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ABSTRACT

After a natural disaster strikes people spontaneously respond by self-organizing, providing food and drink
to the victims and to emergency response teams. During this process, people also share photos, messages
and videos which can be used to improve the general understanding of the situation and to support decision-
making. In this context, we propose to use digital television to create a community of digital volunteers who
can help to identify objects inside images that cannot be processed automatically. Digital television can
help to reach a larger number of digital volunteers because it can be easily used without installing special
applications. We present a distributed platform composed of a server, a network of digital volunteers and
an internet service provider. Our proposed platform aims to reduce the communication between the server
and the digital volunteers and to reduce the workload of the server. We simulate our proposed platform
with the peersim tool.

1 INTRODUCTION

Digital television (DTV) allows to broadcast high definition video and better sound quality than the analog
signal. It also allows greater system versatility, multiple video signals, teletext, EPG (Electronic Guide of
Programs), radio channels, panoramic image, interactive services, among others. Moreover, DTV includes
features such as mobility and portability, which makes it available for different devices such as smartphones.

DTV is implemented with a Set Top Box (STB) connected to the television. The STB processes the
compressed digital signal, decompresses it and sends it to the television. There are also televisions with
STB integrated. STBs can be used: (1) to process low computation operations on user data, and (2) as a
temporary storage for elements requested by users (Rosas et al. 2013).

Digital television allows users to interact with different services, for example, browse the electronic
program guide or provide feedback to the broadcaster service. These services allow the user not only to
be a receiver, but also to participate in the television program he/she is watching. This interaction occurs
through the remote control associated with the STB, or through the smartphone if it receives the signal
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One-Seg (Bordignon et al. 2009). Depending on the service, it is possible that this interaction generates
events and/or requests over the Internet which must be processed by a server.

Upon a natural disaster such as earthquakes, tsunamis, volcano eruptions, hurricanes, tornados and
floods, people share photos, messages and videos. In this context, DTV allows users to became digital
volunteers. Users can collaborate by tagging images or voting an option from a list associated with the
images that cannot be processed automatically. E.g. users vote to determine the category of the image such
as infrastructure and service, affected people, emotional support, among others. The data processed by users
can be collected and integrated into the management process to improve the general understanding of the
situation or rescue actions. Some applications like the Digital Humanitarians (Verity and Meier 2012) and
Tomnod (http://www.tomnod.com) allow digital volunteers to collaborate in the image processing process.

In this work, we propose to use digital television to create a community of digital volunteers who can help
to identify objects inside images that cannot be processed automatically. We present a distributed platform
composed by a server, digital volunteers (DTV users) forming a peer-to-peer (P2P) network and an Internet
Service Provider (ISP). We aim to reduce the communication between the server and the digital volunteers
and to reduce the workload of the server. The ISP routes the messages between the DTV users and the server.
The server stores the images in a database usually kept in secondary memory, sends those images to the
digital volunteers and selects the options associated with the images with the majority of votes. The digital
volunteers process the images by selecting an option from the list of options of the images. Each digital
volunteer has a local cache memory used to reduce the communication among the server and the volunteers.
We present a dynamic scheme to improve the use of resources provided by the volunteers which includes
a voting algorithm executed at the server side and a aggregation algorithm executed in background in the
DTVs. Both algorithms rank the digital volunteers based on their processing speed and their communication
latency. We simulate our proposed platform with the peersim tool (http://peersim.sourceforge.net/#pubs)
which supports cycle-based and event-based simulations for P2P networks.

The remainder of this paper is organized as follows. Section 2 present related works. Section 3 details
our proposed distributed platform. Section 4 presents the simulation setup and the results. Finally, Section
5 brings the conclusions and futures works.

2 RELATED WORKS

The greater the disaster the greater the response of people to cooperate (Twigg and Mosel 2017). This type
of volunteer participation is known as crowdsourcing. Digital volunteers have helped to collect pertinent
information much faster than officials or people in charge of coordination activities in natural disasters
could do alone, with huge potential impacts on the responsibilities of officials in the management of the
information. Emergency search and rescue teams already use pre-event remote sensing data when planning
operations (Thorvaldsdottir et al. 2011).

