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ABSTRACT 

Recent health care reform debates have triggered substantial discussion on how best to improve access to 
insurance. Colorectal cancer (CRC) is an example of a largely preventable condition, if access to and use 

of healthcare is increased. Early and ongoing screening and intervention can identify and remove polyps 
before they become cancerous. We present the development of an individual-based discrete-event 
simulation model to estimate the impact of insurance expansion scenarios on CRC screening, incidence, 
mortality, and costs. A national repeated cross-sectional survey was used to estimate which individuals 
obtained insurance in North Carolina (NC) after the Affordable Care Act (ACA). The potential impact of 
expanding the state’s Medicaid program is tested and compared to no insurance reform and the ACA 

without Medicaid expansion. The model integrates a census-based synthetic population, national data, 
claims based statistical models, and a natural history module in which simulated polyps and cancer progress. 

1 BACKGROUND 

Colorectal cancer (CRC) is one of the leading causes of cancer and cancer-related deaths in the United 
States (National Cancer Institute 2014). Early and routine use of CRC screening is highly effective in 
reducing CRC incidence through the detection and removal of polyps before they become cancerous 

(Bibbins-Domingo et al. 2016) . Adherence to the recommended screening guidelines is critical to early 
detection of CRC, ultimately reducing morbidity and mortality associated with this disease (Bibbins-
Domingo et al. 2016). Screening guidelines recommend colonoscopy every ten years, sigmoidoscopy every 
five years, or stool testing annually among adults ages 50 to 75 (Bibbins-Domingo et al. 2016).  
 Despite being largely preventable, CRC remains a prevalent condition due to relatively low screening 
rates (American Cancer Society 2017; National Health Interview Survey 2015; Siegel et al. 2017). In 2015, 

less than two-thirds (62.4%) of adults age 50 or older were up-to-date on CRC screening nationally (Siegel 
et al. 2017). Younger adults ages 50-64 were less likely to be up-to-date than older adults age 65 and older 
(57.8% vs. 68.3%, respectively) (Siegel et al. 2017). Low screening rates can be explained, in part, by 
disparities in access to insurance. For example, among persons aged 50-64 years, CRC screening rates for 
the uninsured (25.3%) were markedly lower than for the privately insured (62.1%) or publicly insured 
(56.9%) (NHIS). There are other predictors of low screening rates beyond insurance access, such as race, 

ethnicity, and geographic location (Davis et al. 2017; Wheeler et al. 2014; Wheeler et al. 2017). The relative 
impact of interventions and policies aiming to increase CRC screening by addressing insurance access 
versus other factors is not yet known. Therefore, this paper uses a modeling approach to understand the 
potential impact of multiple insurance expansion scenarios on CRC screening, diagnoses, mortality, and 
treatment costs in the future, which can be compared to the projected impact of other targeted interventions. 

2701978-1-5386-6572-5/18/$31.00 ©2018 IEEE



Nambiar, Mayorga, O’Leary, Lich, and Wheeler 
 

2 LITERATURE REVIEW 

Most simulation models of CRC screening may be grouped as either Markov models or discrete event 
simulation (DES) models. Markov models identify the health states that an individual will experience 
during the course of the disease and changes in states are defined by probabilistic transitions. Several 
practitioners have taken a Markov approach to model CRC (Frazier et al. 2000; Ladabaum et al. 2001; Vijan 
et al. 2001). In contrast, DES models simulate specific events of interest during an individual’s lifetime, 

allowing modelling of complex interactions and responses to interventions at the individual level, as we do.  
 Modeling, including DES, can be used to forecast the outcomes, unanticipated consequences, and 
magnitude of effects of health reform policies (Glied and Tilipman 2010). Examples include estimates of 
how various health insurance policy proposals will affect total enrollment in health plans, uninsured rates, 
and costs of coverage (Parente and Feldman 2013; Buettgens 2011; Auerbach et al. 2011; Eibner and Liu 
2017). Specific outcomes include enrollment in private health insurance related to particular provisions of 

the Affordable Care Act (ACA) and Medicaid coverage as a result of states’ decisions about whether to 
expand their Medicaid programs (Parente and Feldman 2013). The Health Insurance Policy Simulation 
Model (HIPSM), developed by the Urban Institute, provided opportunities to estimate the effects of policy 
changes related to Medicaid eligibility, health insurance exchanges, and individual and employer mandates, 
as compared to the status quo, at the individual, family, and employer levels (Buettgens 2011). The RAND 
Comprehensive Assessment of Reform Efforts (COMPARE) simulation model was used to predict state-

