
Computational Thinking in the Danish High School:
Learning Coding, Modeling, and Content

Knowledge with NetLogo
Line Have Musaeus†

 Center for Computational Thinking and Design
Aarhus University

 Denmark
 lh@cc.au.dk

Peter Musaeus
 Centre for Health Sciences Education

 Aarhus University
 Denmark

 peter@cesu.au.dk

ABSTRACT
Computational thinking (CT) is emerging as an important theme
in computer science and high school education. However,
research is needed to inform high-school teachers how to foster
students’ development of CT in computer science and other
subjects. Evidence suggests that agent-based modeling is a
valuable way for students to learn CT in different subjects. This
paper reports a teaching experiment where researchers,
developers, and high school teachers collaborated to develop six
NetLogo models. The models were used in nine Danish High
Schools in the following four subjects: Biotechnology, chemistry,
biology, and social science. Teachers and students had no or very
limited experience with programming. Students build CT and
content knowledge by using, modifying, and creating code in the
models. This paper provides details for others to adopt the models
and the underlying CMC framework, which integrates: Coding,
Modeling, and Content. The paper evaluates the results from an
open-ended questionnaire with all participating students (n=210)
and semi-structured interviews with all teachers (n=15). Thematic
analysis was applied to categorize the qualitative data. Results
showed that students were able to use, modify, and create code in
NetLogo that enabled them to develop CT and content knowledge.
The CMC framework represents a fruitful way for teachers to
design and teach and for students to tinker with learning CT.

CCS CONCEPTS
• Social and professional topics → Computing education; K-12
education; Computational thinking;

KEYWORDS
Computational thinking; K-12 education; Educational intervention;
Computer models, Teacher professional development.

ACM Reference format:

Line Have Musaeus and Peter Musaeus. 2019.Computational Thinking in
the Danish High School: Learning Coding, Modeling and Content

Knowledge with NetLogo. In SIGCSE ’19: SIGCSE ’19: The 50th ACM
Technical Symposium on Computer Science Education, Feb. 27–March 2,
2019, Minneapolis, MN, USA. ACM, NY, NY, USA, 6 pages.
https://doi.org/10.1145/3287324.3287452

1 INTRODUCTION
Seymour Papert [1] coined the notion of Computational Thinking
(CT) in 1980 to describe the inquiry necessary to solve problems
by means of computational ideas or computers. He applied the
notion to make formal geometry more accessible to children by
means of computational models. In 2006, Wing [2] referred to CT
as the competence to think like a computer-scientist. Wing argued
that CT represented a universally applicable attitude and skill set
everyone, not just computer scientists, would be eager to learn
and use [2 p. p. 33]. This definition referred back to Papert's [1]
original insight that CT was an inquiry process in any subject, not
only say computer science. Papert emphasized that the essence of
the computer was its universality that gave power to the
computational thinker with the computer to simulate real-world
phenomena [1 p.VIII].

CT can be a way of teaching high school students modelling and
coding [22] but to what extent does such activities lead high-
school students to build content knowledge in other subjects than
computer science such as biology, chemistry, English etc.?
According to Papert [1] and Wing [2], CT stimulates students’
understanding or construction of content knowledge. Although
CT is being introduced into the subject of high school computer
science [4, 11, 12, 13] and other subjects [10], it is still unclear how
CT should be taught in high-school, whether learning CT helps
learning another subject and finally whether CT should be taught
in most or any subject.

CT can be said to have two meanings in the high school curricula.
First, CT can be a learning goal in computer science (or
Informatics as high school computer science is mostly called in
Europe). In this case, CT is a means towards learning skills or
knowledge relating to computer science such as learning
programming. Second, CT can be a means towards learning
content knowledge (in math, social science, biology etc.) by using
CT to close the students’ gaps in understanding between

† Corresponding author
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5890-3/19/02…$15.00
https://doi.org/10.1145/3287324.3287452

Paper Session: Computational Thinking 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

913

representing a phenomenon and the phenomenon itself. It follows
from this second approach that CT is a competence that should be
taught in high-school in order for the students to learn to grasp
content in a subject (not just computer science) by means of
computational ideas or the computer.

