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ABSTRACT 

The urban environment is becoming increasingly more connected and complex. In the coming decades, we 
will be surrounded by billions of sensors, devices, and machines, the Internet of Things (IoT). As the world 
becomes more connected, we will become dependent on machines and simulation to make decisions on our 
behalf. When simulation systems use data from sensors, devices and machines (i.e., things) to make 
decisions, they need to learn how to trust that data, as well as the things they are interacting with. As 
embedded simulation becomes more commonplace in IoT and smart city applications, it is essential that 
decision makers are able to trust the simulation systems making decisions on their behalf. This paper looks 
at trust from an IoT perspective, describing a set of research projects conducted that span multiple 
dimensions of trust, and discusses whether these concepts of trust apply to simulation. 

1 INTRODUCTION 

In the coming decade, we will be surrounded by billions of connected sensors, devices, and machines. This 
will lead to a pervasive presence of things (e.g., RFID tags, sensors, actuators, cell phones, vehicles), which 
have the ability to communicate and cooperate to achieve common goals. These things will be uniquely 
identifiable and addressable, and many will be smart and can capture, store, process, and communicate data 
about themselves, their physical environment, and their human owners. Since there is not an “internet” 
exclusively dedicated to “things”, the expression Internet of Things (IoT) is best understood as a metaphor 
that encapsulates the immersion of almost anything and everything into the communications space (CDAIT 
2018). As the European Research Cluster on the Internet of Things (IERC) puts it, IoT is “A dynamic global 
network infrastructure with self-configuring capabilities based on standards and interoperable 
communication protocols where physical and virtual things have identities, physical attributes and virtual 
personalities; use intelligent interfaces; and are seamlessly integrated into the information network” (IERC 
2014). 

A unique characteristics of the IoT is the presence of different modes of communication, including 
interaction between people (Human to Human or H2H), people and things (Human to Machine or H2M and 
M2H), and things (Machine to Machine or M2M). H2H communications are carried out in multiple forms 
and continue to innovate with social media and crowd sourcing. H2M or M2H communications assume 
human intervention and control. In contrast, the M2M communications have no explicit human intervention 
or very limited intervention.  

With the growing economic and environmental problems in urban areas, the benefit of IoT technologies 
in a city are vast. A smart electrical grid will make cities more efficient by optimizing how energy is used 
and distributed. Device data will help inform and protect city residents by improving city service monitoring 
capabilities. Consumers will have better insights on the consumption of personal resources (energy, water, 
and gas) and granular neighborhood data. City infrastructures and services will change with new 
interconnected systems for monitoring, control, and automation (Loper 2015). Cities and urban areas that 
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benefit from the IoT are commonly referred to as Smart Sustainable Cities or, in short, as Smart Cities (SC): 
"A smart sustainable city is an innovative city that uses information and communication technologies and 
other means to improve quality of life, efficiency of urban operation and services, and competitiveness, 
while ensuring that it meets the needs of present and future generations with respect to economic, social 
and environmental aspects" (ITU 2014). 

Application of IoT in cities include deploying things in all aspects of our everyday lives, including 
transportation systems, public safety, power grid, water supply networks, waste management, homes, 
buildings, health, and agriculture, as shown in Figure 1.  

 

Figure 1: IoT and smart cities (Dhamu and Company 2019). 

A goal of a smart city is to use IoT devices to collect data, and use these data to manage assets and 
resources efficiently, as well as to interact with the citizens that work and live in these environments. Cities 
may be the first to benefit from the IoT, but being surrounded by billions of sensors, devices, and machines 
has profound implications for security, trust, and privacy. The more technology a city uses, the more 
vulnerable it is, so the smartest cities face the highest risks. Therefore, in addition to using IoT technologies 
for monitoring and managing cities, there is also a need to understand how to protect and defend smart 
cities.  

This paper describes a portfolio of research conducted on trust as it applies to IoT and SC. It starts by 
defining trust and a framework for capturing the many dimensions of trust. That is followed by brief 
descriptions of some of the research projects conducted on trust in IoT and SC. These projects are organized 
in terms of the trust framework we adopted. The research described spans a range of trust topics, but little 
work has been done on the relevance of trust to simulation. The application of simulation that use and 
interact with real world systems is growing, which means understanding their trustworthiness is of growing 
importance. The paper concludes with a few ideas on the way forward. 