level changes in the uninsured rate as well as healthcare spending of ACA provisions in five states 
(Auerbach et al. 2011). More recently, analyses using the RAND COMPARE model assessed the impact 
of tax credit and reinsurance policies on insurance access and associated costs (Eibner and Liu 2017). In 
addition to the effects of policies on insurance access, simulation has also been used to project health status 
and health equity outcomes of insurance expansion policies (Milstein et al. 2010).   
 The Cancer Intervention and Surveillance Modeling Network (CISNET) consortium focuses on using 

models (MISCAN-Colon (Loeve 2000; Loeve et al. 1999; Vogelaar et al. 2006), SimCRC (Frazier et al. 
2000), and CRC-SPIN (Rutter and Savarino 2010)) to guide public health research and priorities. The 
MISCAN-Colon model is the first example of a DES model focusing on CRC. The model can be 
distinguished by two important parts – 1) natural history, and 2) screening. In the natural history part, life 
histories are generated during which colorectal polyps and cancer may develop, sometimes causing death 
when no screening occurs. In the second part, screening for CRC is modeled, thus changing individual life 

histories. Sim-CRC and CRC-SPIN also simulate colorectal disease progression in an individual from birth 
to death and share many characteristics with the MISCAN-Colon model, including the simulated US 
population, the progression of adenomas to CRC, risk factor trends and screening characteristics.  
 The V/NCS model (Roberts et al. 2007) is noteworthy in that it employs an object-oriented 
programming-based approach wherein the primary object is a person. Within each person object, secondary 
objects are adenomas, which are collections belonging to each person; each adenoma (several may be 

present) has its own development cycle and impact on survival. Further, adenoma incidence is correlated 
with common risk factors. Statistics may be collected either at the end point in the simulation for a cohort, 
which is death, or at any specified point in time for the collective population.  
 The NC-CRC model presented in this paper was developed to examine the health and economic impact 
of population-level screening strategies and rates on the development and consequences of CRC. This 
model is an adaptation of the model built by RTI (Subramanian et al. 2009). NC-CRC expands upon earlier 

models by (i) applying statistical models from administrative claims data to predict the preferred screening 
modality and receipt of screening of individuals; (ii) allowing insurance status to change over time; and (iv) 
incorporating the effects of population-level interventions to increase screening.  
 Several details about the NC-CRC model and its components have been published in previous work 
(Cornejo et al. 2014; Wheeler et al. 2014; Hassmiller Lich et al. 2017). In this paper, we provide 
experimental results by simulating three policy scenarios about the full implementation of the ACA in 2014 
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in order to understand the differential impact of these strategies on CRC screening, incidence, treatment, 
and mortality within the state of NC over time to inform state-level and community-level program planning.  

3 SIMULATION MODEL DESCRIPTION 

The NC-CRC model was developed by the University of North Carolina and North Carolina State 
University using AnyLogic simulation software, which is built on an object-oriented programming 
language, Java. A description of the structure of the model was previously published (Cornejo et al. 2014). 

The primary object in the simulation is the person; the simulation of the events within the lifetime of a 
single person determines the length of the simulation. The replication terminates when the person dies. As 
visualized in Figure 1, there are three distinct modules including natural history, demography, and screening 
and testing.  Interventions, such as insurance change dynamics are then overlaid onto the model.  
 

Figure 1: An overview of elements that make up the inputs to the NC-CRC model. 

3.1 Demography and Synthetic Population 

Details about our synthetic population have been described in previously published literature (Cornejo et 
al. 2014; Hassmiller Lich et al. 2017). The synthetic population was created using the American Community 
Survey Public Use Microdata Sample data from 2005-2010 (U.S. Census Bureau 2014). Details on how 
data were transformed into the synthetic population and validation of the population are published 

elsewhere (Wheaton et al. 2009; Hassmiller Lich et al. 2017). The model simulates the full life course of 
every NC resident between the ages of 50 and 75 at any time during the study’s intervention window of 
January 1, 2014 through December 31, 2023. The full cohort of the synthetic population includes 3,918,469 
people, as of January 1, 2009 when the synthetic population was created, who would be eligible for 
screening at some point during the 10-year intervention window. Individual-level characteristics affect the 
simulated events in the natural history and screening components. The population input file contains 

information on individual and household-level data, including age, sex, race, household income, insurance 
status, education, residential location, state health insurance program participation, and marital status. Table 
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1 presents a snapshot of a few demographic characteristics for those aged 50-75 on January 1, 2014 (though 
additional characteristics of the population such  as income level play a role as inputs to the simulation 
model). Further details are provided in (Hassmiller Lich et al. 2017).  