Researchers have demonstrated that agent-based modeling can be
an effective way of teaching CT in relation to content knowledge
[6, 7, 8]. We therefore choose to use NetLogo, which is an agent-
based modeling tool that has been used in both biology teaching
[16, 18] social sciences [17] chemistry [10] and mathematics [22].

In this paper, we report a design-based research study focusing on
high-school students (n=210) and teachers (n=15) using NetLogo
to develop CT and content knowledge. We used a sequential
transformative design with quantitative data (from students) and
qualitative data (from students and teachers). The research was
conducted in four Danish high school subjects: Biotechnology,
chemistry, biology and social/political science in nine different
schools. The research aim was to develop teachers and students’
integration of Coding, Modeling and Content construction (CMC
see figure 1):

Figure 1: The CMC approach. A: Taking both modeling, coding as
well as content into consideration when designing the models. B:
Altering sections of code to modify the model. C: Comparing and
modifying the model to fit the content matter. D: Concepts from
content matter are illustrated in the code to facilitate students
work with coding.

1.1 Research question

The objective of this teaching development project was to provide
models and code with interface elements that students could
tinker with and hereby develop CT. In particular we wanted to
evaluate whether the CMC (coding, modelling, and content)
approach can aid researchers, developers, and teachers to produce

learning environments for students’ acquisition of CT and content
knowledge?

2 METHOD
Participants: Fifteen high school teachers (nine males and six
females) in fifteen high school classes (in nine different high
schools) employed the models in their classes. Altogether, 210
students participated.

NetLogo: NetLogo is an agent-based modeling environment. A
NetLogo model includes the Interface tab, the Info tab, and the
Code tab. The model is displayed in the Interface and students can
manipulate its accompanying plots and parameters. The Info tab
describes both the model as well as its structure, properties, and
rules (i.e. rules assigned to the entities in the model). It also gives
suggestions as to what to explore and extend in the model. The
Code tab includes the code for the model with comments. Any
changes made in the Code tab will result in changes to the model
and the interface [15].

Step 1: Developing NetLogo models. Three researchers and
two developers constructed six NetLogo models with five high
school teachers as collaborators.

The aim was that students could tinker with the models and
examine how patterns at a macro level, e.g. of ion transport across
a cell membrane, arise from simple rules and interactions at the
micro level, such as atoms and molecules, in a system (see figure
2).

Figure 2: NetLogo model of cell membrane, showing both

the ‘Interface’ and ‘Code’.

On running the model, students could explore how these simple
rules resulted in complex and unpredictable patterns.

Step 2: Designing learning activities. In designing the models,
we used procedures and functions in the code to ensure that
students worked at the appropriate level of abstraction (see figure
2).
Abstraction refers here to understanding a representation,
identifying, and analyzing the elements that makes up the model
of the represented phenomenon. All students were given the
same one-minute video introduction to NetLogo.

The CMC approach (figure 1) served both as a framework in the
design phase/step of the models and the pedagogy around using

Paper Session: Computational Thinking 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

914

these models in teaching. Thus researchers, developers, and high
school teachers used the approach throughout the study, to
simultaneously design the computational models and plan the
learning activities. The team designed the models primarily to
serve as initial starting points or idea generators for students to
tinker with, use and modify. Students could interact with models
built as half-baked microworlds. A microworld is defined as a less
developed representation of a phenomenon [14, 15].

Subsequently, we used structured learning activities to take the
students through tasks such as creating a new set of agents in
NetLogo, e.g. potassium ions, with specific structures and rules, in
the model of a cell membrane that already contained sodium ions
(figure 2). The students worked in pairs to support peer-to-peer
collaboration, using an online questionnaire describing the tasks
and related questions they needed to answer. The learning
activities lasted for a total of 90 minutes.

Teachers were able to gain support from researchers and
developers online or in short prerecorded guiding videos before
and during classroom sessions.

Step 3: Students working with the models. We used a
constructionist approach to learning [20, 21] that involved
students tinkering with the model interface and code. This
involved students playfully manipulating the code of a
computational model to generate and pursue questions in relation
to the model, much as described in Wagh et al. [15]. This is
especially important for students who are novices in computing
and programming [23].