2 TRUST 

2.1 Definitions 

Several trends are emerging with IoT. First, with the grand vision of billions and trillions of things (e.g., 
cellphones, physical devices, vehicles, and other things embedded with electronics, software, sensors, 
actuators), things will soon outnumber people. One prediction forecasts that by 2021, the number of 

3



Loper 
 

 

connected devices will outnumber connected people by six to one (ITU 2012). It will be impossible for 
humans to monitor and control all these things; therefore, some decision-making will be delegated to things 
in the system. In other words, some of these things will make decisions on our behalf. Second, while 
interconnection is self-evident to IoT, the intelligence of things is what makes the IoT paradigm “game-
changing” (CDAIT 2018). There is an increasing desire to use things in lieu of humans in dangerous or 
routine situations, and also to make things more intelligent such that they can deliver personalized and 
autonomic services. Both of these trends raise questions about the trustworthiness of this emerging 
technology.  

The connection between people and things is complex, and creates a set of trust concerns. Trust should 
be considered at two levels: (1) whether a thing trusts the data it receives or trusts the other things it interacts 
with (M2M) and (2) whether a human trusts the things, services, data, or IoT offerings that it uses (H2M or 
M2H). This leads to the idea that trust is multi-dimensional. Ahn et al. (2007) described the concept of 
multi-dimensional trust by different agent characteristics, such as quality, reliability, and availability. For 
Matei et al. (2009), trust refers to the trustworthiness of a sensor, whether it has been compromised, the 
quality of data from the sensor, and the network connection. Grandison and Sloman (2000) define trust as 
the belief in the competence of an entity to act dependably, securely, and reliably within a specified context. 
To address behavior uncertainty in agent communities, Pinyol and Sabater-Mir (2013) define three levels 
of trust based on human society: security, institutional, and social. Leisterm and Schultz (2012) identify 
technical, computational, and behavioral trust, but focus primarily on a behavioral trust indicator. Lastly is 
the idea that trust is a level of confidence: the probability that the intended behavior and the actual behavior 
are equivalent given a fixed context, fixed environment, and fixed point in time (Voas et. al 2018).  

For our work, we adopted the definition of trust that NIST uses in their report on trustworthiness of 
cyber physical systems. Trust is defined as “… the demonstrable likelihood that the system performs 
according to designed behavior under any set of conditions as evidenced by characteristics including, … 
security, privacy, reliability, safety and resilience” (NIST 2017, p.15).  

2.2 Types of Trust in IoT Systems 

Work on trust management is often divided into two areas: security-oriented and non-security- oriented. 
The descriptions below are summarized from (Terzis 2009). 

Security-oriented trust adopts a restricted view, where trustworthiness is equated to the degree to which 
an entity or object is considered secure. This traditional view sees trustworthiness as an absolute property 
that an entity either has or doesn’t have. This is often accomplished by determining the credentials an entity 
possesses, and iteratively negotiating how to disclose certified digital credentials that verify properties of 
trust. This view of trust is also related to trusted computing, which is the expectation that a secure operating 
environment can be created by enforcing certain hardware and software behaviors with a unique encryption 
key inaccessible to the rest of the system. In software engineering, this view of trust is determined through 
formal verification. Managing trust in this context includes specifying and interpreting security policies, 
credentials, and relationships. 

Non-security-oriented trust adopts a wider view similar to the social sciences. This includes a view of 
trust as a mechanism for achieving, maintaining, and reasoning about the quality of service and interactions. 
In this view, trust is a measurable property that different entities have in various degrees. Trust is determined 
on the basis of evidence (personal experiences, observations, recommendations, and overall reputation) and 
is situational, meaning an entity’s trustworthiness differs depending on the context of the interaction. A 
goal of trust management is managing the risks of interactions between entities. This is also the basis of 
trust management in multiagent systems, which includes the notion of malicious and selfish behavior. Since 
non-security-oriented trust is similar to the human notion of trust, work related to computer-mediated trust 
between users, building human trust in computer systems, and human-computer interaction has led to 
sophisticated models of trust and reputation research. 

To tie this together in a system model for IoT, we adopt a layered trust framework defined by Yan et 
al. (2014). These layers work together to create an environment in which things and humans can interact 
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and make trustworthy decisions. The layers in the framework include (i) physical perception, which 
perceives physical environments and human social life; (ii) a network layer that transforms and processes 
perceived environment data; and (iii) an application layer that offers context-aware intelligent services in a 
pervasive manner. The fourth layer represents the cyber-physical social relationships that connect layers. 
Figure 2 depicts these layers, with trust objectives. A trustworthy IoT system relies on the cooperation 
among layers. “Ensuring the trustworthiness of one IoT layer (e.g., network layer) does not imply that the 
trust of the whole system can be achieved” (Yan et al. 2014). 

 

Figure 2: IoT trust framework. 