Table 1. Characteristics of North Carolina residents aged 50-75 on January 1, 2014. 

Characteristic N % 

Total 2,852,111 100.0 

Sex   
Male 1,363,984 47.8 
Female 1,488,127 52.2 

Race   

White 2,187,959 76.7 
Black 534,103 18.7 
Other 130,049 4.6 

Ethnicity   
Hispanic 84,217 3.0 

Non-Hispanic 2,767,894 97.0 

Age   
50-64 1,898,525 66.5 
65-75 953,586 33.5 

3.2 Natural History 

The natural history of an individual is determined by all the actions that would occur in the absence of 
screening for cancer. This includes the development and progression of polyps and cancer, the clinical 
discovery of cancer through the emergence of symptoms, and death from CRC or other causes. Polyps 
develop progressively through three different sizes: small, medium, and large. Medium and large polyps 
may develop into a cancer, but small polyps cannot immediately turn into cancer. Cancerous polyps develop 

through four stages. In the current model we used the clinical stages defined by the American Joint 
Committee on Cancer (Edge and Compton 2010) that correspond to the extent of the malignancy. During 
the polyp’s progression, symptoms may lead a provider to suspect cancer and recommend a diagnostic 
screening test. If the person exhibits symptoms, elects to take a diagnostic test, and the result is positive, 
the cancerous polyp is considered to be clinically detected. At this point, the model stops tracking its 
progression, and the person remains in the state represented by his or her stage at diagnosis until death, 

where death rates are stage-specific. If the person elects not to take the diagnostic test or the result is 
negative, the cancerous lesion remains undetected and eventually progresses. The state transitions in the 
natural history model are the same in structure as those developed by RTI (Subramanian et al. 2009). The 
natural history parameters determine whether polyps turn into CRC. To account for racial differences, in 
this model we utilize more recent information available on polyp incidence by age, race and gender 
(Lansdorp-Vogelaar et al. 2009). Once a polyp has developed into clinical cancer, the survival of a person 

is generated according to the survival parameters. The expected lifespan is based on race- and sex-specific 
life tables from the U.S. Census. Natural history of CRC for each simulated individual may modify his or 
her CRC-free lifespan. If a person dies from CRC before he or she would die from other causes, the lifespan 
and age at death are adjusted accordingly.  

3.3 Screening and Testing 

The screening and natural history components of the model run simultaneously so that screening for CRC 

may detect polyps or cancers at any stage in the natural history. This may adjust the life history of the 
individual from the existing progression of the natural history. Polyps that are detected during a diagnostic 
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exam (which is implemented in the model only as a colonoscopy) will be removed and polyps will be 
biopsied for clinical diagnosis and treatment. The effect of screening is reflected in the aggregated gains in 
life years as a result of screening.  
 In this analysis, one of the primary outcomes of interest is receipt of CRC screening, subsequently 
referred to as compliance. Screening compliance, as well as an individual’s choice of test modality (the 
model currently implements colonoscopy and fecal immunochemical test (FIT)), are based on a 

probabilistic distribution of choices. The compliance and modality choice model in our simulation has 
previously been described (Cornejoet al. 2014; Wheeler et al. 2017; Wheeler et al. 2014) and is comprised 
of logistic regressions based on observational claims data of individuals enrolled in either a state-sponsored 
health plan (Medicaid and Medicare) or private health insurance through a large private insurer. The multi-
level, random effects logistic regression allows for individual attributes (e.g. sex, income) to have varying 
impacts between county level attributes (e.g. percent below poverty line) in the state of NC. The outcomes 

of the regression are compliance and modality within a 6 year window. The regression outcome 
corresponding to the probability of compliance within the 6 year window, 𝑝.  Since FIT is recommended 
every year and colonoscopy every 5 years we convert these from 6 year probabilities to the appropriate time 
interval assuming that the probability of screening in a single year is distributed as a Bernoulli random 
variable, thus the number of screens in a given time period are binomially distributed.  For FIT, we use a 
1-year probability, 𝑃𝐹𝐼𝑇; for colonoscopy we use a 5-year probability to account for variations from the 

recommended screening interval, 𝑃𝑐𝑜𝑙 . These probabilities are calibrated such that the expected time 
between screens for a compliant person is 10 years.  

