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ABSTRACT

The adverse impact of new product introductions on the performance of semiconductor wafer fabrication
facilities (fabs) is widely acknowledged. In this paper, we develop a simulation model of a simplified
production system that captures the impact of a new product introduction and the learning effects of
production and engineering activities on the total system throughput. We use a simulation optimization
procedure utilizing a Genetic Algorithm (GA) to obtain near optimal releases of production and engineering
lots that maximize total contribution over the planning horizon. Numerical experiments provide insights
into the structure of optimal release policies and illustrate the improvements that can be achieved through
the strategic use of engineering lots.

1 INTRODUCTION

Introducing new products into the market frequently and effectively is important in high technology industries
such as semiconductor manufacturing. Existing products are replaced in the market by new products that
offer improved functionality at lower cost or higher price, especially during the early part of their life cycle
when competition is still scarce. While these new product introductions are essential to competitiveness,
they can have an adverse impact on the performance of manufacturing facilities, especially semiconductor
wafer fabrication facilities (fabs) (Leachman and Hodges 1996). This paper examines the problem of
managing such product transitions by building a mathematical model of a simplified production system.

There is considerable anecdotal evidence that when a new product is introduced into a fab that is
also producing other products, it adversely affects the performance of the fab through several interrelated
mechanisms. Examples of these are increased operator errors in processing, additional setup times and test
wafer runs, and increased engineering holds on production equipment as problems with the new product are
identified and remedied. This paper will focus on the last of these mechanisms, in which the new product
creates disruptions in production as problems are uncovered and equipment put on hold for engineering
work to diagnose and remedy the problem. These disruptions increase the average capacity consumption of
the new product, reducing the available capacity for existing products. This in turn increases the variability
of processing times, adversely impacting all products in the fab. However, as experience is gained in
processing the new product, the frequency and duration of these disruptions decreases.

In earlier work (Manda and Uzsoy 2018b), we explored this problem of managing releases during a
transition from an older product to a newer one using a simulation model of a simplified production system.
The model incorporated the increased production disruptions induced by the new product and modelled
the subsequent learning effects as a function of cumulative production experience.
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This paper extends our earlier work by incorporating learning through experimentation, which occurs
when engineers run experimental lots aimed at proactively identifying and fixing problems. These engineering
lots do not result in products that can be sold to customers, but provide increased learning about how to
better produce the new product. This is modelled as a reduced probability of a regular production lot of the
new product inducing an engineering hold due to a previously unencountered problem. Thus in our previous
model the only means for management to influence cycle times and throughput during the product transition
is the releases of regular production lots of the old and new products. This paper introduces a new tradeoff
between processing engineering lots aimed at debugging the process to boost learning and producing regular
lots that satisfy demand but have a much slower learning effect. A simulation optimization procedure is
applied to this enhanced simulation model to find approximately optimal releases for the production lots
of both products and engineering lots of the new product. The objective is to maximize total expected
contribution (revenue minus variable costs) over the duration of the product transition.

The rest of the paper is organized as follows: Section 2 provides a brief review of previous related work.
Section 3 briefly reviews our previous simulation and mathematical models and describes the simulation
model used in this work. The simulation optimization procedure is presented in Section 4. Section 5
presents the numerical experiments and results, while conclusions and future directions are presented in
Section 6.

2 LITERATURE REVIEW

In this section we place this work in the context of the existing literature, beginning with the traditional
learning curve literature that focuses on learning by doing. We then discuss models of learning through
experimentation and how these are incorporated into decision support models. Finally we present some
relevant simulation models and the contribution of our work.

2.1 Learning by Doing

Learning in manufacturing is the process of acquiring skills and improving productivity, usually through
experimentation and experience. Learning leading to performance improvement through repetition of the
specific task is called ’learning by doing’, and the mathematical models that capture this learning process
are referred to as ”learning curves”. The early learning literature focused on learning by doing in individual
workers. The work of Wright (1936) is widely acknowledged as the first formal work on learning curves.
The learning effect was subsequently identified and studied in several industries (Searle 1945; Hirsch 1952;
Preston and Keachie 1964). Yelle (1979) and Dutton et al. (1984) present reviews of the early learning
literature.