2.3 Trust Architecture 

The next step we took is to translate the layers of the trust framework into an architecture, on which a 
research strategy was developed. The trust architecture and its system components are shown in Figure 3a. 
The lowest component called sensor is analogous to the physical perception layer, where sensors, devices, 
and machines are individually serving as a source for data. The data being generated by these sensors are 
assimilated and elevated through context into information by an aggregator.  

An aggregator is an intelligent machine that collects data from sensors and uses that data to create 
knowledge for decision-making. In order for an aggregator to determine if the data communicated to it are 
worthy of being used, the notion of trust becomes an issue. When there are a number of different sensors, 
each presenting data, and these data have conflicts from sensor to sensor, aggregators must select which 
among them to trust, how much to trust, as well as some criteria for establishing that trust. Reasons for 
competing sources of data to be in conflict with each other, at the Aggregator or Command and Control 
(C2) components, could be many: malfunction, bad actor, tampering, environmental conditions, context 
conditions, and so on. Finally, the C2 component is responsible for looking across aggregators to synthesize 
data, as well as provide an interface to humans interacting with the system. 

3 TRUST RESEARCH STRATEGY 

Our research in IoT started in 2013 with an ideation event that engaged a large number of researchers to 
discuss technologies, technical challenges, and application areas. This was followed by a number of 
internally-.funded research projects, shown in Figure 3b, which spanned the trust architecture. Our initial 
research was on IoT M2M Trust, which looked at how aggregators trust data they receive from sensors, as 
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well as how they trust other aggregators. That research was followed by trust and security of sensor arrays, 
and a trust negotiation language that could be used by aggregators. Our research broadened into smart cities 
at this point, where we looked at computing trust at the edge in Fog Computing (defined later), in-situ 
privacy algorithms, intelligent and scalable orchestration of IoT objects, and a situational awareness system 
for the Georgia Tech police department called the Common Operating Picture. In recent years, we have 
looked at the question of risk factors to determine if smart cities are trustworthy, as well as modeling the 
inherent danger associated with smart city technology being manipulated.  

 

Figure 3: (a) Trust architecture and (b) research strategy. 

In the sections that follow, many of these projects are described to give a better understanding of our 
trust research strategy. Note that these projects span the multiple dimensions of trust defined in Section 2.1, 
as well as security- and non-security-oriented trust approaches. 

3.1 Physical and Perception Layer 

3.1.1 Device Trust and Sensor Arrays 

With a growing demand for data collection, there is also a demand for privacy and safety. This project 
developed a sensor testbed and algorithms to collect scientific research data, while preserving privacy, in 
public environments. The technical approach interfaced a reconfigurable System-on-Chip with multiple 
sensing peripherals and wireless network feedback. The sensor arrays, Community Array Nodes, contained 
ten different sensors that gave insight into urban environment monitoring and smart city behavior. 
Hardware- and software-based security and trust mechanisms allowed for operating in remote 
environments, providing protection to both deployed hardware and the back-end infrastructure. 

There were three successful hardware deployments across the city of Atlanta’s North Avenue smart 
city test bed, each with the capability of collecting sensor data, processing it in-situ, and sending it to a 
central server over a secure connection. With only an outgoing connection from the node, there were 
minimized avenues for security threats. Hardware security was accomplished through tamper-resistant 
technology, i.e., resistance to intentional malfunction or sabotage by normal users or others with access to 
the technology. The reconfigurable sensing platform demonstrated the ability to effectively collect relevant 
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information, while alleviating public concerns. Precedent-aware classification (Danner 2016), an efficient 
technique that uses information from past detections to reduce the computation required for detection over 
time, allowed computationally intensive computer vision algorithms to run in real time. With a modular 
design of the nodes, they were quickly integrated with relevant sensors from researchers. This approach 
minimized the difficulty in deploying a distributed sensor network, while addressing privacy and security 
concerns.  

3.1.2 Fog Computing 

Due to its widespread availability, high degree of scalability, and inexpensive cost, cloud computing is 
ubiquitous in industry. Despite its extreme versatility, cloud computing cannot address all possible 
computing needs for modern day applications. For example, if the network connection to the Internet is 
severed, the uplink too slow, or the distance between the user and the server too great, the user’s cloud 
experience will be significantly degraded. To that end, Cisco proposed a distributed computing framework 
called Fog Computing (Bonomi et al. 2012). Fog Computing ameliorates these issues by creating a 
continuum of compute, storage, and networking resources from the cloud to the end device. Fog Computing 
primarily targets applications which have high bandwidth requirements, low latency restrictions, or that 
operate in environments where internet and cloud connectivity are restricted, denied, or intermittent. In this 
work, we explored Fog Computing’s ability to operate under degraded networking conditions, which 
addresses the reliability aspects of trust. 