The work presented in (Becker and Bendett 2015) describes some examples of how the Department
of Defense of the United States uses crowdsourcing to give answers to problems of natural disasters. The
authors concluded that there is a great benefit in taking advantage of the power of the crowd. The authors
in (Barrington et al. 2012) presented a review of the state of the art on the use of crowdsourcing and
analysis of images, particularly high resolution aerial. This work describes the experiences obtained in
the cases of the earthquake in Haiti and in 2008 in China. The authors in (Ofli et al. 2016) proposed a
hybrid scheme based on automatic techniques and crowdsourcing for aerial image processing. In this case,
manual annotations are used to train a supervised learning system. However, this work does not describe
the platform used and does not consider the interaction with information collected by people who are in
the place of the event.

There are some platforms such as Tomnod (http://www.tomnod.com), GeoTag-X (Smith 2017), and
some research works that address the problem of using volunteers for the processing of georeferenced
images (Onorati and Dı́az 2016;Diaz et al. 2016;Witjes et al. 2017;Turk 2017). In particular, Tomnod of
the company DigitalGlobe is using Artificial Intelligence (AI) driven by crowdsourcing to automatically
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identify the characteristics of interest in satellite and aerial images. Tomnod runs crowdsourcing campaigns,
where volunteers support data mapping by validating the results of an image mining algorithm. GeoTag-X
is a research project aimed at researching and evaluating collaborative on-line environments and software
tools for creative learning.

Peer-to-Peer technologies have been used for digital TV services. The work presented in (Chang et al.
2010) used the information about the programs and time that the users watched those programs to make
recommendations. BBC uses P2P to keep its programs broadcast for 7 days and to reduce storage on its
servers (https://www.theguardian.com/media/organgrinder/2006/dec/21/bestofthebbctobereleased).

P2P cache schemes have been proposed mostly for Web pages (Rosas et al. 2012;Rosas et al. 2013).
Approaches for cache mainly focus on optimizing one metric, such as hit rate, latency, or communication
(Gummadi et al. 2003; Karagiannis et al. 2005; Hefeeda and Noorizadeh 2010).

In our work we focus on the latency, communication costs and on taking advantage of resources
provided by the volunteers. Our proposal allows to process partial results inside the P2P network before
sending the final results to the server. We rank the volunteer peers taking into account their processing
speed and we select the slowest peers to process partial results in background.

3 A DIGITAL TV-BASED PLATFORM FOR IMAGE PROCESSING

In this section, we present our platform design for processing a large number of images. Our design focuses
on distributing the computation among the available resources. Figure 1 shows the general scheme of our
proposed platform. The server contains a database with images to process. For each image, we create
a task with an image identifier (ID), the GPS coordinates and a list of options to vote. These tasks are
inserted into a processing queue of the server. In the P2P network, each peer represents a volunteer (user)
that will participate in the image processing process. Each peer has a local cache memory used to store
images. The memory cache is used to reduce the communication between the P2P network and the server,
to take advantage of the fact that the communication latency inside the P2P neighborhood is lower than
the communication latency between the peers and the server. A percentage of the peers belonging to the
P2P network are registered as volunteers. The remaining peers share their local cache but they do not
participate in the image processing process.

Peers build an overlay network managed by the Internet service provider (ISP). In particular, our model
follows a P2P Distributed Hash Table (DHT) (Rowstron and Druschel 2001). Internet service providers
(ISPs) are responsible for delivering Internet access to clients from a given geographic area. To communicate
with other ISPs, it is necessary to access the Internet backbone. The backbone is a shared network which
enables communication among ISPs of the world. To make use of the network, ISPs must respect a Service
Level Agreement (SLA) contract in which they commit to regulate their traffic to not compromise another
ISPs communication.

3.1 Batch-Based Scheme for Image Processing

The DHT is used to partitioning the image space among the peers (Antonopoulos, Exarchakos, Li, and
Liotta 2010). That is, the whole space of images is divided among the peers and each peer is responsible
for a particular set of images. The steps involved in the image processing process are as follows:

1. The volunteer peers send a message to the server indicating they want to collaborate in the image
tagging/voting process.

2. The server registers the peers as volunteers and sends a batch of N tasks to the peers. The same
batch of tasks is sent to H peers. After a batch of tasks is sent to H peers, the server continues
with the next batch of tasks.

3. The volunteers process each incoming batch of task as follows. First, they search for the image
objects associated with the tasks inside the P2P network. To this end, the peers apply a hash function
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Figure 1: DTV-based distributed platform composed of a server, an internet service provider (ISP) and the
P2P network. Each peer has a local cache to store images.

on the file name of the image objects to select the next hop inside the P2P network. Therefore, a
message can be sent to several intermediate peers before arriving at the responsible peer.

