constructs for these specific imple-
mentations are required. 
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6 CONCEPT OF A DOMAIN-SPECIFIC LANGUAGE FOR MODELING ACTION TYPES 

A domain-specific modeling language can be seen as a thin layer over the semantic model (see Table 1) 
that is used in order to initialize this model. The DSL script generated during the modeling process is 
processed by a parser and converted into an abstract syntax tree (AST). Based on the AST, a semantic 
analysis of the modeled action type is performed and a populated semantic model is generated. The 
sequence of processing a DSL script for initializing the semantic model is shown in Figure 2. 

 

Figure 2: Processing a DSL script and populating the semantic model of action types in wholesale logistics 
networks. 

Domain-specific data types and language constructs in addition to some language constructs from 
general-purpose languages are used to create a DSL-script that represents the formal description of an action 
type. The set of language constructs of a DSL should be kept as small as possible, e.g., using only one kind 
of case distinction and loop. In the following section, the concept of a DSL for modeling action types in 
WLN is presented. A complete description of the language and its grammar is given in Schmitt (2019). 

6.1 General Language Constructs 

In addition to some domain-specific language constructs, the DSL also contains some more general con-
structs. These are essentially similar to corresponding language constructs from general-purpose languages 
like Python, Java, or C#, so that only a brief introduction is given. 

Variables are used to store and retrieve data during the course of an action type. These variables are 
referenced by a unique identifier and must be assigned to concrete data types during declaration. A value 
assignment is performed using an equals sign. Otherwise, the variable’s value is null. 

An if-then-else expression is available to a modeler for making conditional case distinctions. With this 
language construct, values or ranges of values as well as boundary conditions can be evaluated. The further 
execution of corresponding actions may depend on the result. If-then-else expressions can be nested to any 
depth, by adding additional else-branches. 

It is possible to use a for-each loop to model a list of recurring statements or declarations. Such a loop 
passes through all values stored in a specified variable. The loop body is executed exactly once for each 
element of the variable. Within the loop’s body, the current element can be accessed, e.g., for further 
processing. 

The language construct comment can be used to specify additional information in the modeling of 
action types. A comment is initialized with a hash and can then contain any number of valid characters of 
the language, until the end of the current line of code. Comments are used to describe the action type and 
have no influence on its effects on the underlying logistics network. 
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6.2 New Class of Data Types 

Data types are used to store complex related information in a single structure. For modeling action types in 
WLNs the data types modifier, list, filter and query are used, which are presented in the following. 

The data type modifier is used to represent any changes to attribute values of one or more entities of 
the wholesale logistics network, e.g., the change of stock level of any SKU in a given site. These manipu-
lations can be defined as absolute values (e.g., 100, Monday, True) or relative values (+10, -7%, 
2*(12-myVariable), respectively. Thus, the modifier consists of an algebraic sign, a value, and a percentage 
character. The algebraic sign and the percentage character can be defined optionally, but the percentage 
character may not be set without a sign. 

A list can be used to store multiple values or variables, e.g., one or more modifiers. These values are 
enclosed in square brackets and separated from each other by a comma, e.g., [-7, 9-3, myValue, 12]. A list 
can only store values of the same underlying data type, such as Integers, Strings, or Booleans. Nested 
structures, e.g., a list in a list, are automatically resolved. Thus, lists are always one-dimensional. This 
ensures the comprehensibility and traceability of data in a data structure. 

When manipulating the simulation model by applying an action, the effected entities can be further 
specified. Therefore, the data type filter can be used. For example, when changing the stock of any SKU in 
a specific site, a filter might be used to restrict the affected SKUs to those with a weight of more than 100 
kilogram. A filter consists of one or more filter criteria. Each filter criteria is defined for a specific entity 
class’ attribute, e.g., for the entity class SKU and its attribute weight. In addition, a condition must be 
defined for each of these combinations. Such a condition consists of a relational operator and a value, e.g., 
> 100. Multiple filter criteria are each linked by a logical operator, e.g., by “and” or by “or”. For a better 
structuring of multiple filter criteria, it is possible to use parentheses. Additionally, filter criteria can be 
negated. In the following, a snippet of a formal description of an exemplary action type is presented, in 
which a filter is declared. The filter myWeightFilter has the condition that entities must have at least a value 
of 100 for the attribute weight of the corresponding entity class SKU.  

