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ABSTRACT 

Coastal flooding is the most expensive type of natural disaster in the United States. Policy initiatives to 
mitigate the effects of these events are dependent upon understanding flood victim responses at an 
individual and municipal level. Agent-Based Modeling (ABM) is an effective tool for analyzing 
community-wide responses to natural disaster, but the quality of the ABM’s performance is often 
challenging to determine. This paper discusses the complexity of the Protective Action Decision Model 
(PADM) and Protection Motivation Theory (PMT) for human decision making regarding hazard 
mitigations. A combined (PADM/PMT) model is developed and integrated into the MASON modeling 
framework. The ABM implements a hind-cast of Hurricane Sandy’s damage to Sea Bright, NJ and 
homeowner post-flood reconstruction decisions. It is validated against damage assessments and post-storm 
surveys. The contribution of socio-economic factors and built environment on model performance is also 
addressed and suggests that mitigation for townhouse communities will be challenging. 

1 INTRODUCTION 

Flooding from tropical storms is the most expensive natural disaster affecting the United States, and 
globally has only been exceeded by the Japanese Tsunami of 2011 and the earthquake of 1998 (National 
Oceanic and Atmospheric Administration 2019). Damages from Hurricanes Katrina in 2005 and Harvey in 
2017 were 156.3 and 125 billion dollars, respectively. Mitigating the effects of future coastal flood events 
can reduce homeowner and community-level costs. Mitigation is a fertile area for model-based analysis, as 
major tropical storms are infrequent events.  
 Agent-Based Modeling (ABM) is one such tool for analyzing responses to natural disasters, but its 
efficacy is dependent upon the validity of the agents’ decision making model. Through the modeling of 
individual actors and their actions within an environment, ABMs provide a means to identify emergent, 
higher-level behaviors. The actors’ actions are predicated upon their perception of their environment and 
their subsequent decision making. The details of the decision making model and its implementation drive 
the model responses and are the core of the simulation (Crooks et al. 2018).  

Unfortunately with ABMs, the penalties of utilizing a “bottom-up” approach to modeling are increased 
complexity and reduced transparency and repeatability. Confirming the correctness of each of  the multitude 
of agents’ individual stochastic actions is arduous, if even tractable. While highly recommended, model 
validation is often cursory or completely missing from ABM analysis and publications (Crooks et al. 2008).  

This paper describes the use of Lindell and Hwang’s (2008) Protective Action Decision Model (PADM) 
to represent homeowner responses within coastal flood mitigation modeling. It  also presents an agent-
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based model representing Sea Bright, NJ. with a simulated hind-casting (i.e., reconstruction) of Hurricane 
Sandy and validates the model with post-storm homeowner survey responses (McNeil et al. 2017). Section 
2 provides background into disaster response decision making theory, an overview of  previous modeling 
efforts including ABM of coastal flooding analysis, and a summary of Hurricane Sandy and Sea Bright, 
NJ. The methodology used in this analysis is then presented in Section 3. Results, discussion and validation 
of the ABM’s household damage and homeowner response modeling are described in Section 4. Finally, 
Section 5 provides conclusions and recommendations for future work.  

2 BACKGROUND 

To understand the context and methodology of this analysis, an overview of disaster response logic (Section 
2.1) is provided. A review of both Agent-Based (Section 2.2) and flood (Section 2.3) modeling is beneficial. 
Sea Bright demographics and responses to Hurricane Sandy are presented in Section 2.4 and these were 
utilized as reference points during the model validation process. 