3.3.1   Increase in compliance probability for first-time testers 

When an individual becomes eligible for a particular screening modality for the first time, they may have 
an increased probability (𝑝′) of compliance (Fedewa et al. 2017). This leads to a corresponding increase in 
probability of being screened over a five-year-period. For individuals screening with a colonoscopy, the 

increase of  𝑝′ can be directly applied to the adjusted probability (the output from the logistic regression) 
of screening since the adjusted probability of screening is computed for a period of five years. If 𝑃𝑐𝑜𝑙 is the 
adjusted probability of screening (i.e., probability an individual is compliant with colonoscopy screening 
over a five-year-period), then the increased probability of screening for newly eligible individuals (𝑃𝑐𝑜𝑙 )̂ is 
given by 𝑃𝑐𝑜𝑙

̂ = min(𝑃𝑐𝑜𝑙 + 𝑝′, 1). For individuals screening with FIT, computing the desired increase in 
probability is more challenging. This is because of the fact that for an FIT, the adjusted probability of 

screening from the statistical model is computed for a period of one year. As a result 𝑝′, which is the desired 
increase in probability for first time screeners which is over a five-year-period (to allow time for those new 
to insurance to adjust to new screening patterns) needs to first be converted into an increase in probability 
of being screened over a one-year-period. Thus, if the increase in probability of screening for newly eligible 
individuals over one year is 𝑥, the relationship between 𝑥 and 𝑝′ is computed using the formula based on 
the binomial distribution in the following manner.  

 

𝑃(𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑠𝑐𝑟𝑒𝑒𝑛 𝑖𝑛 5 𝑦𝑒𝑎𝑟𝑠 |𝑃𝐹𝐼𝑇 + 𝑥) = 𝑃(𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑠𝑐𝑟𝑒𝑒𝑛 𝑖𝑛 5 𝑦𝑒𝑎𝑟𝑠|𝑃𝐹𝐼𝑇) + 𝑝′ 
1 − (1 − 𝑃𝐹𝐼𝑇 − 𝑥)5 = 1 − (1 − 𝑃𝐹𝐼𝑇)5 + 𝑝′; (1 − 𝑃𝐹𝐼𝑇)5 − (1 − 𝑃𝐹𝐼𝑇 − 𝑥)5 = 𝑝′. 
 

Solving for 𝑥 yields 𝑥 =  1 − 𝑃𝐹𝐼𝑇 −  √(1 − 𝑃𝐹𝐼𝑇)5 − 𝑝′
5

. Finally if 𝑃𝐹𝐼𝑇 is the adjusted probability 
of screening (probability an individual is compliant with FIT over a single year), the increased probability 

of screening for newly eligible individuals (𝑃𝐹𝐼𝑇 )̂ is given by 𝑃𝐹𝐼�̂� = 𝑃𝐹𝐼𝑇 + 𝑥 = 1 −  √(1 − 𝑃𝐹𝐼𝑇)5 − 𝑝′
5

 . 

4 CALIBRATION OF % UP-TO-DATE WITH CRC TESTING 

Calibration was performed by matching the percent up-to-date output of the model to the 2002-2014 
Behavioral Risk Factor Surveillance (BRFSS) survey self-reported percentage up-to-date values. We used 
data from the BRFSS between 2002 and 2012 (conducted every 2 years) to estimate the proportion of NC 
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residents aged 50-75 years who reported being up-to-date with CRC screening The estimated proportions 
likely were overestimates of the true proportions of North Carolinians up-to-date with screening. Therefore, 
we adjusted the percent up-to-date by self-report using the sensitivity and specificity of self-report relative 
to chart reviews reported from a meta-analysis (Rauscher et al. 2008).  
 The objective was to determine values by which the compliance probabilities of an individual are to be 
increased such that the percentage up-to-date obtained from the model matched the BRFSS data after 