Much of the early literature in the semiconductor industry also focused on learning by doing. Webbink
(1977) was one of the first systematic investigations of the learning curve in the semiconductor industry.
Tirkel (2013) discusses the various yield learning models in the literature and proposes generalized compound
learning curves based on power and exponential functions of factors like cumulative output, elapsed time
and production rate.

Anzanello and Fogliatto (2011) review the extensive literature on learning curves and present various
popularly used univariate learning curve models such as the log-linear, exponential and hyperbolic models.
They also present multivariate learning curve models and forgetting models that have been used across
different industries. Jaber (2006) provides a concise discussion of the various models that capture the
learning and forgetting process and discusses why using cumulative production by itself might not be a
good measure of learning.

A common theme among much of the early learning curve literature and some later works that incorporate
this type of learning into planning models such as Liao (1979) and Reeves and Sweigart (1981), is their
assumption that learning is driven directly by cumulative production. Our earlier work, Manda and Uzsoy
(2018a) also used this type of learning model and ignored the possibility of learning through deliberate
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experimentation. In that paper we examined how to manage the releases of production lots during a
transition from an older product to a newer product. This work extends that model by considering learning
through experimentation.

2.2 Learning Through Experimentation

Learning through experimentation occurs as a result of the direct managerial action of scheduling and
performing controlled engineering trials, essentially using the production process as a laboratory. These
engineering lots provide insights into manufacturing problems and permit the development and testing of
proposed solutions. The potential learning from these lots is much higher than a regular production lot
since the experiments can be designed carefully with a specific end in mind, thus providing managers with a
way to increase the rate of learning. However, these engineering lots consume limited production capacity,
presenting an interesting tradeoff between experimentation for faster learning versus regular production to
generate revenue.

A distinction between learning by doing and by experimentation is made in later learning curve
literature. Chand et al. (1996) consider learning as a process of systematic experimentation to improve
process capability that consumes production capacity. Process improvement over time improves quality,
which, in turn, helps to reduce production costs. Fine (1986) proposes an alternative formulation where
learning depends on both cumulative production and the level of quality control activity. Adler and Clark
(1991) build a learning model as a function of cumulative output and two managerial variables - engineering
changes and workforce training. They distinguish between first order learning, which is learning by doing
and driven by cumulative production and second order learning which results from explicit engineering
or managerial action to increase capability by changing underlying technology, equipment, processes or
human capital. They use data from two manufacturing departments in an electronic equipment company to
propose a learning model capturing both first order and second order learning. Hatch and Mowery (1998)
try to understand the processes underpinning learning by doing in a more generalized manner by using a
learning model that incorporates managerial actions in the form of cumulative engineering activity. They
perform statistical tests to assess the importance of cumulative engineering and conclude that learning does
not directly result from higher cumulative output but is a result of systematic allocation of engineering
resources to problem solving activities.

Terwiesch and Bohn (2001) distinguish learning through experimentation from learning by cumulative
production. They formulate a dynamic programming model to decide when to experiment and when to
produce but do not consider manufacturing lead times or the effects of congestion. Kim and Uzsoy (2008;
2013) propose integrated production planning models using clearing functions that incorporate learning
effects by considering production and engineering lots separately. Production lots are sold to generate
revenue, whereas engineering lots help increase capacity in future periods. They perform a marginal cost
analysis to provide insights on managing the system. However, they do not explore the problem of ramp
up and new product introduction. The idea of distinguishing production and engineering lots is applied to
a full fab model by Ziarnetzky and Mönch (2016), who give three production planning formulations with
fixed lead times that incorporate learning and different capacity allocation scenarios for the engineering
and production lots.