2.1 Decision Making Modeling 

Human reactions to natural disasters and their actions to mitigate against these hazards have been evaluated 
via pre-and post-disaster surveys, population shifts in census data, and changes in municipal records. The 
psychology of disaster responses has elicited multiple theories for victim decision making (e.g. Kahneman 
and Tversky 1979; Ge et al. 2011; Grothmann and Patt 2005; Bubeck et al. 2012; Lindell and Hwang 2008) 
and multiple vulnerability indices have been proposed (e.g. Ward 2012; Bakkensen et al. 2017).  Two 
hazard mitigation theoretical frameworks, which are descendants of expectancy-valence models, are the 
protection motivation theory (PMT, Rogers 1975;  Bubeck et al. 2012) and PADM.  
 PMT explains decision making as a sequence of three cognitive mediating processes: threat appraisal, 
coping appraisal, and protection motivation/avoidance (Bubeck et al. 2012). The initial step of threat 
appraisal may be viewed as a traditional risk assessment based upon the perceived hazard probability and 
consequence. The coping appraisal is similar to cost-benefit analysis utilizing the decision maker’s 
perception of their self-efficacy (i.e., ability to affect the response), response efficacy (i.e., the responses’ 
ability to mitigate the risk) and response cost. The final hurdle, protection motivation, involves converting 
perceptions into behavior, either in protective or non-protective responses. PMT’s explanation for non-
protective responses to beneficial mitigations is based upon fatalism, wishful thinking, and denial; but they 
might also be explained by competing priorities and limited resources. Where PMT bases the decision 
process on informational inputs of verbal persuasion, observational learning, personality variables and prior 
experience, PADM identifies social context, environmental cues and social information as the drivers of 
risk perception. In a survey of natural and man-made hazards in the coastal Houston TX area, Lindell and 
Hwang (2008) identified gender, ethnicity, income, and hazard experience as statistically significant factors 
effecting perceived risk, and perceived risk as a significant factor in hazard adjustment.  Grothmann and 
Patt (2005) combined aspects of PADM and PMT into a climate change adaptation model. For this study, 
as shown in Figure 1, the Grothmann and Patt (2005) model was extended to flood mitigations and adapted 
to reflect Lindell and Hwang’s (2008) significant factors from above. 

2.2 Agent Based Modeling 

ABM is a leading method to model people, organizations, and societies. Its distinguishing feature is 
modeling from the agent’s (i.e., individual’s) perspective  (Macal, 2016). Agents are represented as unique 
entities, observing their environment at the local-level, and making decisions without external direction; 
which ultimately results in actions (Parker et al. 2003). The collective actions of the individuals coalesce in 
community-level social and organizational behavior (Macal and North 2013).   
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Figure 1: The authors’ adaptation of the Protection Motivation Theory and Protective Action Decision 
Model. 

 
Individual behavior and urban dynamics are two areas where ABM provides modeling utility (Crooks 

et al. 2019). Individuals are interacting autonomous entities with heterogenous characteristics, and dynamic 
behavior. They have the ability to learn, evolve, and adapt. In the context of coast flood modeling they can 
be instilled with flood experience and instantiated for each property owner with the attributes of gender, 
ethnicity, and income.  Algorithms may be constructed to assess their perceived risk based upon current 
flood inundation and expected storm surge risk, their expectation of reoccurrence, and socio-economic 
based preferences. Cost-benefit judgements can be simulated for a constrained budget situation. 

Initially, tropical storm and coastal flooding ABMs focused on transportation networks, evacuations, 
and shelter locations for places such as Miami, Florida (Yin et al. 2014), the Florida Keys (Chen et al. 2006, 
Schoenharl 2007) and in evacuation more generally (Chen et al. 2003). Dawson et al. (2011) incorporated 
a hydrodynamic wave model into an ABM to evaluate evacuations in the event of sea wall breaches. More 
recently, ABMs have expanded to evaluate flood mitigation policies for floodproofing incentives (Pei et al. 
2015, Reilly et al. 2017a), electrical power reliability and hardening (Reilly et al. 2017b), and risk 
communication strategies (Haer et al. 2016).  

2.3 Coastal Flood Modeling 

Tropical storm modeling has long been the domain of Civil Engineering and Computational Fluid 
Dynamics (CFD), most notably for flood mapping by Federal Emergency Management Agency (FEMA). 
These simulation efforts provide storm surge heights and sustained wind speeds to assess potential 
structural damage and permit cost-benefit analysis for individual flood mitigation actions (Federal 
Emergency Management Agency 2016).  