We developed a real-world Fog Computing application that processed multiple, collocated video 
streams to extract statistical information about how pedestrians use walking paths. To develop the 
application, we used Georgia Tech’s MobileFog platform (Hong et al. 2013; Saurez-Apuy et al. 2016) in 
conjunction with data from the PETS2009 (Ferryman et al. 2010) and Duke Multi-Target Multi-Camera 
(Ristani et al. 2016) data sets. Using the MobileFog framework, we developed a pedestrian statistics 
application that located human figures in frames, tracked their movement between frames, and generated 
ground position estimates with decimeter-level accuracy. These data were transmitted up through the Fog 
and twice aggregated before reaching the root node where they were logged to disk. Our experiments tested 
the limitations of Fog Computing in three bandwidth configurations: benign, hostile, and denied. Our results 
represent the first systematic exploration of a real-world Fog Computing application’s response to degraded 
networking conditions. 

3.2 Network Layer 

3.2.1 Trust Negotiation Language 

A trust framework is any structure that builds trust among autonomous actors for the purpose of sharing 
and reusing identities. The goal of the Trustmark framework (GTRI 2013) is to facilitate federated identity 
and attribute management (i.e., the reuse of digital identities and associated attributes) in enterprise systems. 
Identity reuse requires trust between entities that assert attributes and entities that rely on such assertions. 
The rules and requirements for establishing such trust comprise an identity trust framework. The 
requirements of a trust framework may be explicitly or implicitly stated, and may encompass many 
dimensions such as identity assurance, privacy, security, technical interoperability, business-level identity 
requirements, legal rights, responsibilities, liabilities, and indemnification.  

This project revolved around the use of Trustmarks as a secure and robust framework for exchanging 
trusted, third-party-attested attributes in support of autonomous peer-to-peer trust decisions. A Trustmark 
is a machine-readable, cryptographically signed digital artifact, issued by a Trustmark provider to a 
Trustmark recipient, and relied upon by one or more Trustmark- relying parties. Such a process is valuable 
in IoT, as devices come from manufacturers that are themselves Trustmark recipient organizations. These 
IoT-enabled devices can then present preloaded Trustmarks in order to establish trust. For example, if the 
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device manufacturer Samsung created smart phones with a particular Android capability, it would make 
sense for Android to grant a Trustmark to Samsung which would then be preloaded and presentable on all 
Samsung-made devices, to prove that they adhere to a particular set of requirements laid forth by Google 
on the Android platform. 

To securely exchange attribute information in support of IoT trust and trust negotiation, we developed 
a set of extensions to a pre-existing Trustmark framework specification, to include parameter definitions 
and values within Trustmarks. These parameters contain data-typing information that allows for conveying 
most modern attribute information, as well as human-readable names and descriptive text for helping 
Trustmark assessors fill in the appropriate values before issuing Trustmarks. Within Trustmarks, these 
parameters provide the necessary third-party-attested values that are required for rich trust decisions.   

3.2.2 M2M Trust 

Machine to machine communications are at the center stage of the IoT. Connecting the physical world with 
the digital world not only creates new opportunities for innovation and discovery, but also opens doors for 
misuse and abuse. This work argues that reputation-based trust can be an effective countermeasure for 
securing M2M communications. We established M2M trust by taking into account both 
transaction/interaction service behaviors and feedback-rating behaviors in the presence of bogus 
transactions and dishonest feedback. Our trust model, called M2MTrust (Liu et al. 2016), introduces two 
novel trust metrics: pairwise-similarity-based feedback credibility and threshold-controlled trust 
propagation. We compute the direct trust from machine A to machine B by utilizing their pairwise rating 
similarity as the weight to the normalized aggregate of ratings that A has given to B.  

We examined the strength and weakness of several popular trust models developed in the context of 
decentralized network computing systems, such as EigenTrust (Kamvar et al. 2003), PeerTrust (Xiong and 
Liu 2004), BetaTrust (Jasong and Ismail 2002), and ServiceTrust (Zhiyuan et al. 2015). We evaluated these 
trust models in terms of three sets of measurements: 

 
1. The support of only direct trust evaluation vs. the support of both direct trust and indirect trust;  
2. The time complexity for efficiency in trust computation and trust deployment in M2M 

communication;  
3. The attack resilience against four common threat models initially introduced in (Kamvar et al. 

2003): malicious individuals, malicious collective, camouflaged collective, and malicious spies.  
 