A number of simulation models have studied the behavior of wafer fabs during product transitions
under changing product mix (Nemoto et al. 2000; Dümmler 2000; Klein and Kalir 2006). Using a scaled
down version of a wafer fabrication facility, Crist and Uzsoy (2011) use simulation to study the impact of
several different policies for allocating resources to production and engineering work.

This work uniquely combines learning by doing and learning from experimentation in a product
transition from an older product to a newer one. Apart from the question of how to handle the releases of
production lots of the old and the new product, additional questions about how to manage experimentation
and balancing the two learning sources is addressed in this work.
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3 SIMULATION MODELLING AND ANALYSIS

As in our earlier work (Manda and Uzsoy 2018a), we begin by considering a simplified production system
consisting of a single resource. This is clearly not representative of any actual wafer fab, but rather an
attempt to examine the system dynamics induced by the combination of product transition and different
modes of learning in an environment sufficiently simple to allow controlled experimentation and insight.
At the beginning of the time horizon this resource is producing an older product with an initially stable
demand. The processing time distribution of this product, henceforth referred to as P1, is assumed to have
a mean of t0 minutes and a standard deviation of σ0 minutes. We assume that the production process of
P1 has been thoroughly debugged, inducing disruptions requiring engineering action at a low, stable rate.
A production lot of P1 induces an event requiring engineering activity on average once every Qs lots. The
duration of the engineering activity, and hence the production time lost, is a random variable with a mean
of P minutes and standard deviation of σp minutes. At some point in the planning horizon, demand for the
old product P1 starts to decrease and is replaced by demand for a new product, which we shall denote by
P2. Without loss of generality the new product is assumed to have to the same processing time distribution
(t0,σ0) and engineering activity duration distribution (P,σp) as the old product. However, this new product
induces disruptions that require engineering activities much more frequently, on average every Q0 < Qs
lots. As experience is gained with the product, which involves finding and fixing problems that require
engineering interventions, the frequency of the disruptions decreases, eventually reaching a steady state
value Qs. This represents reactive learning as learning occurs with production experience.

In this work, we extend the previous model with an additional mode of learning through deliberate
experimentation. This is achieved by releasing engineering lots specifically designed to implement and
test potential engineering improvements. When an engineering lot is released into the system and reaches
the resource, its capacity consumption is significantly higher than that of a regular production lot, due to
special processing requirements such as the presence of engineering personnel to run the lot, equipment
configuration and preparation. It does not produce any revenue generating output like a regular production
lot. However, completing an engineering lot induces more learning than a production lot, reducing the
probability of disruption for subsequent production lots. We assume an engineering lot has a processing
time distribution with a mean of E minutes and standard deviation of σE .

The learning effects of the new product production and engineering lots on the average number of lots
between disruptions are then given by

Q2t = Q0 +(Qs−Q0)(1− e−αXp(t)−βXe(t)) (1)

where Q2t denotes the average number of lots between disruptions for the new product P2 at time t, Xcumm(t)
the total number of production lots of P2 produced until time t, Xe(t) the cumulative number of engineering
lots of P2 produced till time t, and Xp(t) the cumulative number of production lots of P2 produced up to
time t.

The planning horizon over which the simulation optimization is performed consists of J discrete periods
each of length T (equal to three months in our numerical experiments). The structure of the queuing system
is presented in Figure 1. Three types of lots are released into the fab; production lots of P1 and P2, and
engineering lots of the new product P2. The number of lots of a given type of lot i to be released into the
fab in period t is a decision variable denoted by Rit . In the simulation the mean arrival rate of lots of type
i in period t is given by

λit =
Rit

T
∀i ∈ (1,2,E) (2)

When a production lot of either product is released and arrives at the resource it induces a requirement
for engineering intervention with a probability of pit . For the old, stable product, this value is constant and
given by p1t =

1
Qs

. The probability that a production lot of the new product P2 will induce an engineering
disruption is p2t =

1
Q2t

, where Q2t is given by (1). Therefore, as more engineering and production lots
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Figure 1: Schematic of queuing system.

are produced in the fab, the probability of an engineering disruption decreases. A production lot of either
product undergoes regular production With a probability of 1− pit as depicted in Figure 1. At the end of
the simulation, we compute the value of total contribution over the entire time horizon.