The CFD analyses are underpinned by well-established physics based models utilizing the shallow 
water wave equation, but for household-level hurricane responses the underlying theory and modeling 
assumptions for ABMs are less well grounded. In a review of nine coastal flood ABMs listed in the previous 
section, only one study referenced model validation and three others described  the use of some of the four 
validation stages from Ngo and See (2012): face validation, sensitivity analysis, calibration, and output 
verification.  
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2.4 Hurricane Sandy and Sea Bright, New Jersey 

Hurricane Sandy was the fifth most expensive natural disaster in the U.S., responsible for $68.9 billion 
in damages and 150 fatalities. The tropical storm reached category 3 status, but weakened and made landfall 
on October 29th, 2012 as a post-tropical cyclone approximately 69 miles south of Sea Bright, NJ.  Maximum 
wind gusts at Sandy Hook, NJ (4.8 miles north of Sea Bright) were 60 knots (Blake et al. 2013). The storm 
tide in Sea Bright was 10.0 to 10.6 feet (North American Vertical Datum 1988) while FEMA building 
inundation measurements varied from 0.05 to 9.8 ft above ground level (Federal Emergency Management 
Administration 2015). Median damage values were $110,623 from surveys Sea Bright residents taken post-
Hurricane Sandy by McNeil et al. (2017).  The average damage value per surveyed household was $60,000. 

The Borough of Sea Bright, NJ is a residential community and vacation location situated on the northern 
New Jersey barrier peninsula. Figure 2 provides an image of the area. At the time of the hurricane, the 
Borough contained 1019 housing units and 769 households. The majority of dwellings were two- and three-
story, single family, framed homes and townhouses. 58.0% were owner occupied. The Borough was 81.1% 
white by household and 51.2% male by total population. Median age was 41.4 years old and median 
household income was $77,950 (U.S. Census Bureau 2019).  In 2015, 7.0% of homes had been abandoned, 
condemned, or demolished; 5.6% required a complete rebuild;  66.9% had been repaired without elevation; 
10.6% had been elevated; 9.9% were under repair; and 9.9% were undamaged. In determining where to 
live, the opinions of neighbors was not very important or not important at all for 77.6% of respondents 
(McNeil et al. 2017). 
 

Figure 2: Sea Bright, New Jersey—Satellite image from Google Earth (2010), Landsat/Copernicus. 
 

3 METHODOLOGY 

A Monte-Carlo agent-based model was developed and integrated into the MASON (Luke et al. 2005) 
framework in order to hind-cast Hurricane Sandy’s damage and compared against Sea Bright survey 
responses from 2014 and 2015. Analysis of Hurricane Sandy’s effects was limited to the geographic 
constraints of the Borough of Sea Bright, while the ABM modeled individual properties, housing units, and 
property owners as agents within the geographic area. In what follows, we first discuss how the population 
was constructed (Section 3.1). Next we turn to the structural damage sustained (Section 3.2) and then to the 
homeowners’ PMT/PADM appraisal and reconstitution decision (Section 3.3). Section 3.4 describes the 
calibration and verification process employed and finally Section 3.5 addresses causal analysis. The 
simulation’s sensitivity to socio-economic factors was planned but not conducted based upon the results of 
the risk threshold calibration (Section 3.4) which indicated that low risk tolerances were required regardless 
of demographics. Due to space limitations what follows is a brief description of the model, however a more 
detailed description following the Overview, Design concepts, and Details (ODD) protocol by Grimm et 
al. (2010) and source code may be found at CoMSES/SEABrightABM (McEligot 2019).   