We conduct extensive experiments using simulation and real datasets. Our scenario was self-driving 

cars on road networks. Specifically, can self-driving cars trust one another to provide a safe driving 
experience, and can M2MTrust help alleviate traffic jams, whether accidental or malicious? Our direct trust 
computation model effectively constrained malicious nodes to gain direct trust from dishonest feedback 
ratings by leveraging feedback credibility. Furthermore, our threshold-controlled trust propagation 
mechanism successfully blocked the trust propagation from good nodes to malicious nodes. Experimental 
results showed that M2MTrust significantly outperformed other trust metrics in terms of both attack 
resilience and performance in the presence of dishonest feedback, and sparse feedback ratings against four 
representative attack models.  

3.2.3 Distributed Orchestration in Large-Scale IoT Systems 

With the growing popularity of smart things and the pervasiveness of wireless communications, the Internet 
has evolved from the Internet of hosts, to the Internet of people, to the IoT. Intelligent and scalable 
orchestration of large-scale IoT objects using a multitier architecture is critical to embrace the vision of 
IoT. In Yigitoglu et al 2017), we present our vision and our initial development of a distributed orchestration 
framework, called ISYMPHONY, with the ultimate goal of scaling real-time and on-demand IoT service 
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provisioning in large-scale IoT systems, while guaranteeing quality of service with respect to performance, 
availability, and security.  

This research made two original contributions. First, we presented a distributed orchestration 
architecture that enabled edge devices and edge clients running on top of edge devices to contribute to the 
IoT computing tasks, based on their computing and communication capacities. A main idea behind the 
distributed IoT orchestration architecture was the intelligent partition of a real-time IoT computing task into 
an optimal coordination of server-side processing and IoT-object-side processing. Second, a set of 
optimization techniques limit the number of computations handled by the edge clients and enhance the 
overall performance and resource utilization of the ISYMPHONY system. Our initial experimental results 
show that ISYMPHONY can lead to significant savings in terms of server load and high accuracy by 
leveraging and coordinating edge client processing capabilities, compared to the solutions relying solely on 
server level processing for real time IoT services provisioning. 

3.3 Application Layer 

3.3.1 Trusting Smart Cities 

The benefits of making cities smart must be considered against the potential harm that could come from 
being massively interconnected. To understand how trust applies to smart cities, we developed a set of risk 
factors that capture a range of issues that cities should considere when deploying smart city technologies 
(Loper 2018). Risk emerges when the value at stake in a transaction is high, or when this transaction has a 
critical role in the security or the safety of a system. “In most trust systems considering risk, the user must 
explicitly handle the relationship between risk and trust by acknowledging that the two notions are in an 
inverse relationship, i.e. low value transactions are associated to high risk and low trust levels and vice 
versa” (Patrick 2002). Or put more simply – the more risk associated with a transaction, the less we trust it. 

To understand how this inverse relationship applies to smart cities, we defined three key risk factors 
(Loper 2015): non-technical, technical, and complexity. Non-technical risk includes aspects of a smart city 
where humans are involved, such as management, training and education, governance, and security 
practices. Technical risk factors focus on the technology aspects of a smart city, including both hardware 
and software systems. This also includes the concept of cyber-physical systems, which are systems of 
collaborating computational elements controlling physical entities. The last risk factor is complexity. A 
smart city is not a discrete thing; it is the complex multi-dimensional interconnection of diverse systems 
(human and technology) that deliver services and promote optimum performance to its users. There is risk 
in the complexity of these systems, especially as the scale becomes very large. Building on these risk 
factors, a threat analysis matrix for capturing how well smart cities address these risks was proposed.  

3.3.2 Privacy Zones 

While location-based services and applications are increasing in popularity, there are growing concerns 
over users’ location privacy. Although there exist general-purpose mobile permission systems and cloaking 
techniques, they suffer from several problems when applied to continuous location and GPS access. 
Namely, they are often rigid, coarse-grained, not sufficiently personalizable, and unaware of road network 
semantics. For example, in most existing systems, permission decisions are static and follow a one-size-
fits-all principle. Once a user decides to allow or deny GPS access to an app, the setting is applied on all 
future location requests unless the user manually changes the app’s setting. In Yigitoglu et al. (2018) we 
proposed PrivacyZone, a novel system for constructing personalized fine-grained privacy regions and 
protecting users’ privacy within these regions. PrivacyZone allows users to seamlessly enter their privacy 
specifications under spatial, temporal, and semantic customization. For example, a user may want to allow 
location access when she is in the park, but deny access when she is in the hospital. Existing permission 
mechanisms are not sufficiently fine-grained to support such personalized and variable privacy preferences.  
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Novel challenges arise from enforcing privacy zones for a large volume and variety of users with 
frequent location updates. We show that I privacy zone processing techniques are inefficient and cause 
excessive energy consumption. As a result, we developed advanced processing techniques based on the 
concept of safe hibernation – a time period or a geographic region, within which the client is guaranteed to 
not enter a privacy zone. We empirically evaluated our techniques to demonstrate their trade-offs with 
respect to hibernation time, computation effort, and network bandwidth usage. Our results show that 
PrivacyZone is efficient, scalable, and flexible, while preserving the users’ location privacy. 