4. The responsible peer searches for the image ID in its local cache memory. The cache memory
implements an LRU replacement policy. If the image is found, then the responsible peer sends
the image object to the volunteer peer. Otherwise, the peer responsible for storing the image in its
local cache memory sends a message to the server.

5. The server searches for the images in the database (usually kept in secondary memory) and sends
the image objects to the responsible peers.

6. The images are inserted into the local cache memory of the responsible peers and then sent to the
volunteer peers.

7. The volunteer peers selects an option from a list associated with the image and send the results to
an aggregation peer.

8. The aggregation peer collects the results from the volunteer peers and sends the final results to the
server.

9. The server ranks the votes of the options associated with the tasks and evaluates whether an option
has the majority of votes. E.g., if an option receives more than 60% of the votes. If so, the task is
finished and the results are stored in the database. Otherwise, the tasks are re-sent to H peers.

These steps are illustrated in Figure 2 where each peer is responsible for a different set of images
(square, circle and the different types of stars). In this example, the peer1 requests tasks to the server (step
1). The server sends a batch of tasks to peer1 (step 2). Peer1 searches for the image associated to the first
task. In this example it searches for a blue square. Then it sends a message to peer2 which is the next
hop selected by the DHT (step 3). Peer2 does not have the requested image, so it sends the message to the
next hop in the P2P network. In this case, the message reaches to peer3 which is the responsible peer for
this kind of images. Peer3 does not have the blue square image in its local cache. Therefore, it sends a
message to the server (step 5). The server retrieves the images form the database and sends the requested
image to the peer3. Peer3 inserts this new image into its local cache memory and sends the image to the
volunteer peer1 (step 6). Peer1 votes for an option from a list associated with the incoming image and
sends the result to peer4 which collects and merges the H results for a given task (step 7). Finally, peer4
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Figure 2: Sequence of steps executed in the distributed platform. Each peer can play different roles:
volunteer, responsible for a set of images and aggregation peer.
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Figure 3: Aggregation scheme of partial results inside the P2P network.

sends the results to the server. Although it is not detailed in the sequence of steps described above, the
communication between the peers and the server is made through the ISP.

The aim of the aggregation peers is to reduce the communication traffic between the P2P network and
the server. The communication inside the P2P network has a lower latency than the communication between
the peers and the server. Volunteers with a high processing speed and lowest communication latencies are
marked as efficient peers and peers with low processing speed are used to compute the majority of votes
in background. To this end, we use a binary tree as detailed in Figure 3. Each node represents a volunteer
peer. The leaves are the efficient peers and the root is the server. In Figure 3, the peer1 receives 2 messages
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of the same task t1, merges the votes and sends a message to the peer2. Then, the peer2 also receives a
message from peer3 with results of the same task t1. The Peer2 merges the votes for task t1 (3 results in
total) and sends a message to the server. The tree is updated every ∆t units of time. To this end, the server
collects statistics about the processing speed and the communication traffic among the peers. A volunteer
peer sends its results to its parent node in the tree. When a message with results arrives to an aggregation
peer it creates a temporary data structure to store partial results of the same tasks. When the aggregation
peer receives H result messages for a given task or a time T has elapsed, it merges the partial results and
sends a message to its parent node in the tree.

Algorithm 1 Voting algorithm executed in the server.
1: task = input queue.select( task id )
2: finish = false
3: if task.number of results > 1 then
4: Merge(task.results)
5: end if
6: for i = 0 TO i < msg.option.size() do
7: if task.option[i].votes/H >= threshold then
8: task.option[i].select = true
9: finish = true

10: end if
11: end for
12: if finish OR task.iteration >= Limit then
13: DB.store(task.img id, task.results)
14: exit
15: end if
16: task.iteration++
17: for i = 0 TO number of volunteers do
18: Sc[i] = (1/s2p + 1/p2s) + AvgTasks() + TasksSolved/Tasks + Correct/Tasks
19: end for
20: Sort(Rc)
21: for i = 0 to H do
22: p = Sc[i]
23: Send(p,task)
24: end for

3.2 Voting Algorithm

For each image, the server receives messages with the votes of the users and executes a voting algorithm.
The server receives a single message if all H votes were processed within an aggregation peer. Otherwise,
it can receive several messages with results for the same task.