3.1 Sea Bright and Hurricane Sandy Generation 

Residential locations, building characteristics, property and building values, and homeowner names and 
statuses were obtained from Monmouth County Office of Records Management (2019) property records.  
Google Earth (2010) was used for site elevations. Flood-proofing freeboard (i.e. first floor height above 
ground) was estimated from Google Street View (2019) and, if imagery was not available, was 
supplemented with building code requirements for the home’s construction year.  
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Property owner characteristics were derived from the American Community Survey (ACS) 2007-2011 
Tract 8121 database (U.S. Census Bureau 2019) augmented with MyLife (2019), PeekYou (2019) and 
Facebook (2019) searches of property owner names from the property records. Differences between the 
ACS’s population, household, and homeowner-occupier data sets were statistically analyzed to determine 
homeowner attributes; and 30 randomized populations of age, ethnicity, sex, and income were constructed 
based upon individual property value, construction date, length of ownership, owner’s names, and the 
resolution of the ACS database. Mortgage status was based upon having purchased the home within the last 
30 years. 

3.2 Structural Damage 

Property structural damage was determined based upon FEMA inundation levels for the nearest reference 
point (Federal Emergency Management Agency 2015) and utilized Hazard US-Multiple Hazards 
(HAZUS®-MH) 2.2 (Federal Emergency Management Agency 2003) Depth-Damage Functions (DDFs). 
Wind damage was considered but not included due to the moderate wind speeds in the vicinity of Sea Bright 
and resulting negligible damage contribution (< 0.4%) (Federal Emergency Management Agency 2003).  
 Inhabitant categorization of the resulting destruction was obtained from survey information (McNeil et 
al. 2017) and was utilized in conjunction with FEMA damage assessments to develop target percentages of  
units unaffected and destroyed. Flood proofing adjustments and damage bias factors were adjusted to 
calibrate the model against these targets.   

3.3 Homeowner Response 

A PMT/PADM-based decision making model was implemented at the homeowner level. Flood responses 
were modeled strictly on the owners interactions with their environment. Agent-to-agent interactions were 
not included in the study based upon the low influence level neighbor decisions had in the survey responses 
(McNeil et al. 2017). For the ABM, homeowner responses were mechanized in three parts. An initial risk 
appraisal was conducted; and, if sufficient risk was present, coping appraisal (cost benefit analysis) 
followed. Depending upon whether the home was damaged or destroyed, cost-benefit analysis and 
protection motivation (affordability assessments) were conducted on each building for repair vs. elevation 
and each lot for rebuilding vs. relocation or departure. The affordability assessment was implemented as a 
filter on these options and the most cost-beneficial affordable option was recorded and implemented.  
  The homeowner’s risk appraisal was developed based upon both expected flood severity and risk 
likelihood. Bukvic and Owen (2017) and Senkbeil et al. (2010) suggest there is a 7 year flood memory and 
repeated flood events are necessary within this period to trigger a perception of future flood consequences; 
and for this study, the simulation was pre-loaded with the community experiences of Hurricane Irene (Avila 
et al. 2012). If a housing unit was flooded again during Hurricane Sandy the higher inundation level was 
taken as the future risk level, otherwise the risk height was zero.  Risk likelihood was calculated 
incorporating Lindell and Hwang’s (2008) significant socio-economic factors and a randomized variable 
for the uncorrelated response utilizing (1):  

 
 𝜃 = 𝑤$ ∗ 𝑔 +	𝑤) ∗ 𝑒 +	𝑤+ ∗ ℎ +	𝑤- ∗ 𝑖 + (1 − ∑𝑤) ∗ 	𝑈(0,1)  (1) 
 
where	𝜃 is the perceived risk level, gender g is 1 if female, ethnicity e is 1 if white, history h is 1 if the flood 
severity was greater than 0 (all 0 otherwise), i is income/$200,000, and w’s are the weighting factors to 
obtain the desired correlation levels.  
 A coping appraisal was conducted for each homeowner. The value of building repair, elevation, 
demolition with relocation within Sea Bright, and demolition with departure were determined with (2) based 
upon economic factors identified within the study via qualitative critical component analysis: 