The simulation takes as inputs the values of the processing parameters (such the mean and variance of
the different service and disruption distributions), the various costs (backorder and inventory holding costs)
and a release vector specifying the number of production lots of each product and engineering lots of P2
released in each planning period. Each simulation call returns the expected total contribution for a given
release vector. This simulation is used as the fitness function for a Genetic Algorithm when implementing
the simulation optimization.

4 Simulation Optimization

We now present a simulation optimization procedure using the simulation model from the previous section.
The model seeks a release vector that maximizes the expected total contribution over the planning horizon
of J periods. The problem can be stated as:

max E

[
∑
i,t
[πit(Dit +Sit−1−Sit)− (ritRit + iitIit + sitSit)]

]
s.t.

Rit ≥ 0 ∀ i ∈ (1,2,E); t ∈ J

where,

Iit Finished Goods Inventory (FGI) of product i at the end of period t, with unit cost of iit .
Rit Total releases of product i into the system during period t, with unit cost of rit .
Sit Total backorders of product i at the end of period t, with unit cost of sit .
Dit Demand of product i in period t, with a unit revenue of πit .

As in our previous work, we use a genetic algorithm (GA) as our simulation optimization engine. The
fitness function for the GA is the simulation model which outputs the average total contribution for a given
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Table 1: Demand data.

Demand 1 2 3 4 5 6 7 8 9 10
Product 1 1250 1250 1250 937.5 625 312.5 0 0 0 0
Product 2 0 0 0 312.5 625 937.5 1250 1250 1250 1250

Table 2: Parameter values.

Parameters J T t0 c0 P cp Q1s = Q2s Q20 α β

Values 10 129600 80 0.25 800 0.5 50 10 0.0001 0.004/0.001

Table 3: Contribution and Cost Parameters.

Parameters π1 π2 s1 s2 r1 r2 re i1 i2
Values 5 7.5 8 8 1 1 2 3 3

release vector over multiple simulation replications. Due to the nature of the simulation, with planned and
unplanned interruptions and variance in processing and disruption times, the total contribution value for a
single simulation run is quite variable, resulting in wide confidence intervals. To obtain smaller confidence
intervals, for each evaluation of the fitness function the mean value of 20 simulation runs is returned as
an estimator of the expected total contribution value. To further reduce the size of confidence intervals an
antithetic variates variance reduction approach was implemented for each replication of the simulation. The
resulting final confidence interval of the expected total contribution are reported in the numerical examples
performed in section 5.

A challenge in implementing the simulation optimization procedure using a GA is its slow convergence
when using a completely random initial population. Each individual represents a release vector consisting
of the release quantities of production lots for P1 and engineering and production lots of P2 in each planning
period. Due to the nonconvex nature of the problem, random starting populations result in inconsistent
solutions, with the GA reporting local minima instead of approaching a global minimum. To achieve
quicker and more consistent convergence, the initial population of the GA is seeded with good starting
vectors for production lots obtained by solving a relaxation of a deterministic optimization model Manda
and Uzsoy (2018a) consistent with the simulation model discussed. We also seeded the initial population
with release vectors obtained by solving the optimization model for random perturbations of the demand
vector Manda and Uzsoy (2018a). However, since there is no explicit demand for engineering lots of P2
we randomly generate the number of engineering lots in each period in the initial population.