 
myWeightFilter TYPE FILTER = SKU.weight >= 100 

 
The simulation model’s entities can be loaded into a data structure called query. In such a query, a set 

of entities with the same structure, i.e., entities with the same attributes, can be stored. Therefore, the 
corresponding entity class must be specified together with the query. In addition to the entities, the structure 
of the associated entity class is stored in the query as well. A query can also consist exclusively of the 
structural information of the underlying entity classes, i.e., it can be empty. A query is not limited to a single 
entity class and, thus, can store the structure and entities of multiple related entity classes. To enable this 
feature, the entity classes are connected by using the logical operator “and”. New entities can be added to 
a query that do not necessarily have to originate from the underlying database, but can be freely 
parameterized by a modeler. Entities that are not related cannot be stored in the same query. In the following 
example, the variable mySKUQuery is declared as a query and initialized with all entities of the entity class 
SKU. The content of the query is displayed in Table 2 in parts. 

 
mySKUQuery TYPE QUERY = ENTITY SKU 

Table 2: Partial tabular display of query mySKUQuery. 

SKU.id SKU.name SKU.weight SKU.height … 
1 SKU1 123 154 … 
2 SKU2 26 1169 … 
3 SKU3 178 13240 … 
4 SKU4 73 948 … 
5 SKU5 582 6400 … 
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6.3 Functions on Data Types 

Some of the presented data types have additional functions that can be executed. These functions are used 
for increasing the flexibility of the corresponding data types and, therefore, of the domain-specific language.  

The data type list has additional functions for a more specific selection of data from the underlying 
wholesale logistics network. For example, a modeler can select any number of elements from a specific 
index or from the beginning or the end of a given list. To increase the flexibility, the list’s elements can be 
sorted in an ascending or descending order. Furthermore, additional information can be selected from the 
list, such as the count, the sum, the average, the maximum, or the minimum of any corresponding elements. 
Multiple lists can be combined into one single list. 

Two or more filters can be combined into one single filter by utilizing logical operators, e.g., by an 
“and” or by an “or”. Additionally, these filters can be structured by using parentheses. 

The functionalities of a list also apply to the data type query. Because of the multi-dimensionality of a 
query, an additional tuple, consisting of an entity class and one of its attributes, must be specified to access 
its information, e.g., the sum of SKU.weight for all entities of a query. Furthermore, a query can optionally 
be combined with one or more filters. The result of this filtering is a subset of the original query, including 
all entities that fulfill the criteria of that filter. The result can be stored in another query. In the following 
example, the query mySKUQuery is combined with the filter myWeightFilter, both from the previous 
examples. The result is saved in the new query myFilteredSKUQuery and is available for further modeling. 
In Table 3, the query’s content is displayed in parts. 

 
mySKUQuery TYPE QUERY = ENTITY SKU 
myWeightFilter TYPE FILTER = SKU.weight >= 100 
myFilteredSKUQuery TYPE QUERY = mySKUQuery  
  WITH FILTER  
  myWeightFilter 

 

Table 3: Partial tabular display of the query myFilteredSKUQuery after combining the query mySKUQuery 
with the filter myWeightFilter. 

SKU.id SKU.name SKU.weight SKU.height … 
3 SKU3 178 13240 … 
5 SKU5 582 6400 … 

6.4 Language Constructs for Manipulating the Simulation Model 

For manipulating the entities’ attribute values of the underlying wholesale logistics network, change 
statements are used. A change statement is executed on a single entity class, altering one or more attribute 
values for all corresponding entities. For this purpose, one or more attributes of the entity class must be 
defined, which then will be changed. A modifier is used to specify the exact changes. A subset of the 
affected entities can be selected by using a filter. To change attribute values, the data type of the respective 
attribute, e.g., Integer, String, Float, and its value range must be taken into account. 

The add statement is used to add new entities to the simulation model, e.g., a new SKU to a site. 
Therefore, an entity class must be defined to which the new entities are added. A specific value can be 
assigned to each attribute of the entity class. Such an assignment can be made directly by providing a 
specific value or by a reference to an existing list. If a list contains more than one value, a new entity is 
added for each of these values. Each attribute to which no value has been assigned is set to a predefined 
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default value. If new entities are added to the simulation model, any attribute’s value of the newly added 
entities can be accessed and stored in a list. For example, when new SKUs are added to a site, their ids can 
be accessed and used for further processing.  