 
 				𝑉8,9 = 𝛼8 ∗ 𝑃8	+	𝑆8 + 𝐶8,9|?(@) ∗ 𝐹 +	 𝐼C − 𝐵8,9 − 𝐷C|F − 𝑃8|G	 − 𝑀C	  (2)	
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where 𝑉8,9 is the value of option k for lot j, 𝛼 is the perceived location premium of lot j, P is the assessed 
property value of lot j, S is the structural value on lot j, 𝐶8,9|?(@) is the cost avoidance of option k on lot j 
given the expected future flood consequence, F is the expected number of future floods, 𝐼C is the insurance 
payout of the current dwelling, 𝐵8,9 is the construction costs of option k for lot j, 𝐷C|F is the demolition cost 
of the current residence if destroyed, 𝑃8|G is the purchase cost of lot j given relocation, and  𝑀C is the current 
house’s mortgage balance. 

The ratio of Zillow (2019) rent estimations to property values was utilized as a surrogate for water-
front and water-view location premiums. Repair costs were computed based upon the assessed structural 
value multiplied by the percentage of structural damage. Post-construction elevation costs were $1.50 per 
foot of elevation, per square foot of housing with an additional $26 or $57 per square feet of overhead costs 
for frame and masonry buildings, respectively (Aerts et al. 2013). Based upon National Flood Insurance 
Program guidelines (Code of Federal Regulations 2002) structural damage of 50% or greater constituted 
destruction and demolition was required. Demolition costs were 15% of the assessed structural value (Fixr  
2019). Relocation costs within Sea Bright included the vacant lot cost and construction of a new home of 
equal value to the previous one. New construction costs were $192.8 per square foot with floodproofing 
costs of 1.15% per foot of elevation (Federal Emergency Management Agency 2009). The outstanding 
mortgage was based upon a 30 year fixed interest with linear principal payment plan.  
 For a protection motivation assessment, reconstruction option affordability was also assessed on an 
annual basis utilizing a study derived calculation of  available income and post-repair mortgage cost (3): 
 
	 	 	 	 	 				𝐴8 = 𝑆 ∗ 𝑝 + KL𝑃C + 𝑆C 	+ 	𝐼C − 𝑀C 	− 𝐷C|FM −	L𝑃8 + 𝑆8M	N ∗ 𝑀𝑅/30		       (3) 
 
where 𝐴8  is the annual affordability, subscript c denotes current housing, S is the household annual income, 
p is the percentage of income for housing, and MR is the mortgage ratio of total cost to initial outlay. The 
percentage of income assigned to housing was an average of the current level and a randomized range based 
upon census property value strata, with a minimum increase of 0 to $2000 per year.  A 5% interest rate was 
used against the 2008-2014 national average of 4.774% (Freddie Mac 2019).   

3.4 Model Validation 

The simulation was verified via code reviews, test cases, and a comparison with off-line spreadsheet 
analysis. Validation was implemented utilizing Ngo and See’s (2012) four stages for model structural 
validation. Prior to ABM use, the generated Sea Bright population (Section 3.1) was validated against ACS 
5 year estimates utilizing paired Z-tests. During the damage analysis (Section 3.2) a face validation was 
conducted on the damage levels and sensitivity analysis was performed on the flood-proofing levels and 
DDFs. Input values for the flood-proofing bias and damage scaling factors were calibrated against historic 
damage levels. In conjunction with the reconstruction decisions (Section 3.3) the weighting factors from 
(1) were calibrated to obtain Lindell and Hwang (2008) correlation levels between sex, ethnicity, income, 
experience and the perceived flood risk. Sensitivity analysis was completed on risk severity, and the 
expected number of future storms, and the risk mitigation threshold and storm expectations were calibrated 
against historic mitigation levels. T-tests were conducted for the homeowner decision results against the 
targeted values for quantitative output validation.   