adjustment for self-report. During each of the years 2002, 2004, 2006, 2008, 2010 and 2012, a year-specific 
constant adjustment was made to each individual’s compliance probability. If an individual’s compliance 
probability obtained from the choice model in year 𝑥 turned out to be 𝑝𝑥, a constant value of 𝑐𝑥 is added to 
obtain an adjusted compliance probability. These year-specific constants, 𝑐𝑥 , ∀ 𝑥 ∈
{2002, 2004, 2006, 2008, 2010, 2012} were chosen such that the % up-to-date output for those years 
obtained from the model matched the BRFSS data described earlier. The structure of the model facilitated 

an iterative yearly calibration process. This is because any adjustment made to each individual’s compliance 
probability in a particular year will reflect in a change to the % up-to-date output only during future years. 
Thus, 𝑐2002 is determined, following by 𝑐2004, 𝑐2006, …., in that order. The result of this calibration exercise 
is that the % up-to-date obtained from the model is within 1% of the % up-to-date obtained from the BRFSS 
data adjusted for self-report bias for all years under consideration.  

5 POLICY SCENARIOS 

Insurance status, one predictor of routine compliance with screening, can change over a person’s life time. 
One time that this may occur is at age 65, when Americans age into Medicare eligibility. Individuals ≤65 
years of age in 2009 have their new insurance status assigned when they turn 65. Specifically, individuals 
who are privately insured or have Medicare have their new status assigned as Medicare, individuals on 
Medicaid have their status assigned as Dual, and uninsured low income individuals are assigned Dual while 
other uninsured individuals are assigned Medicare.  

 Insurance status may also change due to insurance expansion. Simulation of realistic scenarios around 
insurance expansion and reduction is critical given ongoing debates regarding health insurance reform 
nationally. Existing research has shown that the uninsured face greater barriers to preventive care services, 
including CRC screening, than insured populations (White et al. 2017) . CRC screening access also differs 
by type of insurance among the insured, although the differences are more muted. Due to uncertainties 
about the future of health insurance in the U.S., simulation provides a unique opportunity to compare the 

short-term and long-term effects of different strategies on population health and survival related to CRC. 
These projections can then be used to inform policy decisions.  
 We simulated three policy scenarios  in order to understand the differential impact of these strategies 
on rates of CRC screening, polyp detection and removal, cancer diagnoses, and mortality among the 
population in NC. Each of the scenarios were modeled starting in 2014, reflecting policy options associated 
with the ACA. The first scenario, the status quo, is the development and use of the health insurance 

exchange under the ACA as implemented in North Carolina (i.e., without Medicaid expansion). The second 
scenario is the expansion of the state’s Medicaid program, increasing the threshold for Medicaid eligibility 
for all residents to 138% of the federal poverty level (FPL). The third scenario is if insurance expansion did 
not happen under the ACA, i.e., insurance reduction or removal of ACA. The model has the capability to 
test these scenarios in other states as well. We focus on the NC population in this analysis for multiple 
reasons. Simulation of these scenarios in a single state allows for an understanding of the effects of 

insurance-related policies in a particular context in terms of population size, demographics, geography, and 
political climate. Additionally, there is an opportunity to project the long-term outcomes of not expanding 
Medicaid, which may be representative of other non-expansion states. Implementation details follow.  
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5.1 Scenario 1: ACA Implementation 

Implementation of ACA meant that the years 2013 and 2014 led to an increase in health insurance coverage 
for a number of individuals which saw an increase in the population’s healthcare coverage (Smith and 
Medalia 2015). Our goal was thus to find out whether we could observe an increase in health coverage as 
a result of ACA implementation and to quantify this increase. We were interested in determining the 
probability of having health insurance coverage for different combinations of specific respondent 

characteristics and the variable ‘year’ via a logistic regression model. State specific data was extracted from 
the Behavioral Risk Factor Surveillance Survey (BRFSS) (which contained year-specific survey responses 
of both landline and cellphone users). We modeled health insurance (yes=1, no=0) using a multivariable 
logistic regression with interactions. The independent variables included sex, age category (18-24, 25-34, 
35-44, 45-54, 55-64, 65+), race (non-Hispanic white, non-Hispanic black, Hispanic, other), income 
category, marital status and year. It must be noted that the original variable for income had a total of 6 