Algorithm 1 shows the main operations executed by the voting algorithm. First, the server retrieves
all results for a given task from the input queue. The merge operation, in line 4, computes the number of
votes for each option of the task. From line 6 to 11, if an option has the majority of votes the algorithm
marks the option and indicates that the task is finished. The total number of votes for an option has to be
higher than a threshold (line 6), e.g. the number of votes for an option has to be higher than 60% of the
total number of votes. When the total number of votes for a given option is higher than the threshold, we
say the task has consensus. Then, in lines 12-15, the algorithm stores the results in a database. We put a
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Limit on the number of times a task can be re-sent to the peers when the threshold is not reached by the
majority of votes. If the task is not finished and the task.iteration < Limit, we select H new volunteers.
To this end, for each peer i the algorithm computes a score in Sc[i] taking into account the communication
latency between the server and the peer i (s2u and p2s), the average processing time of the peer AvgTasks(),
the average number of tasks processed by the peer TasksSolved/Tasks and the average number of correct
votes of the peer Correct/Tasks. Finally, the task is re-sent to the H peers with highest scores.

4 EXPERIMENTS

We evaluated the performance of our distributed platform composed of a server, the network of volunteer
forming a P2P network and the ISP. We built a simulator with the peersim tool that implements a transport
layer and a P2P overlay. Chord (Stoica, Morris, Liben-Nowell, Karger, Kaashoek, Dabek, and Balakrishnan
2003) has been used as the overlay network in our experimentation. Each STB has a memory of 500 MB
and we use only 10% as cache memory. The remaining 450MB are used to deploy the operated system
and other applications.

Experiments were performed for a total of 13.233 images of faces obtained from the labelme repository
(https://en.wikipedia.org/wiki/LabelMe). The service times were set according to the statistics presented
in (Meier 2013). In particular, the service time of the digital volunteers is a value between [100ms,20sec].
Each task has a list of four options.

4.1 Performance Evaluation

In the following experiments we evaluate the communication latency and the computation time reported
by our proposed distributed platform. To this end, we simulate a network of 1000, 2500 and 5000 peers.
However, only a percentage of the peers register as volunteers. The remaining peers share their local cache
memory, but they do not participate in the image voting process. At the beginning of the simulation, all the
batches of tasks are sent to the P2P network. Each task is sent to H = 10 digital volunteers. If the task has
to be re-sent to the P2P network because there is no consensus about the options associated to its image,
we set H = 5 and Limit = 4. We set T = 20 seconds in the aggregation peer. That is the time elapsed
before sending the results to the parent node in the tree. We compare the performance achieved with our
proposal against a baseline distributed platform. The baseline does not include cache memories allocated
in the peers neither aggregation peers, and the voting algorithm selects the next H peers at random.

In Figure 4 the x-axis shows the simulation time advance in milliseconds. The y-axis shows the
computation (service) time reported by the server for different P2P network configurations. Figure 4(a)
shows results for the baseline and Figure 4(b) shows results for the proposal with different network sizes
[1000,2500,5000], the voting threshold= 60% and the percentage of digital volunteers is 50% of the total
number of peers (e.g. with a network size of 1000 there are 500 digital volunteers). In Figure 4(c) and
Figure 4(d) we set the network size to 2500 peers, the threshold= 60% and we experiment with different
percentage of digital volunteers [50%,60%,70%]. In Figure 4(e) and Figure 4(f) we set the network size
to 2500 peers, the percentage of digital volunteers is 50% of the P2P network and we experiment with
different threshold values [60%,70%80%].

All figures present peaks of service times which represent the secondary memory accesses to recover
the images from the database. The baseline presents peaks of service times close to 320ms meanwhile our
proposal shows lower peaks close to 240ms, because the cache memory used in our proposal reduces the
number of secondary memory access by 20% in average. Additionally, after accessing the database the
baseline reports service time close to 30ms. and our proposal reports service times of 5ms. in average.
This is because the aggregation peers reduce the computation operations executed in server.

In Figure 4(a) and Figure 4(b) there is a larger delay between the peaks of service times as we increase
the network size, because all batches of tasks are sequentially sent to the digital volunteers who request
the image objects for each task. In the baseline there is no cache memory, therefore all the images are
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Table 1: Total number of messages and bytes transmitted for each type of message between the server and
the peers.