We encouraged students to use, modify, and create the model and
code by giving them specific tasks to perform. Thus, the model
was what Vygotsky [21] conceived of as a semiotic sign meaning
a representation for someone that could become a mediated
activity for the student. Hereby the model, when appropriated by
the student, resulted in a regulatory change in the students’
behavior, understanding etc. In the interest of time and because
both teachers and students had limited or no experience with
computer programming, we chose to let students work with pre-
designed computer models rather than have them develop models
from scratch. But students were encouraged to modify models and
ponder to what extent they furthered the construction of their
understanding of content knowledge or CT.

The underlying code in NetLogo consisted of variables and rules
such as for molecules in a system. Our aim was that the code
should represent a phenomenon as well as the structure and rules
of the agents and the dynamic relations between the agents that
we wanted to investigate [1]. Hence, the interface should illustrate
these relations with accuracy. Furthermore, the code and the
interface were designed in order to facilitate the intended learning
activities we wanted to achieve. In summary, our aim was to

provide students with models and code with interface elements
that were easy to tinker with.

Step 4: Collection of data. We conducted design-based research
with a sequential transformative design, in which we collected
quantitative and qualitative data from students and qualitative
data from teachers. Students filled out online questionnaires,
while working with the model. In order to analyze data, we
employed a description of CT competences and learning goals
from the literature [19, 3] as shown below in table 1.

CT category CT sub-category
CT baseline

CT baseline

Perspective development

Subject progress Subject baseline
Subject progress

Understanding the model Using the model

Analyzing the model
Understanding the model
Decomposing the model

Levels of thinking
Scaling the phenomenon

Pattern recognition
Sorting relevant from irrelevant

information

Model/subject Representation of the model
Representation of the subject

Transferring subject knowledge
to the model and back

Interface/code Analyzing macroscopic syntax

Formulating macroscopic syntax
with elements of microscopic

syntax

Working with code Creating solutions
Defining problems in the model

Generalize solutions by
algorithmic thinking

Capture essential properties
common to a set of agents

Motivation for working with
computational models

Table 1: Categories used for classification in data analysis

The online questionnaire covered the 22 sub-categories of CT (see
table 1). The questionnaires all contained the same pre-post
question regarding the students’ perspective on using a computer
model in the subject. Approximately 10% of the questions were
multiple-choice questions, the rest required the students to
formulate their own answers. Students answers were scored by two
independent researchers and pooled into six categories (see table 1)
and the percentage of students able to accommodate the learning
goals described were calculated (figure 3).

Paper Session: Computational Thinking 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

915

Three independent researchers coded qualitative and quantitative
data separately.

Each of the teachers participated in a semi-structured group
interview. The interviews were conducted between one and three
weeks after the learning activities had taken place. Each interview
consisted of three parts: Firstly, teachers were asked if there were
any challenges when using the model. Secondly, teachers were
asked to elaborate on the advantages for both students and
teachers on using the CMC approach. Finally, in the third and last
part of the interviews, teachers were asked to consider if they
would use the CMC approach when working with other
phenomena or even with other subjects. The interviews were
audio-recorded and analyzed by two independent researchers
who gathered, analyzed, and discussed relevant quotes.

3 RESULTS

3.1 Quantitative data: Students
We examined how students were able to use and understand the
model they worked with, analyze and evaluate the model in
regard to the subject, if the students were able to draw
connections between the code and the interface, and finally if the
students were able to successfully modify the code in order to
improve the model.
As shown in figure 3, almost all of the students were able to
perform the tasks related to these learning goals, with successfully
performing students ranging from 74 to 90%. However, 79% of the
students were able to perform tasks such as modifying the
properties of an agent or adding a new type of agent (figure 3, last
category “working with code”). This is suggestive of a highly
positive effect in light of the fact that 93% of all students reported
that they had no or very little experience with programming.

Figure 3: Percentage of students that successfully solved

tasks in category
With a pre- and post-test in the form of a questionnaire we probed
what students perceived they could learn from models in the
subject (e.g. chemistry) as shown in figure 4.

Figure 4: Students’ perception of learning objectives

acquired after working with computer models.