categories: five representing different income ranges and one for missing values. Since non-response rates 
on this question was high, we imputed the missing values using monotone logistic regression in SAS.  
 For all subgroups of the independent variables, we estimated the predicted probabilities of having 
insurance in 2013, 2014 and 2015. For each subgroup, we then calculated the conditional probability that a 
person will become newly insured in 2014 and 2015, given that they were not insured in 2013. The model 
then applies this increase to each individual (based on annual income thresholds for the federal poverty 

level (FPL) issued by the U.S. Department of Health and Human Services) (U.S. Department of Health & 
Human Services, 2018). For a single person, the FPL was $11,490 in 2013, $11,670 in 2014, and $11,770 
in 2015. For a four-person household, the FPL was $23,550, $23,850, and $24,250, respectively, in these 
same years. Those who became newly insured either get private insurance (e.g., through the exchange) or 
Medicaid coverage (if they qualify). 

5.2 Scenario 2: ACA + Medicaid Expansion 

The second scenario relating to Medicaid expansion is implemented on top of scenario 1. Once the model 
performs the algorithms relating to the implementation of ACA, it performs a check to see if uninsured 
individuals in 2014 and 2015 are eligible for Medicaid. The eligibility condition is determined by the FPL 
income thresholds outlined by the U.S. Department of Health and Human Services (U.S. Department of 
Health & Human Services 2018). In 2014, the income eligibility limit for Medicaid was increased to 138% 
of the FPL in states that expanded their Medicaid program. In North Carolina, a non-expansion state, the 

eligibility limit for adults with dependents is 43% of the FPL, and all adults without dependents regardless 
of their income are ineligible for Medicaid (The Henry J. Kaiser Family Foundation 2018). To understand 
the potential impact of Medicaid expansion in North Carolina, all residents with incomes at or below 138% 
of the FPL are considered eligible for Medicaid in this scenario. If eligible, the individuals are 
probabilistically assigned to Medicaid enrollment based on enrollment rates in NC.  

6 EXPERIMENTS AND RESULTS 

We ran the model via AnyLogic on a dedicated 64-core machine, running a 64-bit Windows Server 2008 
R2 Datacenter with 1TB of ram and 2 GHz Intel Xeon X7550 processors connected to 2 TB of disk storage. 
The life-spans of the entire synthetic population of individuals are simulated from birth to death. We run 5 
replications with a total run time of approximately 150 minutes. An application of Common Random 
Numbers (CRN) allows for substantial computational benefits by ensuring that an individual’s life courses 
are identical across replications and scenarios, except when the changes are induced by different 

interventions, as previously reported (Cornejo et al. 2014). The output statistics, compiled via the statistical 
software R, provide us with an insight into how different policies affect the population of individuals in 
terms of insurance trajectories, cancer incidence, cancer deaths and treatment costs. Table 2 presents the 
impact of each policy scenario on cancer incidence by stage and on deaths due to cancer. In comparison to 
the third scenario “No ACA”, (i.e., ACA was never implemented), the number of cases of CRC is reduced 
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under both the health insurance exchange under the ACA and the ACA + Medicaid expansion program. 
Additionally, the number of deaths due to cancer is reduced by 2.3% under the implementation of the ACA 
+ Medicaid expansion program when compared with the No ACA.   

Table 2. CRC incidence by stage and CRC mortality of full cohort projected for lifetime.  

 
No ACA ACA ACA + Medicaid Expansion 

CRC Cases 140,837 139,432 137,918 

Stage 1 47,911 47,544 47,164 

Stage 2 42,665 42,170 41,752 

Stage 3 28,507 28,194 27,834 

Stage 4 21,754 21,524 21,168 

CRC Deaths 56,561 55,967 55,244 

 

 Table 3 presents the impact of each policy scenario, independently, on the percentage of people up-to-
date with CRC screening in 2023 among all subpopulations studied. Implementation of the ACA + 
Medicaid expansion program saw an increase in the percentage of individuals up-to-date with 
recommended CRC screening across all subpopulations, except for uninsured individuals. The most 
substantial mechanism by which insurance expansion increases CRC screening is through offsetting the 
cost of health services received among those with insurance (that is, decreasing the out of pocket cost of 

screening among the uninsured). In NC in 2014, only 16.6% of uninsured individuals were up-to-date with 
screening while 66% of insured individuals were up-to-date, before adjusting for self-report bias (Rauscher 
et al. 2008), about 53% after adjusting for self-report. As such, it is illuminating to see how the insurance 
expansion scenarios impact the number of uninsured individuals age-eligible for screening (i.e., age 50-75) 
within the state over time. Figure 2 presents this number by year and gender (a) or race (b) These counts 
quantify the subpopulations that would need to be targeted for CRC intervention among the state’s 

uninsured population, which require meaningfully different actions than targeting insured populations. 