The ga function of the MATLAB Global Optimization Toolbox (2016) was used to implement the
genetic algorithm. The total population size was set to 100. Of these, 10 good starting vectors were
included in the initial population and the rest were generated randomly. The elite count was set to 10
and the crossover fraction was set to 0.6. This means that of the 90 remaining individuals, on average
(0.6)(90) = 54 are from crossover children and the remaining 36 are generated through mutation. The
mutation, crossover, migration, scale and shrink options were left at their default values. The default
mutation function, Gaussian, adds a random number taken from a Gaussian distribution with mean 0
and standard deviation derived from the scale and shrink parameters to each entry of the parent vector.
The default crossover function, Scattered, creates a random binary vector and selects the genes where
the entry is a 1 from the first parent, and those whose entry is 0 from the second parent to form the child.
We refer the reader to the Matlab global optimization toolbox documentation for a detailed explanation of
the rest of the default functions and values of the Matlab ga parameters.
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5 NUMERICAL EXPERIMENTS

To examine the performance of the model developed in this paper we report several numerical experiments.
A product transition problem is considered with a planning horizon of 10 periods. As each planning period
is 3 months long, the total planning horizon is two and half years in length. At the beginning of the planning
horizon, in period 1, demand exists only for P1. Starting in period 4, the demand for P1 decreases and the
demand for P2 increases until there is only demand for P2 starting in period 7. The values of the demand
are given in Table 1.

Each production lot has a mean natural processing time of t0 = 80 minutes with coefficient of variation
c0 = 0.5. The new product P2 causes a disruption on average every Q20 = 10 lots when it is first introduced
into the production system. This number increases to Q2s = 50 lots by a combination of engineering lots and
production lots of the product. The increase in the average number of units between a disruption follows
Equation 1. Unlike our previous work ((Manda and Uzsoy 2018b)) which does not model engineering
lots, this model can reduce the disruption frequency of the new product P2 without producing unnecessary
production lots if engineering lots provide an performance advantage.

The mature product P1 causes a disruption on average every Q1s = 50 lots. During the initial periods, if
production consists solely of P1, the average utilization will be approximately 89%. The utilization changes
as engineering and production lots of P2 are introduced (which cause greater frequency of disruptions).
Each disruption lasts an average of P = 800 minutes with coefficient of variation cp = 1. Each engineering
lot of P2 has a mean processing time E of 800 minutes with coefficient of variation c0 = 1. Table 2
summarizes the values of the parameters.

The old product P1 generates a revenue of 5 per unit. The new product, on the other hand, generates
50% more revenue when it is first introduced into the system. This revenue of 7.5 per unit decreases each
period by 6% until it reaches the same revenue of 5 per unit as P1. This revenue structure mimics the high
prices commanded by a new product early on in its life cycle and the subsequent drop in prices with time.
The unit backorder cost is assumed to be 8 for both products and the finished goods inventory holding
cost to be 3. The cost of releasing a production lot (material cost) is set to 1 and that of an engineering
lot to 2. An engineering lot does not generate any revenue or incur any backorder or holding cost. Table
3 summarizes the values of the parameters.

A problem we faced with the experimental design is the lack of clear benchmark policies with which
to compare the solutions. Therefore, we decided to perform experiments with a high and low values of
β relative to the α value. A high β value represents the case where engineering lots are attractive due to
the high boost in learning they offer even though they do not provide any revenue and block production
as they are processed. A low β value in comparison to α value makes engineering lots less attractive.
A, extremely low β value reduces the value of engineering lots to a point where engineering lots yield
no benefit over production lots and the problem becomes that of managing only the production lots as
addressed in our previous work. For the first experiment we choose the β value to be 40 times greater than
the α value. This means that a engineering lot of P2 produces 40 times more learning than a production
lot of P2. For the second experiment we set β equal to 10 times the α value. Experiments have revealed
to us that around this point, with the current setup, engineering lots are no longer attractive.

5.1 Experiment 1: High Engineering Learning

For this experiment we use β = 0.004 and a α = 0.0001, making an engineering lot 40 times more effective
than a production lot at learning. The average total contribution values for the three GA runs are given in
Table 4. The results show that the different GA runs are in close agreement with each other, as indicated
by the confidence interval on the expected total contribution.