4 SIMULATION TRUST 

The paper thus far has done the following: converged on a definition of trust, defined a framework that 
captures its multiple dimensions, and investigated a number of research projects that span these layers. The 
next step is to understand whether these concepts of trust apply to simulation. 

4.1 LVC and IoT 

As mentioned earlier, IoT is characterized by a wide variety of tags, sensors, actuators, analytics, and 
embedded systems that are uniquely identifiable and addressable, and cooperate over networks. Also 
discussed, IoT has multiple modes of interaction, which include people and things (e.g., H2H, H2M, M2H, 
and M2M). Characterizing IoT interactions between people and things resembles the framework developed 
for how people and simulation models interact, known as Live, Virtual, and Constructive (LVC) (MSCO 
2011). The similarities between these two areas are quite interesting, and lead us to the observation that IoT 
is another type of LVC system. The LVC taxonomy, shown in Figure 4, is defined as:  

 
 Live simulation refers to M&S involving real people operating real systems (e.g., a pilot flying a jet).  
 Virtual simulation is one that involves real people operating simulated systems (e.g., a pilot flying a 

simulated jet).  
 Constructive simulation applications are those that involve simulated (or no) people operating 

simulated systems (e.g., a simulated pilot flying a simulated jet).  
 
There is no name for simulated people operating real equipment. In the late 1980’s when the LVC 

taxonomy was created, there were no examples of this type of interaction. However, technology has 
advanced to the point where simulated humans are operating real systems. For example, driverless cars 
have proved that the interaction between the real and simulated worlds is possible. Even though that 
quadrant of the matrix has not been officially named, it bears resemblance to artificial intelligence and 
autonomy. 

 

Figure 4: Categorizing simulation models by the way humans interact with them (IITSEC 2018). 
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First presented in (Loper 2017), we can use the LVC taxonomy to describe IoT, as shown in Figure 5.  
 
 Live refers to real people operating real IoT systems (e.g., a smart phone). 
 Virtual refers to real people operating simulated IoT systems (e.g., social media). 
 Constructive refers to simulated (or no) people operating simulated IoT systems (e.g., analytics). 
 Autonomy refers to simulated (or no) people operating real IoT systems (e.g., driverless vehicles). 

 

Figure 5: Using LVC taxonomy for IoT. 

The map between IoT and LVC in Figure 5 helps us think about how trust applies to simulation. Using 
the projects discussed in Section 3 as a roadmap, we can posit whether trust research applies to live, virtual, 
or constructive simulation. Let’s explore several examples: First, the device trust for sensor arrays and 
privacy zone work could be applied to live simulation. Context is often necessary for representing things 
in simulation models (e.g., location), however knowing the data are different than knowing the 
person(s)/vehicle(s) that generated the data. This highlights the need to protect the privacy of the data 
collected from sensors. A second area applies to one of the fundamental elements of LVC simulation: 
communication mechanisms (exchanging data). The work on M2MTrust and Trustmarks could easily apply 
to the messages exchanged by simulation system, as well as determining which simulation model to trust 
in a message exchange. Third, the reliability of Fog Computing has direct application to live simulation, 
and constructive in regards to simulation in the cloud or simulation as a service. When simulation 
computations are pushed closer to the edge to improve response time, the trustworthiness of these 
computing platforms is critical. Lastly, the risk framework created for looking at smart cities as a whole is 
directly relevant to looking at the development and execution of LVC+A federations, when one or more of 
the simulation components are driven by live sensor data. From this quick analysis, it appears that the 
portfolio of trust research we have explored has relevance to the continuum of LVC simulation. 