Table 3. Simulated age-eligible NC population up to date with CRC screening on January 1, 2023. 

Variable 
No ACA 

 

Percentage-point change in percent up to date on CRC 

screening compared with the No ACA 

ACA ACA + Medicaid Expansion 

Overall 48.65% +1.03% +1.74% 

By sex 
   

Male 46.13% +0.94% +1.55% 

Female 51.00% +1.11% +1.92% 

By race 
   

White 49.92% +0.73% +1.29% 

Black 45.92% +2.01% +2.88% 

Hispanic 42.22% +0.05% +2.90% 

Other 42.36% +1.40% +3.40% 

By insurance 
   

Private 53.87% +0.01% +0.03% 

Dual 58.02% +0.02% +0.99% 

Medicare 59.85% +0.09% +0.15% 

Medicaid 42.63% +0.07% +0.02% 

Uninsured 17.84% -0.04% -0.04% 
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Figure 2: Number of uninsured by gender (a) and race (b), by insurance policy scenario between Jan 1, 
2013 and Jan 1, 2020. 

 
Figure 3. Difference in all CRC costs by year, compared to the No ACA scenario, 2013+. 

 
 Figure 3 presents the annual differences in the total cost of treating CRC under each insurance 
expansion scenario as compared to the No ACA scenario (ACA never occurred) from the state’s 

perspective; costs include routine and diagnostic screenings, treating complications arising from a 
colonoscopy (bleeding and perforations), and the lifetime treatment costs from the perspective of each 
individual with cancer (Zauber et al. 2007). Both scenarios that we tested provided lower total CRC 
treatment costs when compared to the removal of ACA scenario.  Overall, the results of this analysis show 
positive effects of the health insurance exchange under the ACA, as compared to no ACA, in terms of 
increasing the percentage of the NC population screened, resulting in fewer CRC cases, decreased severity 

of CRC cases (as shown by cancer stage), reduced mortality, and lower treatment costs. The expansion of 
the state’s Medicaid program under the ACA would result in a greater magnitude of positive effects across 
all outcomes measured. Importantly, increased health care coverage was also found to reduce racial 
disparities in screening. For example, compared to the base-case, the increase in screening under ACA + 
Medicaid expansion was higher for Blacks (2.88%), Hispanics (2.90%), and Other (3.4%) than for Whites 
(1.29%), indicating that insurance access is one barrier affecting racial minority populations’ use of 

recommended screening. Although the changes in outcomes are somewhat modest they are commensurate 
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with other state-wide interventions (Hassmiller Lich et al. 2017).  Furthermore, these findings are important 
from a public health perspective because they highlight the potential for future insurance expansion policies 
to reduce CRC incidence, morbidity, mortality, and costs, as well as ensure more equitable access to 
efficacious cancer screenings. In conjunction with other evidence-based studies, simulation models can be 
used to address disparities and close gaps in screening by informing and testing strategies to efficiently 
meet established health targets.  

7 CONCLUDING REMARKS 

The NC-CRC model is intended to be used as a “virtual world” in which to simulate the effects of alternate 
scenarios about population demographics, disease determinants, clinical interventions, or policies on CRC 
screening, incidence, treatment, and mortality within the state of NC over time to inform state-level and 
community-level analyses. The object oriented structure of the model allows us to easily compartmentalize 
the components that make up the core of the model. The model can simulate realistic cohorts (e.g., for 

comparative effectiveness research) or the entire population of NC. While the experimental results 
presented in this paper examine the effects of implementing different policies in the past, the power of the 
model becomes more evident when estimating the impact of future policies. Additionally, the simulation 
need not be restricted to North Carolina’s populations and policies. While the model reflects best available 
evidence and substantial local data, care must be taken to consider the model a representation of our current 
understanding of the determinants of CRC disparities across the state. Additionally, sensitivity analyses 

may be conducted around uncertain parameters, e.g. uptake of Medicaid among the newly eligible.   
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