Examining the engineering lot releases given in Figure 2, we observe that even though there is some
variance in the number of engineering lots released in each GA run, a common theme is the lack of any
engineering lot releases in the later planning periods (periods 6 to 10). This shows that the engineering
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Table 4: Total Contribution: High β .

GA Run1 GA Run2 GA Run3
Mean 52713 52682 51208

95% CI [53398, 52028] [52968, 52397] [52362, 50055]

lots are being used early in the life cycle of the new product(P2) to boost learning. At a certain point
after production lots of P2 are introduced and enough learning has been accumulated, the marginal value
of an engineering lot approaches zero and thus we do not see any engineering lot releases. The marginal
value of an engineering lot remains constant before there is any demand (and thus production) of P2 and
therefore from the perspective of the objective function, engineering lots can be produced in any of these
periods without changing the final total contribution value. This explains the variance in the number of
engineering lot releases between each GA run in Figure 2.

The narrow confidence intervals and the agreement among the total contribution values between the
different GA runs is a result of the high amount of learning achieved early in the planning horizon from
the engineering lots. The production of the engineering lots increases Q2 value following (1). When the
production lots of P2 are introduced into the system, they are less likely to induce disruptions and thus the
total revenue generated is not subject to high variability.

Figure 2: Engineering Lot Releases for High β .

5.2 Experiment 2: Low Engineering Learning

For this experiment we use a β = 0.001 and a α value of 0.0001, making an engineering lot 10 times more
effective at learning than a production lot. The average total contribution values are given in Table 5. We
can make two observations from the expected total contribution values and the confidence intervals. Firstly,
the mean total contribution values are lower than under the previous case of high β . This is consistent with
expectations, as the engineering lots are now less effective to the point where the disruption in processing
and the loss in revenue they induce is greater than the benefit they provide. We can observe this clearly
in Figure 4 where, in none of the time periods of the three GA runs, the engineering lots released exceed
two lots. These very low engineering lot releases can be attributed to noise in the simulation results.

The other observation that can be made from Table 5 is the higher variance in the results of the GA
runs and the larger confidence intervals when compared to the results of experiment 1. At first sight, the
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Table 5: Total Contribution: Low β .

GA Run1 Ga Run2 GA Run3
Mean 44642 50486 44987

95% CI [47344 41939] [51456 49516] [47203 42771]

differences between Tables 4 and 5 seem counterintuitive; almost no engineering lots are processed in the
low β case shown in Figure 3, so we would expect a lot less variability in this case than in the high β

case in Figure 2, where more engineering lots are being processed. The answer is apparent after examining
the solutions in the two cases. When β is high, the model releases engineering lots of the new product
early in the horizon, before demand for the new product is substantial. Since most of the learning takes
place early in the horizon, the new product induces far fewer engineering disruptions later in the horizon
when demand for the new product is high, resulting in far more variability in the later periods. When β

is low, in contrast, few engineering lots are released, since their benefit to learning is outweighed by the
burden imposed on the system by their additional processing time. Hence the majority of learning must take
place via the production lots, resulting in much slower learning and hence more engineering disruptions
induced by the new product. This creates additional variability in production compared to the high β case,
explaining the results in Figure 3.

Without the engineering lots to boost learning, the model uses releases to counter the effects of new
product introduction and increased disruptions. These results are in line with our previous work. As can
be seen from Figure 3, the optimal solutions in all three GA runs increase production of P1 and build up
inventory in the initial periods. The model also tried to increase learning by introducing a small number
of lots of P2 during these early periods. However, a lack of demand and high backorder cost prevent it
from releasing more units of P2. During the transition period, the releases of P2 are increased and built
up inventory of P1 is utilized to meet demand. This increase in releases of P2 helps in maintaining output
of the product and in increasing learning. This is the exact pattern of behaviour observed in our previous
work with no engineering lots and thus these results are consistent with our expectations.

Figure 3: Production Lot Releases for Low β .
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Figure 4: Engineering Lot Releases for Low β .