3.5 Structure Elevation Analysis 

The validated flood mitigation results for structure elevation were assessed to identify built environment 
impacts on structural elevation. Building types (Monmouth County Office of Records Management 2019) 
were compared against the percentage of housing units elevated in Section 3.3 and the percentage of 
raiseable units that were not selected for mitigation was determined.  
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4 RESULTS AND ANALYSIS 

Results of the ABM analysis are provided below.  Sections 4.1 through 4.5 provide the results 
corresponding to their respective Section 3.1 through 3.5 methodology section, with Section 3.4 validation 
as appropriate. 

4.1 Sea Bright Generation  

The total simulated population of 30,389 homeowners from all 30 replications was evaluated against the 
census and survey statistics as presented in Table 1. Of note, the survey responses’ gender levels were based  
upon which household member responded, while the census and simulation’s use of the head-of-household 
weighted the results toward males.  All of the simulation factors are not statistically different from the ACS 
at α = 0.15 or better. In general, the simulated population tracked the survey data, although it was slightly 
younger and less affluent. This may have occurred from limitations with the ACS data set and the use of 
the ACS total population and household statistics in cases where homeowner-occupier subsets were not 
available. Given consistency with the ACS, the simulation population is reasonable and considered 
adequate for the decision making analysis. 

Table 1: The simulated owner population in comparison with truth data. 

 ACS 2007-
2011 

 

ACS 
Standard 
Deviation 

Survey 
2014 

n = 303 

Survey 
2015 

n = 142 

Simulation 
Average 

 

Simulation 
Standard 
Deviation 

Female 16.8% 6.1% 48.5% 47.9% 22.5% 1.0% 
White 85.1% 9.5% 92.7% 89.4% 92.6% 0.6% 
Under 35 years old 6.7% 8.5% 5.9%* 4.2%* 9.0% 0.9% 
Over 65 years old 31.8% 8.4% 41.6% 49.3% 24.2% 1.2% 
< $35,000 18.7% 8.5% 7.9% 9.8% 15.8% 1.0% 
$35 – 50K 10.5% 2.1% 10.6% 7.0% 12.1% 0.6% 
$50 – 100K 37.2% 2.7% 16.9% 16.2% 38.6% 1.5% 
> $100K 33.6% 8.6% 49.5% 49.5% 27.3% 1.6% 
Mortgage Holder 60.8% 11.6% n/a 54.2% 61.1% 1.4% 

 * Under 38 years old 

4.2 Structural Damage  

Definitions of structural damage varied slightly between FEMA, survey responses, and the ABM simulation 
metrics. FEMA damage appraisals utilized flood depth as an indicator for total damage value (structure and 
belongings) without reference to flood-proofing heights. Four levels were identified: affected (< 2 ft above 
ground), minor (2-5 ft), major (> 5 ft), and destroyed.  Survey responses for damage were subjective with 
four levels: no damage, not very extensive, somewhat extensive, and very extensive. Responses eliciting 
the current home status were categorized in separate terms including mitigation actions. Output metrics 
from the ABM consisted of the number of flooded lots, the number of housing units with flooding above 
their flood-proof heights, and the percentage of structural damage. Table 2 provides the breakdown of 
damage levels from FEMA and responses from surveys in both 2014 and 2015, and repair decisions from 
the 2015 survey (in the percentage of housing units).  
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Table 2: Hurricane Sandy damage levels and quantities. 

FEMA Survey 
Damage 

2014 2015 Survey 
Repair Status 

2015 ABM 
Target 

Title Percent Title Percent Percent Title Percent Percent 
Affected 
 (<2 ft) 

14.2 No 
Damage 

6.6 6.3 No Repairs 
Required 

9.9 20.5 

Minor 
 (2 - 5 ft) 

33.1 Not Very 
Extensive 

24.1 22.5 Repaired 66.9 48.4 

Major 
 (> 5 ft) 