Entities can be removed from the simulation model by using the remove statements. Each remove 
statement is assigned to a single entity class that is specified during its implementation. Basically, all entities 
of a given entity class are affected by such a remove statement. However, if a subset of entities is to be 
removed, this set can be specified by using a filter, e.g., remove all SKUs from a location that weigh more 
than 100 kilogram. Similar to an add statement, certain attribute values of the removed entities can be 
accessed, for example the ids of the removed SKUs. These values can be stored in a list and used in the 
further course of the action type. 

In order to ensure the requirement of traceability and simplification of the modeling of action types, 
there is the possibility to access and to use existing action types for the modeling process of further action 
types via the call statement. For the integration of an existing action type in the model, a reference to the 
action type must be made using the corresponding action type’s name. In addition, the parameters of the 
called action type must be set accordingly.  

An action type may have a return value as its result, e.g., a list of values. These values can be returned 
via the return statement. The returned values can be used for further processing in the calling action type. 

Sometimes it is necessary to cancel the execution of an action type under certain conditions, e.g., if 
specific requirements are not fulfilled. For this purpose, the abort statement can be used. As a result of this 
statement, any changes made in the course of the same action type or by any action type called are undone. 

6.5 Exemplary Implementation of the Action Type “Change Stock” 

In the following, an exemplary implementation of the action type “Change Stock” is given and described. 
First, the name and description of the action type are defined. Then, two filter variables and one modifier 
variable, mySKUsFilter, mySitesFilter, and myStock, are declared as the action type’s input, whereby the 
default value of the modifier variable is set to +10. The list of statements contains a change statement 
affecting the entity class SitesHaveSkus, in which inventory information of the underlying WLN is stored. 
The actual stock level of an SKU in a site is stored in the attribute Stock, whose value is changed by the 
modifier myStock. The affected entities are specified using the filter criteria of mySKUsFilter and 
mySitesFilter. Autonomous execution of derived actions is possible. 
 

ACTIONTYPE  Change Stock 
DESCRIPTION  This Action Type changes the Stock (myStock) of one or more SKUs 

(mySKUsFilter) in one or more Sites (mySitesFilter) 
INPUT 
 mySKUsFilter TYPE FILTER 
 mySitesFilter TYPE FILTER  
 myStock TYPE MODIFIER = +10 
STATEMENTS 
 IN TABLE SitesHaveSkus CHANGE 
  Stock = myStock  
 WHERE 
  mySKUsFilter AND mySitesFilter 
AUTONOMOUS TRUE 

7 CONCLUSION AND OUTLOOK 

The authors presented a method for modeling actions in data-driven, discrete event simulation models for 
WLNs. An essential part of this method is a semantic model for the description of action types. Using a 
domain-specific language for modeling action types in WLNs, a modeler can initialize the underlying 
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semantic model accordingly. The typical character of a DSL is achieved by the strongly reduced set of 
language constructs, new domain-specific data types and functions as well as the natural read-and-write 
flow during the modeling process. The DSL presented was used by domain experts to model exemplary 
action types in a materials trading company. The modeling process was simplified and accelerated.  

Further research could be the extension of the semantic model by additional properties and of the 
language by corresponding constructs, e.g., boundary conditions relevant to planning, such as personnel or 
spatial capacities. A transfer of the concept to other domains would be an exciting option as well. In 
addition, the application of the developed DSL to other companies could lead to a broader validation. 

ACKNOWLEDGMENTS 

Special thanks to the Graduate School of Logistics, TU Dortmund and thyssenkrupp AG for supporting this 
research. 

REFERENCES 

Barth, K., M. Hartmann, and H. Schröder. 2015. Betriebswirtschaftslehre des Handels. 7th ed. Wiesbaden: Springer Gabler. 
https://dx.doi.org/10.1007/978-3-8349-7184-5. 

Bentley, J. 1986. “Programming Pearls: Little Languages“. Communications of the ACM 29(8):711–721. 
Blutner, D., S. Cramer, S. Krause, T. Mönks, L. Nagel, A. Reinholz, and M. Witthaut. 2007. “Assistenzsysteme für die Entschei-

dungsunterstützung“. In Große Netze der Logistik, edited by P. Buchholz and U. Clausen, 241–270. Berlin, Heidelberg: 
Springer. 