Interestingly, before having worked with a model, more students
reported that computer models helped them visualize and
explicate a phenomenon better as opposed to after. One
explanation for this finding could be that a pictorial
understanding of something is not a deeper conceptual
understanding. Thus, students might realize that a visualization
(e.g. a picture) does not have adequate information or does not
adequately represent the more complex representations that a
computer model is capable of. This might be the case in dynamic
phenomena (e.g. transport across cell membrane osmosis) where
a simple visualization carries less dynamic information that a
NetLogo model.

After having worked with a model there was an increase in
students who described being able to interact with the model, to
save time as oppose to conducting an experiment in real life, and
to see micro- and macro-levels of the phenomenon as important
purposes of computer models.

3.2 Qualitative data: Teachers
In the semi-structured interviews teachers were asked to
elaborate on their experiences with the CMC approach and how
NetLogo worked as a learning environment in their class. Of the
15 teachers, only two had prior programming experience in
NetLogo. Nevertheless, teachers found that using NetLogo, as a
programming environment, made them confident enough to
conduct the learning activities without any prior experience in
programming or in NetLogo.

“When they [the students] see that the computational model
does not match with their own perception of the phenomenon,
they can change the code until it fit with what’s in their head.
That is what the program [NetLogo] can really give me. I can
simply check, or see visually, what the students thinks. I have

not been able to do that in any other way.”

Figure 5: Quotation from a biotechnology teacher

Paper Session: Computational Thinking 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

916

Four teachers mentioned that when students use and modify the
code in a model and interact with the teacher while doing so, the
students reveal their perception of the phenomenon to the
teacher, expressed by a male science teacher in figure 5. Some
teachers mentioned that the activities activated other groups of
students (such as quiet girls or poor students) than would
normally be the most active in class. However, some teachers
expressed concern over the fact that a small group of students
persistently over the project period lacked motivation for working
with code (see quotation in figure 6). More than half of the
teachers expressed a wish for more models of other phenomena
relevant to their subject and with more complex content
knowledge embedded in the models.

“All students started tinkering with the model and most of the
students worked very concentrated with the tasks given in the

questionnaire. However, a few students didn’t seem to be
motivated by the tasks, and I found it difficult to engage them.”

Figure 6: Quotation from a social science teacher

4 DISCUSSION

4.1 Quantitative data: Students
The finding (figure 3) that a majority of students were able to use,
understanding, analyze, and evaluate the models and modify the
code behind the models to improve them needs explanation. We
take it to mean two things. First, the CMC approach can be used
to design meaningful learning activities in which students obtain
CT learning goals. Second, NetLogo is an appropriate
programming environment for high school students in any of the
four subjects tested.

Pre- and post-questions suggested that students change their
perspective on what computer models can be used for in subjects
when working with a model, see figure 4. Especially interesting is
the finding, that students become increasingly aware of levels in
phenomena after working with a model. Students emphasized the
importance of levels thinking by pointing out how the interface
of a NetLogo model can visualize the macro-level described by the
micro-level in the code behind. This touch on a point that other
researchers have made about affordances of interacting with code
to engage in inquiry that help students think through and learn
about mechanism [27].

4.2 Qualitative data: Teachers

An interesting quotation is from a male teacher (see figure 5). He
elaborates how the application of the CMC approach enabled him
as a teacher to elicit the students’ perception of the phenomenon.
Hence, the quotation demonstrates how powerful a tool computer
models can be to teachers, as it helps them to scaffold and evaluate
the student’ progress in regards to both CT and the content
knowledge. However, we must also be aware of the concern
illustrated in figure 6 that not all students become motivated by
the CMC approach.

Teachers asked for the project team of developers to develop more
models in all subjects. Given the teachers enthusiasm about the
models, this in no way suggests laziness on their behalf, but rather
that teachers wanted to experiment with more models as learning
activities. However, we did not adequately provide more models
due to lack of resources.

The tinkering approach produced both eureka moments for
students (when a representation was especially informative and
thus an aha-experience) as well as moments of frustration when
students were uncertain about how the model worked and what
it represented. Other researchers have concluded when working
with NetLogo models that a minimally structured activity
followed by a highly structured activity (e.g. the use of
worksheets) might lead to longer-term learning gains [24, 25]. The
second design principle is to apply three steps: Use, modify, and
create as a progression in learning tasks leading the students
down a path of working with and learning code and acquiring
aspects of CT [5, 26]. By applying these principles, we believe that
the students become more motivated, engaged and less
intimidated by working with computer models and with code.
Thereby rendering the measurement of students’ modeling skills
and CT [9].