50.3 Somewhat 
Extensive 

37.3 37.3 Elevated 20.5 18.6 

Destroyed 2.3 Very 
Extensive 

30.7 33.1 Abandoned/ 
Condemned/ 

Rebuilt 

12.5 12.5 

 
 An amalgamation of the damage data in Table 2 was utilized to develop a target value for comparison 
with the ABM repair decision outputs. Since FEMA’s building inundation measurements are only 
conducted at the request of the resident as a prerequisite to obtaining disaster relief funds, it is assumed that 
their data does not contain significant undamaged structures, and this study utilized self-selecting survey 
responses as the target for undamaged units. Alternatively, survey responses likely skew the damage 
estimates higher. The median damage costs in the 2015 survey were 38.5% of the median Sea Bright 
structure’s appraisal value, but the average damage cost was only 14.7% of the average appraisal value. All 
“not very extensively” damaged homes were assessed to have sufficient flood-proofing, and the FEMA 
affected domiciles were used as the target for below flood-proofing units. The study’s target of destroyed 
units was based upon survey housing status responses (12.5%), which reduced the damaged units to the 
remaining 67.0% of effected homes.  
 The average damage percentages of the 30 simulation runs were compared against the simulation target 
with a flood-proofing elevation reduction of 0 to 4.5 feet  Dry units were consistently 7.6% of the buildings 
and no units were destroyed. Considering the destroyed homes as a subset of damaged unit results, the 
simulation should be targeting 79.4%, which yielded a flood-proofing adjustment of -2.5 feet. This is 
consistent with the damage appraisals and survey responses given the definitional differences. A visual 
review of many of the townhouses and single family homes identified what appeared to be a furnished, wet-
proofed ground floor. Flooding of this area would result in damage to the contents of the home, which 
would not be considered in the simulation’s DDFs. Additionally, any minor damage to the structure below 
the flood proofing height would not be captured in the ABM’s calculations. 

Given a 2.5 foot flood-proofing reduction factor, scaling of the damage factors was evaluated in 
relationship to the number of housing units destroyed. To obtain a 13.4% destruction level, the simulation 
DDFs had to be increased between 60 and 70%. This increase can be accounted for due to the lack of debris, 
surge pressure, or foundation erosion damage in the DDFs’ destruction mechanisms, which only use flood 
inundation.  

4.3 Homeowner Responses 

Utilizing the flood adjustment and damage scaling factors from Section 4.2, (1) demographic weighting 
factors were adjusted to obtain the PADM risk perception correlation levels, per Table 3.  These resulting 
correlations are consistent with Lindell and Hwang’s (2008). However, cross correlations between factors 
were not considered. This resulted in the expansion of the resulting risk perception levels to a range of 
−0.350 to +1.350.  
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Table 3: Demographic weighting factors and correlation with perceived risk. 

 Gender 
(Female) 

Ethnicity 
(White) 

Income Flood 
Experience 

Weighting Factor 0.14 -0.14 -0.21 0.21 
Risk Perception Correlation 0.21 -0.13 -0.17 0.27 
Lindell and Hwang (2008) 0.21 -0.14 -0.18 0.27 

 
Employing the demographic weighting factors and Section 4.2 flooding and damage factors, sensitivity 

analysis was conducted on the expected number of future hurricanes and perceived risk threshold required 
for implementing elevation mitigations compared against the Sea Bright survey data. To obtain survey 
levels of housing elevations with fewer than five future storms, a mitigation risk threshold level of zero or 
less was required, as shown in Figure 3. 

 
Figure 3: The Risk threshold and expected number of future hurricanes required to elevate a percentage of 
housing units. 

 
Simultaneous calibration of the four previously evaluated parameters was conducted to improve overall 

simulation performance and increase the percentage of elevated houses. The results in Table 4 were 
obtained with a risk threshold of -0.1, flood-proofing decrease of 3.0 feet, a damage scaler of 0.4, and 2.0 
future storms.  

Table 4: The calibrated model performance compared to the targeted values. 