Bockholt, F., W. Raabe, and M. Toth. 2011. “Logistic Assistance Systems for Collaborative Supply Chain Planning”. International 
Journal of Simulation and Process Modelling 6(4):297–307. https://doi.org/10.1504/IJSPM.2011.048010. 

Cheng, B. H. C., B. Combemale, R. B. France, J.-M. Jézéquel, and B. Rumpe. “On the Globalization of Domain-specific 
Languages”. In Globalizing Domain-Specific Languages, edited by B. H. C. Cheng, B. Combemale, R. B. France, J.-M. 
Jézéquel, and B. Rumpe, 1–6. Springer, Cham. https://dx.doi.org/10.1007/978-3-319-26172-0 

Cordeau, J.-F., F. Pasin, and M. M. Solomon. 2006. “An Integrated Model for Logistics Network Design”. In Annals of Operations 
Research 144 (1): 59–82. https://doi.org/10.1007/s10479-006-0001-3. 

Fowler, M. and R. Parsons. 2011. Domain-specific Languages. Upper Saddle River, New Jersey: Addison-Wesley. 
France, R., and B. Rumpe. 2007. “Model-driven Development of Complex Software: A Research Roadmap”. In Future of Software 

Engineering, edited by L. C. Briand and A. L. Wolf, 37–54. Los Alamitos, CA.: IEEE Computer Society. 
Gutenschwager, K., M. Rabe, S. Spieckermann, and S. Wenzel. 2017. Simulation in Produktion und Logistik. Grundlagen und 

Anwendungen. Berlin: Springer Vieweg. https://doi.org/10.1007/978-3-662-55745-7. 
Heilala, J., J. Montonen, P. Jarvinen, S. Kivikunnas, M. Maantila, J. Sillanpaa, and T. Jokinen. 2010. “Developing Simulation-

based Decision Support Systems for Customer-driven Manufacturing Operation Planning”. In Proceedings of the 2010 Winter 
Simulation Conference, edited by B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, 3363–3375. 
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.  

Juan, A. A., J. Faulin, S. E. Grasman, M. Rabe, and G. Figueira. 2015. “A Review of Simheuristics: Extending Metaheuristics to 
Deal with Stochastic Combinatorial Optimization Problems”. Operations Research Perspectives 2:62–72. 
https://doi.org/10.1016/j.orp.2015.03.001 

Kengpol, A. 2008. “Design of a Decision Support System to Evaluate Logistics Distribution Network in Greater Mekong Subregion 
Countries”. International Journal of Production Economics 115(2): 388–399. https://doi.org/10.1016/j.ijpe.2007.10.025. 

Larson, P. D., and A. Halldorsson. 2004. “Logistics Versus Supply Chain Management: An International Survey”. International 
Journal of Logistics Research and Applications 7(1):17–31. https://doi.org/10.1080/13675560310001619240. 

Ma, H. and C. Suo. 2006. “A Model for Designing Multiple Products Logistics Networks”. International Journal of Physical 
Distribution & Logistics Management 36(2):127–135. http://doi.org/10.1108/09600030610656440. 

Nardi, B. A. 1993. A Small Matter of Programming – Perspectives on End User Computing. Cambridge, Massachusetts: MIT 
Press. 

Oracle Corporation. 2019. MySQL 8.0 Reference Manual. https://docs.oracle.com/cd/E17952_01/mysql-8.0-en/mysql-8.0-en.pdf, 
accessed 12th June. 

Rabe, M., M. Ammouriova, and D. Schmitt. 2018a. “Utilizing Domain-specific Information for the Optimization of Logistics 
Networks”. In Proceedings of the 2018 Winter Simulation Conference, edited by M. Rabe, A. A. Juan, N. Mustafee, A. 
Skoogh, S. Jain and B. Johansson, 2873-2884. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.  

Rabe, M., D. Schmitt, and M. Ammouriova. 2018b. “Improving the Performance of a Logistics Assistance System for Materials 
Trading Networks by Grouping Similar Actions”. In Proceedings of the 2018 Winter Simulation Conference, edited by M. 