Keeping in mind that this design-based research study focused on
developing CT and modeling in high school subjects, our study
suggests that it is possible to plan short interventions of CT
sequences and obtain student learning in CT in other subjects
than computer science. However, future research is needed to
examine how students with a limited computer coding proficiency
learn to work with increasingly more complex code. As students
refine the models and build the code to represent more and more
complex phenomena it would be relevant to investigate student
experiences: What do students perceive as complex code and
why? This has ramifications for how the model should be
designed in order to be adequately complex and accommodate
relevant learning goals in CT. In particular, we would, based on
this study, suggest that future design-based research use agent-
based modeling in order to develop models of teaching CT in
different high-school subjects.

5 CONCLUSION
In this work, we have focused on developing teaching activities
around computer models that represent phenomena in both
biotechnology, chemistry, biology, and social sciences. The
modeling approach helped students tinker with both models and
content knowledge. Although this teaching experiment found
that students gained knowledge in both CT and content
knowledge through working with computer models of
phenomena in four different subjects more work should be
conducted on extending the models into new subjects and
domains. Four issues should be of concern here. First, to make sure

Paper Session: Computational Thinking 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

917

we are not just describing a Pygmalion effect where anything new
(e.g. a new NetLogo model) will have a short-term positive effect
but not a long-term positive effect on performance. Second, we
need to conceive of abstraction in terms of not only student
understanding of content in a given high school subject but
abstraction as a concrete manifestation or a computational
solution that can be used in subjects for problem solving. Third,
students problem solving should be measured using a continuous
variable and not a Boolean variable. For instance, a limitation of
this study leading to measurement bias was the use of a
methodology where we rated poor performance as zero and
successful performance as one. CT is hardly a dichotomous
variable that students either have or do not have, but a set pf
complex problem solving skills. Thus CT should be tested with
dynamic (cognitive and computational) models in terms of
whether students are successful in using, modifying and creating
code over time. Fourth, more comparative research should be
conducted in terms of how well different subjects might facilitate
students’ development of CT. We found biotechnology, social
science and chemistry equally amenable to model phenomena
whereby students could learn CT. All participating teachers were
able to collaborate with researchers and developers in this project
to produce models that generated CT in students regardless of
their subjects.

CT helps raise fundamental ontological questions in high-school
teaching about what is biology, social science etc.? This was
originally pointed out by Papert [1 p.140] who asked: What is the
potential influence of computation on students’ understanding of
physics? Will CT bring student nearer to grasping what a subject
is or merely confuse them about phenomena, representations,
codes and models? Our teaching experiment showed that by
letting students tinker with models they were able to integrate
both coding, modelling and content knowledge.

ACKNOWLEDGMENTS
We are grateful to PhD Palle Nowack for engaging in fruitful
discussions leading to the CMC approach. We thank professors:
Michael E. Caspersen, Deborah Tatar, Keld Nielsen, Arthur Hjort,
and research assistant Nick Nielsen for discussions about CT. We
thank the anonymous reviewers for constructive and relevant
feedback. We are grateful for financial support from Region Midt
and It-vest. Last, we extend our thanks to the 15 teachers and 210
students participating in the study.

REFERENCES
[1] Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic

Books, Inc.
[2] Wing, J. M. (2006). Computational thinking. Communications of the

ACM, 49(3), 33-35.
[3] Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and

assessing the development of computational thinking. In Proceedings of the
2012 annual meeting of the American Educational Research Association,
Vancouver, Canada (Vol. 1, p. 25).

[4] Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis,
P., & Punie, Y. (2016, July). Exploring the field of computational thinking as a

21st century skill. In Proceedings of the International Conference on Education
and New Learning TechnologiesJuly 2016Barcelona, Spain Page (pp. 4725-4733).

[5] Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., ... & Werner,
L. (2011). Computational thinking for youth in practice. Acm Inroads, 2(1), 32-
37.