4.2 Internet of Simulation Things 

IoT enables distributed control and computational architectures: one can trust (or distrust) abstract concepts, 
abstract entities, or physical things; including persons, organizations, information, systems, etc. Since 
simulation models can be used to control or give commands to sensors and actuators, or provide faster-
than-real-time prediction to systems, we need to enhance trust relationships when simulation is part of the 
IoT system. Expanding IoT’s modes of interaction, we have: 

 
 Machine to Machine (M2M)  Simulation to Simulation (S2S) or Machine to Simulation (M2S) 
 Human to Machine (H2M)  Human to Simulation (H2S) 
 Human to Human (H2H)  Human to Human (H2H) 
 
An example of where M2S and S2M are already happening is data-driven online simulation. The 

Dynamic Data-Driven Application Systems (DDDAS) concept is a unique paradigm for exploiting 

Simulation IoT

Live Real people operating real systems 
Sensors, Devices, Smart Phones, Security 
Cameras

Virtual Real people operating simulated systems
Mobile Apps, Social Media, Driving 
Directions

Constructive
Simulated (or no) people operating 
simulated systems 

Embedded Simulation, Machine Learning, 
Analytics

Autonomy
Simulated (or no) people operating real 
systems 

Driverless Vehicles, Robots, Home/Building 
Automation, Embedded Systems
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maturing computational and sensor networking technologies to compensate for model deficiencies and 
unforeseen system evolution and stimulus conditions, mitigate the effect of design imperfections on long-
term as well as short-term system safety, and enable informed decision for maintenance planning and crisis 
management (Farhat et al. 2006). This paradigm utilizes online data to drive simulation computations, and 
the results are then used to optimize the system or adapt the measurement process. For example, live sensor 
data and analytics can be used to construct or infer the current state of a system and faster-than-real-time 
simulation can then be used to project the system’s future state. Also, simulation can be used to control an 
operational system, e.g., data from a real system are fed directly into the simulation model which analyzes 
alternate options and produces recommended courses of action. With the availability of data from IoT and 
smart city instrumentation, paradigms such as DDDAS can be expected to grow in importance.  

As discussed by Carothers et al. (2017), when simulation uses data from things in the network to make 
decisions, users need to learn how to trust these data as well as the things (sensors) they are interacting 
with. Currently securing sensors and devices is accomplished through information security technologies, 
including cryptography, digital signatures, and electronic certificates. This approach establishes and 
evaluates a trust chain between devices, but it does not tell us anything about the quality of the information 
being exchanged over time. Data from sensors or aggregators may be in conflict with each other due to 
malfunction, bad actors, tampering, environmental conditions, context conditions, and so on. Thus, whether 
or not the simulation should trust these data must be established by an agent that is capable of a trust 
evaluation prior to them being deemed useful as information. Further, if simulation has a role in controlling 
or giving commands to some sensor or actuator in the IoT system, then the data the simulation uses from 
external sources in which to make those decisions must be trustworthy, such that they are not purposely 
misled into issuing malicious commands.  

To illustrate the emerging importance of trust for simulation, let’s first look at where simulation might 
be used in smart cities. An ontology that represents a city as a system of systems is the Anatomy of a City, 
developed by the City Protocol Society (City Protocol Society 2015), shown in Figure 6. This document 
defines a common language describing the city ecosystem as three key system elements: Structure – a set 
of physical structures; Society – the living entities that make up a city’s society; and Interactions – the flow 
of interactions between structure and society.  

The top layer of the ontology is Structure, which refers to physical constructions in a city, i.e., the 
building, streets, subways, and other three-dimensional macroscale networks. This layer, which is 
particularly useful in the trust discussion, includes the following sub-layers: 

 
 Environment is the physical and geographic setting of the city, including the natural environment 

(“nature”). It is formed by the three basic elements: air, earth, and water, which interact dynamically in 
a seasonally-dependable way.  

 Infrastructure comprises the connective structures that enable people to get resources, especially from 
the environment, and bring them to the city, or that enable flows or cycles within the city itself. These 
infrastructures include those that support communications, the water and energy cycles, the matter cycle 
that supports the movement of goods and food as well as the resultant waste, the mobility networks, 
and nature or green infrastructure.  

 Built Domain is organized according to the approximate number of people that it can accommodate on 
a physical basis. Within the Built Domain, an object corresponds to a single person, and a dwelling, 
building, block, neighborhood, district, city and metropolis or region each increase the scale by an order 
of magnitude. Private and public spaces are contained within each level of scale. 
 