1589



Rabe and Schmitt 
 

 

Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain and B. Johansson, 2861-2872. Piscataway, New Jersey: Institute of 
Electrical and Electronics Engineers, Inc.  

Rabe, M., D. Schmitt, A. Klüter, and J. Hunker. 2019. “Decoupling the Modeling of Actions in Logistics Networks from the 
Underlying Simulation Data Model”. In Advances in Production, Logistics and Traffic. Proceedings of the 4th 
Interdisciplinary Conference on Production Logistics and Traffic 2019, edited by U. Clausen, S. Langkau, and F. Kreuz, 32–
44. Cham: Springer International Publishing. 

Rushton, A. P. Croucher, and P. Baker. 2010. The Handbook of Logistics & Distribution Management. 4th ed. London, Philadelphia: 
Kogan Page. 

Sammet, J. E. 1969. Programming Languages: History and Fundamentals. Englewood Cliffs, New Jersey: Prentice-Hall. 
Schmitt, D. 2019. Grammar of a Domain-specific Language for Modeling and Simulating Actions in Wholesale Logistics Networks. 

http://www.itpl.mb.tu-dortmund.de/publikationen/files/Schmitt_DSL_Grammar_in_WholesaleLogisticsNetworks.pdf, 
accessed 12th June. 

Seÿffert, R. 1972. Wirtschaftslehre des Handels. 5th ed. Opladen: Westdeutscher Verlag Opladen. http://doi.org/10.1007/978-3-
322-83523-9. 

SimPlan AG. 2017. “SimChain”. http://www.simchain.net/, accessed 12th June. 
Object Management Group. 2015. Unified Modeling Language Specification. https://www.omg.org/spec/UML/2.5.1/PDF, 

accessed 12th June. 
van Deursen, A., P. Klint, J. Visser. 2000. “Domain-specific Languages: An Annotated Bibliography“. SIGPLAN Not. 35(6):26–

36. New York: ACM. http://doi.org/10.1145/352029.352035. 
Voelter, M. 2010 – 2013. DSL Engineering. Designing, Implementing and Using Domain-specific Languages. Lexington, KY: 

CreateSpace Independent Publishing Platform. 
Wang, N., Y. Mi, H. Gao, and W. Liu. 2016. “Logistics Network Model Based on Matter Element Node”. Procedia Computer 

Science 91: 351–356. http://doi.org/10.1016/j.procs.2016.07.093. 
Wenzel, S., B. Bockel, and F. Deist. 2009. “Die Integration der Produktions- und Logistiksimulation in die Digitale Fabrik – 

Herausforderungen und Entwicklungstrends“. In Digital Engineering -– Herausforderung für die Arbeits- und Betriebsorga-
nisation, edited by M. Schenk, 317–339. Berlin: GITO mbH Verlag. 

Wexelblat, R. L. 1981. History of Programming Languages. New York: Academic Press. 

AUTHOR BIOGRAPHIES 

MARKUS RABE is a full professor for IT in Production and Logistics (ITPL) at the Technical University Dortmund. Until 2010 
he had been with Fraunhofer IPK in Berlin as head of the corporate logistics and processes department, head of the central IT 
department, and a member of the institute direction circle. His research focus is on information systems for supply chains, 
production planning, and simulation. Markus Rabe is vice chair of the “Simulation in Production and Logistics” group of the 
simulation society ASIM, member of the advisory board of the Journal of Simulation, member of several conference program 
committees, has chaired the ASIM SPL conference in 1998, 2000, 2004, 2008, and 2015, and was local chair of the WSC’2012 in 
Berlin as well as proceedings chair of the WSC’18 in Gothenburg. More than 190 publications and editions report from his work. 
His e-mail address is markus.rabe@tu-dortmund.de.  
 
DOMINIK SCHMITT works as a researcher at the Graduate School of Logistics and the ITPL at the Technical University 
Dortmund. He holds a diploma in Computer Science from the Technical University Dortmund. He graduated with a diploma thesis 
on the development of a computer-based model for the representation of transformable production systems for scheduling 
algorithms. Since 2016 he focuses his research on how to make the modeling and simulation of actions in wholesale logistics 
networks more accessible for non-simulation experts. His e-mail address is dominik.schmitt@tu-dortmund.de. 

1590