[6] Centola, D., Wilensky, U., & McKenzie, E. (2013, April). A hands-on modeling
approach to evolution: Learning about the evolution of cooperation and
altruism through multi-agent modeling-The EACH Project. In International
Conference of the Learning Sciences: Facing the Challenges of Complex Real-
world Settings (p. 166). Psychology Press.

[7] Machluf, Y., & Yarden, A. (2013). Integrating bioinformatics into senior high
school: design principles and implications. Briefings in bioinformatics, 14(5),
648-660.

[8] Ioannidou, A., Repenning, A., Lewis, C., Cherry, G., & Rader, C. (2003). Making
constructionism work in the classroom. International Journal of Computers for
Mathematical Learning, 8(1), 63-108.

[9] Weintrop, D., Beheshti, E., Horn, M. S., Orton, K., Trouille, L., Jona, K., &
Wilensky, U. (2014, July). Interactive assessment tools for computational
thinking in High School STEM classrooms. In International Conference on
Intelligent Technologies for Interactive Entertainment (pp. 22-25). Springer,
Cham.

[10] Tatar, D., Harrison, S., Stewart, M., Frisina, C., & Musaeus, P. (2017). Proto-
computational thinking: The uncomfortable underpinnings. In Emerging
research, practice, and policy on computational thinking (pp. 63-81). Springer,
Cham.

[11] Lockwood, J., & Mooney, A. (2017). Computational Thinking in Education:
Where does it fit? A systematic literary review. arXiv preprint
arXiv:1703.07659.

[12] Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the
state of the field. Educational Researcher, 42(1), 38-43.

[13] Caspersen, M. E., Gal-Ezer, J., Nardelli, E., Vahrenhold, J., & Westermeier, M.
(2018, February). The CECE Report: Creating a Map of Informatics in European
Schools. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education (pp. 916-917). ACM.

[14] Kynigos, C. (2007). Using half-baked microworlds to challenge teacher
educators’ knowing. International journal of computers for mathematical
learning, 12(2), 87-111.

[15] Wagh, A., Cook‐Whitt, K., & Wilensky, U. (2017). Bridging inquiry‐based
science and constructionism: Exploring the alignment between students
tinkering with code of computational models and goals of inquiry. Journal of
Research in Science Teaching, 54(5), 615-641.

[16] Wilensky, U. (1999). NetLogo (and NetLogo User Manual), Center for
Connected Learning and Computer-Based Modeling, Northwestern
University. http://ccl.northwestern.edu/netlogo/.

[17] Hjorth, A., & Wilensky, U. (2014). Re-grow Your City: A NetLogo Curriculum
Unit on Regional Development. Boulder, CO: International Society of the
Learning Sciences.

[18] Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly:
Learning biology through constructing and testing computational theories—
an embodied modeling approach. Cognition and instruction, 24(2), 171-209.

[19] Wing, J. 2011. Research notebook: Computational thinking ”What and why? “.
In TheLink Magazine, Spring. Carnegie Mellon University, Pittsburgh.

[20] Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36(2),
1-11.

[21] Vygotsky, L. S. (1980). Mind in society: The development of higher psychological
processes. Harvard university press.

[22] Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., &
Wilensky, U. (2016). Defining computational thinking for mathematics and
science classrooms. Journal of Science Education and Technology, 25(1), 127-
147.

[23] Nowack, P., & Caspersen, M. E. (2014, November). Model-based thinking and
practice: A top-down approach to computational thinking. In Proceedings of
the 14th Koli Calling International Conference on Computing Education
Research (pp. 147-151). ACM.

[24] Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013). Using
learning analytics to understand the learning pathways of novice
programmers. Journal of the Learning Sciences, 22(4), 564-599.

[25] Jang, H., Reeve, J., & Deci, E. L. (2010). Engaging students in learning activities:
It is not autonomy support or structure but autonomy support and
structure. Journal of educational psychology, 102(3), 588.

[26] Sentance, S., & Waite, J. (2017, November). PRIMM: Exploring pedagogical
approaches for teaching text-based programming in school. In Proceedings of
the 12th Workshop on Primary and Secondary Computing Education (pp. 113-
114). ACM.

[27] Sherin, B. L. (2001). A comparison of programming languages and algebraic
notation as expressive languages for physics. International Journal of
Computers for Mathematical Learning, 6, 1-61.

Paper Session: Computational Thinking 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

918