Work is already underway to use simulation to monitor, control, and predict aspects of cities. Related 

to the built domain sub-layer, Farhat et al. (2006) are using a DDDAS to monitor the health of large-scale 
structural systems. Their work is focused on composite materials of aircraft, but we can envision it being 
applied to city structures like stadiums, bridges, or dams. The overall goal for their work is to enable and 
promote active health monitoring, failure prediction, aging assessment, informed crisis management, and 
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decision support for complex and degrading structural engineering systems. Related to the infrastructure 
sub-layer, simulation and optimization can be used to monitor a city’s water supply. Mahinthakumar et al. 
(2006) recognize that urban water distribution systems are vulnerable to accidental and intentional 
contamination incidents that could result in adverse human health and safety impacts. When a 
contamination event is detected, e.g., data from a water quality surveillance sensor network and reports 
from consumers, they use a DDDAS approach to answer critical questions like what response action (e.g., 
shut down portions of the network, implement hydraulic control strategies, introduce decontaminants) 
should be taken to minimize the impact of the contamination event. Real-time answers to complex questions 
can be addressed through dynamic integration of computational components (including models and 
simulation) and real-time sensor data. The last example is also related to infrastructure, focused on 
transportation. In Saroj et al. (2018), a real-time data-driven transportation simulation model was used to 
evaluate and visualize network performance, and provide dynamic operational feedback. The study used a 
hybrid traffic simulation model to represent seventeen consecutive intersections on a traffic corridor 
partially equipped with smart devices. The architecture would enable control of the signals and the vehicle 
volumes using real-time data from in-field detectors. 

 

Figure 6: Anatomy of a city (City Protocol Society 2015). 

As more data-driven simulation is used in smart cities, a concern is that the sensors that feed data into 
the simulation systems can be hacked and fed fake data. This could be used for all manner of mischief, like 
causing signal failures that shut down subways or allowing contaminants into the water supply. For 
example, what if the data driving transportation simulation systems made traffic signals stay red or green, 
tweak electronic speed limit signs, or messed with ramp meters to send cars onto the freeway all at once? 
What would commuting look like if erroneous sensor data sent to simulation changes the routes of public 
transportation or changes subway schedules? How would cities respond to an inadequate supply of 
electricity or water, or worse yet, not be notified that drinking water was contaminated? What if waste 
collection was interrupted during the summertime, and garbage piled up in the streets because the data from 
smart trash cans that feed a simulation to optimize trash routes was misrepresented? Many systems in cities 
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are interconnected, so erroneous data driving one simulation could cause a cascade effect, impacting other 
systems in the city. 

Many of these issues get at data integrity, and how to detect misbehavior in the sensor system. Too 
many false positives may remove valuable sensor resources from the network, while too many false 
negatives may pollute the data generated and veer the simulation off track (Farhat et al. 2006): Research 
that looks at the sensor networks that drive simulation models, and how to discover and correct node 
misbehavior is critical for simulation trust.  

5 CONCLUSIONS 

As the number of sensors and simulation applications connected to the network grows, we will see different 
patterns of communication and trust emerge. Data from the sensors and higher-level aggregators will be 
fed into models and simulation models that are making predictions and decisions that will impact our lives. 
Creating, understanding, and managing large-scale distributed simulation systems interacting with each 
other to manage operational systems present major challenges. As pervasive simulation becomes more 
commonplace in IoT and smart city applications, it is essential that it is secure or at least tolerant of cyber 
threats. Privacy and trust issues must also be adequately addressed to realize widespread adoption.  

This paper has covered the topic of trust in IoT and smart cities, and posed an argument for why this 
work is directly relevant to simulation. Future research should focus on fundamental principles concerning 
how trust is established, maintained, and used in simulation, and a theory behind their operations. 
Simulation validation is part of the solution to this problem, and work such as model trust through curation 
is also starting to look at parts of the space. However, simulation trust is not an area that simulation research 
has traditionally focused. A valid question is whether this work should come from the simulation 
community, or whether it belongs to the cyber security community instead. 

The definition of trust has many dimensions, which means that there is a rich landscape of problems to 
address. To construct a set of research issues to consider for simulation trust, we can look to a recently 
published NIST report which identifies 17 technical concerns that negatively affect the ability to trust IoT 
products and services (Voas et al. 2018): 

 
1. Scalability  
2. Heterogeneity 
3. Ownership and Control  
4. Composability, Interoperability, Integra-

tion, and Compatibility 
5. “Ilities” (availability, compatibility,…) 
6. Synchronization 
7. Lack of Measurement 
8. Predictability 

9. Testing and Assurance 
10. Certification 
11. Security 
12. Reliability 
13. Data Integrity 
14. Excessive Data 
15. Speed and Performance 
16. Usability 
17. Visibility and Discovery 

 
Some of these concerns – testing and assurance, certification, heterogeneity, interoperability, 

composability – are areas where the simulation and LVC community has spent considerable time 
developing solutions. In other areas – reliability, data integrity – we have spent less time. All of these 
factors, plus insurability and risk measurement, represent new areas of research that we should pursue to 
ensure simulation trust in untrusted environments. 
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