6 CONCLUSIONS AND FUTURE WORK

While the results presented in this paper are preliminary and exploratory in nature, a number of interesting
conclusions can already be identified. Earlier work seeking to model the interaction of production and
engineering lots while explicitly representing congestion (Kim and Uzsoy 2008; Kim and Uzsoy 2013)
has focused on the impact of learning on the mean effective processing time alone, without explicit
consideration of the impact of learning on its variance. Once the impact of learning on processing time
variance is explicitly considered, making the learning rate endogenous to the model rather than an exogenous
parameter, deterministic optimization models become highly non-convex (Manda et al. 2016), requiring
the use of metaheuristics to obtain approximately optimal solutions. The inherently stochastic nature
of the underlying problem, which is subject to many uncertainties in both shop floor events and the
amount of learning realized from production or engineering lots will eventually require a solution to a
complex stochastic optimization problem. The non-convex structure of the deterministic models suggest
that approaches such a stochastic programming or robust optimization are unlikely to be computationally
tractable, leaving simulation optimization as the principal alternative. This approach is explored in this
paper, using a simple genetic algorithm as the simulation optimization engine.

Our results give a number of interesting insights. The results in Experiment 1 and 2 clearly illustrate
the the ill effects of slow production learning and lack of effective engineering activity. They show how
effectively designed engineering lots that can provide boosts in learning can be strategically used early in
the life cycle of a product to decrease disruptions, increase total contribution and reduce variance in the
long run, even at the expense of temporary revenue and capacity. They also show that an engineering lot
requires to be able to boost learning by a certain level before it can be viable. These simple experiments
at a high level illustrate the basic intuitive understating of how proactive engineering activity can be more
beneficial than focusing engineering effort on reacting to problems that occur randomly.

The results we have presented are stylized and optimistic in several ways. Learning from engineering
and production lots is always positive; there is no probability of zero learning, or of forgetting. Our
exponential model of learning posits diminishing returns to additional learning effort over time, which is
probably realistic at a high level, but calls into question the specific form of learning curve used. Most
importantly, there are many different dimensions in which learning takes place on the shop floor, ranging
from processing recipes and equipment adjustments to managerial practices and employee training which
are all difficult to model in detail. Godinho Filho and Uzsoy (2013) and Wu (2013) present models of
processing times showing that many different factors can contribute to improvements in effective processing
times. Our model focuses on the adverse effects of new product introduction on the throughput of the
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different products, but does not examine detailed models of the yield of good devices thus obtained. Finally,
the choice of what engineering lots to run at what point in the life cycle, i.e., what specific processing steps
to target and in what order, are important questions our model does not address. In particular, our model
assumes all engineering lots are statistically the same in their effect on the process. In reality, the results
of one engineering lot are likely to influence the design of the next one, limiting the ability of management
to learn meaningfully from a large number of engineering lots released early in the life cycle.

In this paper we have aggregated all of these into one mechanism, the frequency of engineering holds
induced by the new product relative to the older, more mature ones. Clearly at any point in time learning
is continuing on older products; some improvements made for the new product will also improve the
processing times of older products in different ways. Detailed modelling of all these issues is likely to be
challenging, requiring major data analytics efforts to identify the mechanisms and estimate the parameters
involved. The simple model we have presented appears to capture the high-level dynamics of the problem
addressed, and opens the possibility for refining it in future work.

Several directions for future work are immediately apparent. The extension of this work to a multistage
system, where engineering effort can be reallocated over time as learning takes place and bottlenecks shift is
an important direction. While Theory of Constraints would suggest exclusive focus on bottlenecks, it is quite
possible that once the bottlenecks have been improved to a high degree, improvement at non-bottlenecks will
become desirable in order to improve material flow into the bottleneck, as suggested in Kefeli and Uzsoy
(2016). Our results in this paper suggest that developing an effective simulation optimization approach for
this problem is likely to be challenging. The simple genetic algorithm we have used is challenged by the
high variability in system performance measures we encounter. A more efficient, gradient-based approach
may provide a more effective approach.
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