 Dry 
Properties 

Undamaged Repaired Elevated Destroyed 

Simulation Mean 7.7% 19.2% 52.0% 18.6% 10.2% 
Simulation Standard Deviation 0.3% 0.2% 0.4% 0.5% 0.2% 
Target Value 6.6% 20.5% 48.4% 18.6% 12.5% 

4.4 Flood Mitigation Validation 

The simulation elevated structure performance was statistically indistinguishable from the targeted 
building elevation value (α>0.92). Repaired structures were slightly overestimated at the expense of 
underestimating destroyed dwellings and slightly underestimating undamaged units. Attempts to spread the 
damage levels and shift them toward destroyed homes resulted in unrealistic destruction in the Hurricane 
Irene pre-processing (>4.6%) and were not implemented. Given the damage definition differences 
discussed in Section 4.2, the results of the ABM are statistically appropriate for investigation into the 
homeowner actions to mitigate future flood risks and sufficient for continued analysis.  
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4.5 Structure Elevation Analysis 

The low risk mitigation threshold necessary to elevate historical quantities of houses (as shown in Figure 
3) indicates that the risk factors are not major contributors to the flood-proofing decision. In evaluating the 
total replications, only 5.0% of the repaired homes could have been elevated but had risk levels below the 
threshold. From all of the damaged houses, 63.6% were townhouses, apartments, or duplexes which could 
not be individually raised. Of the remaining single family homes, 76.6% were elevated. The remaining 
8.5% of all damaged houses were not elevated as shown in Figure 4. These results align with the survey 
respondents’ comments from McNeil et al. (2017), which have repeated remarks regarding the inability to 
raise a townhouse. Survey results also indicate that 11.3% of the respondents did not believe they would 
ever have another disaster of the magnitude of Hurricane Sandy. This aligns with the ABM’s response that, 
for low flood levels, the homeowners would not invest in major changes.  
 

 
Figure 4: The percentage of houses elevated and eligible for elevation. 

5 CONCLUSIONS AND RECOMMENDATIONS 

Ensuring the validity of an ABM is a challenging and an often overlooked task. This study developed a 
methodology for conducting comparisons of modeled flood victim responses with historical data. The 
methodology was applied to a hind-cast of Hurricane Sandy’s effect on Sea Bright, NJ and the inhabitants’ 
reconstruction decisions. All four stages of  Ngo and See’s (2012) validation process where employed as 
discussed in Sections 3 and 4, and the ABM is appropriate for future analysis into policy decisions to 
mitigate coastal flood damage.  

As a next step, the validated methodology from this analysis is intended for federation with the 
Advanced Circulation (ADCIRC) coastal flood model. The model will be extended to include community 
level decision making which will initiate modification of the CFD’s elevation grid for large scale structural 
mitigations such as sea walls and berms. Changes to the ABM to include wind, water velocity, and erosion 
in the damage calculations are recommended to improve performance. 

Several areas for additional further work were also discovered during the conduct of this work. 
Although agents interacted with their natural and man-made environment, interactions between agents were 
not modeled beyond sequentially switching lots. While their independence was partially in response to 
survey responses, social dependencies and dwelling resale value impacts should be considered in the future 
along with collective dynamics toward community level structural mitigations. 

The significant take away from the analysis is the limited effect of individual risk perceptions on the 
decision to elevate homes to prevent future flooding (Section 4.3). Risk thresholds for flood-proofing had 
to be reduced to low levels to replicate the number of households which were elevated. Regardless of their 
demographic risk contributions, all owners with a positive risk consequence level were needed to flood-
proof to match survey results. The remaining homeowners could not modify their housing unit due to 
adjacent units or had a “can’t happen again” low risk consequence appraisal (Section 4.5). At the study 
level, this permits future modeling to simplify agent decisions and base them on historic flood levels and 
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economic factors without needing to generate detailed demographically diverse populations. For larger 
scales, the hindrances to flood-proofing will require significant education efforts to communicate the future 
flood risk. Otherwise, flood mitigations will be constrained to long term community rejuvenation combined 
with more stringent building code requirements. 
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