RQST BoT SEND BoT RQST IMG SEND IMG RESULTS MORE
Number of messages

Proposal 1250 1250 17646 17646 1378 885
Baseline 1250 1250 30530 30530 1654 2010

Bytes
Proposal 58464 151641 952884 250286907 151762 51890
Baseline 58464 151641 1648620 431893335 177432 156540

sequentially requested to the server who accesses to the database. Figure 4(c) and Figure 4(d) show the
same behavior as we increase the percentage of peers registered as digital volunteer. Finally, in Figure 4(e)
and Figure 4(f), as we increase the threshold values the total image processing time (showed in the x-axis)
also tends to increase as each task is re-sent many times before reaching a majority of votes or the Limit
of the iterations.

Figure 4 shows that our proposal can reduce the computation time in the server, however the time to
process all images tends to increase by 7% in average. This is because, in our proposal, volunteers search
for images inside the P2P network by sending messages that perform several hops before reaching the
responsible peer.

Figure 5 shows the communication between the server and the volunteer peers as the simulation time
advance with different parameter configurations. Figure 5(a) shows results obtained with our proposal and
Figure 5(b) shows the results obtained with the baseline strategy. The baseline shows that the communication
tends to persist high as the simulation time advance with some peaks reaching more than 600000 bytes
per unit of time.

Figure 6 shows the total communication cost measured as the total number of bytes transmitted between
the server and the peers with different parameter configurations. Each bar represents a different parameter
configuring [network size,volunteers(%), threshold(%)]. Results show that the P2P network size drastically
impacts on the communication costs. The larger the network the greater the number of bytes transmitted.
In the best case, our proposal reduces by 42% the communication costs as we increase the network size.
In general, our proposal reduces the communication costs between the server and the peers by 39% in
average.

Table 1 shows the number of messages and the amount of bytes transmitted between the server and
the peers for different types of messages:

• RQST BoT: The peers request a batch of tasks to the server.
• SEND BoT: The server sends a batch of tasks to the volunteer peer.
• RQST IMG: The responsible peer requests the image object to the server.
• SEND IMG: The server sends the image object to the responsible peers.
• RESULTS: The volunteer peers send the votes for each task to the server.
• MORE: The server re-sends the tasks without consensus.

Results show that our proposal reduces by 42% the number of messages requesting/sending image
objects. Therefore, the amount of communication bytes is also drastically reduced. Our proposal processes
partial results in the slowest peers in background, thus the number of messages with results sent to the
sever is less than in the baseline strategy. This is also reflected in the amount of communication bytes.
Finally, the last column of Table 1 shows the number of messages involved in additional iterations when the
majority of votes is not obtained. Our proposed voting algorithm reduces by 55% the number of messages
and by 66% the communication bytes.
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Figure 4: Service time reported by the server with different parameter configurations: (a) and (b) P2P
network size [1000,2500,5000]. (c) and (d) digital volunteers of the network [50%,60%,70%]. (e) and (f)
threshold values [60%,70%,80%].

Finally, in Figure 7 we show the communication cost inside the P2P network. That is, the communication
between the peers and the communication between the peers and the ISP. A log scale is used for the y-axis.
The x-axis shows the simulation time in milliseconds. As expected, our proposal (Figure 7(a)) reports
higher number of bytes transmitted inside the P2P network than the baseline strategy (Figure 7(b)). That
is because our proposed strategy searches the image objects in the local cache memories of the peers.
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Figure 5: Communication cost reported by our proposal and the baseline with different parameter config-
urations as simulation time advance: (a) Proposal and (b) Baseline.
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Figure 7: Communication cost inside the P2P network: (a) Proposal and (b) Baseline.
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5 CONCLUSIONS

In this work, we proposed a distributed platform to process images shared by users when a natural disaster
strikes. The platform includes a network of digital volunteers connected to a server through an ISP. Digital
volunteers collaborate by accessing to Digital TV services thought STB and form a community with low
communication latencies. Our proposal includes two algorithms to rank the digital volunteers taking into
account their processing speed and their communication latencies. The first algorithm runs at the server
side and selects the new digital volunteer to process an image when there is no consensus about the options
associated with the images. The second algorithm executes in background the processing of partial results
to take advantage of the resources provided by the P2P network.

We developed a simulation framework using the peersim tool. We evaluated the performance of our
proposal with different parameter configurations. Results show that our proposal can reduce the computation
costs at the server side and the communication between the server and the community of digital volunteers
at the cost of incurring into a small delay to finish the tasks.

As future work, we plan to evaluate the performance of our proposal with a dynamic P2P network. We
also plan to evaluate the impact of each parameter in the performance of our platform and to auto adjust
the most relevant parameters taking into account different communication traffic conditions.
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