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Abstract
1. An understanding of the direct links between animals and their environment can 

offer insights into the drivers and constraints to animal movement. Constraints on 
movement interact in complex ways with the physiology of the animal (metabolism) 
and physical environment (food and weather), but can be modelled using physical 
principles of energy and mass exchange. Here, we describe a general, spatially ex-
plicit individual-based movement model that couples a nutritional energy and mass 
budget model (dynamic energy budget theory) with a biophysical model of heat 
exchange. This provides a highly integrated method for constraining an ectother-
mic animal’s movement in response to how food and microclimates vary in space 
and time.

2. The model uses r to drive a NetLogo individual-based model together with micro-
climate and energy- and mass-budget modelling functions from the r package 
“NicheMapr”. It expl icitl y incorporates physiological  and morphological  traits, behav-
ioural thermoregulation, movement strategies and movement costs. From this, the 
model generates activity budgets of foraging and shade-seeking, home range be-
haviour, spatial movement patterns and life history consequences under user- 
defined configurations of food and microclimates. To illustrate the model, we run 
simulations of the Australian sleepy lizard Tiliqua rugosa under different movement 
strategies (optimising or satisficing) in two contrasting habitats of varying food and 
shade (sparse and dense). We then compare the results with real, fine-scale move-
ment data of a wild population throughout the breeding season.

3. Our results show that (1) the extremes of movement behaviour observed in sleepy 
lizards are consistent with feeding requirements (passive movement) and thermal 
constraints (active movement), (2) the model realistically captures majority of the 
distribution of observed home range size, (3) both satisficing and optimising move-
ment strategies appear to exist in the wild population, but home range size more 
closely approximates an optimising strategy, and (4) satisficing was more energeti-
cally efficient than optimising movement, which returned no additional benefit in 
metabolic fitness outputs.

4. This framework for predicting physical constraints to individual movement can be 
extended to individual-level interactions with the same or different species and 
provides new capabilities for forecasting future responses to novel resource and 
weather scenarios.
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1  | INTRODUCTION

Forecasts of individual responses to current and future climates and 
habitat modification should ideally be based on an explicit understand-
ing of the physiological limits of animals in their environments (Buckley, 
2008; Helmuth, Kingsolver, & Carrington, 2005; Kearney & Porter, 
2009; Porter, Vakharia,  Klousie, & Duffy, 2006; Sears et al., 2016). 
Exploring how individual traits interact with habitat features and en-
vironmental drivers, such as resources and microclimates, offer use-
ful insights into individual behaviour, activity periods and range shifts 
(Buckley, 2008; Crozier & Dwyer, 2006; Stevenson, 1985b; Vickers, 
Manicom, & Schwarzkopf, 2011). On short time scales, foraging ani-
mals must minimise exposure to extreme environments by exploiting 
microclimatic variation in their habitats, thereby avoiding physiologi-
cal hazards such as overheating, cold stress and desiccation (Franklin, 
Davison, & Seebacher, 2007; Helmuth & Hofmann, 2001; Huey, 1991; 
Sears, Raskin, & Angilletta, 2011). Potential behavioural responses to 
such physiological constraints depend on the spatial configuration of 
resources in relation to microclimates. For example, animals may adjust 
body temperature while foraging by utilising shade (Shelly, 1982), se-
lect oviposition sites by substrate temperature (Davies, Wilson, Coles, 
& Thomas, 2006) and switch between different activities, such as 
basking and foraging, to navigate microhabitats (McClure, Cannell, & 
Despland, 2011) and respond to seasonal changes in habitat suitabil-
ity (Christian, Tracey, & Porter, 1983). The extent to which an animal 
risks exposure to extreme environments depends, in turn, on its nutri-
tional and hydration state (Adolph & Porter, 1993; Clissold, Coggan, & 
Simpson, 2013; Kearney, Simpson, Raubenheimer, & Helmuth, 2010).

By estimating how resources and microclimates drive animal 
movement, we can build a more realistic picture of animal displace-
ment, habitat use and ecology. Individual- based models (IBMs) are 
useful tools for exploring how environmental constraints influence an-
imal movement in space and time. For example, they have been used 
to predict how the spatial distribution of resources drives home range 
behaviour (Mitchell & Powell, 2012) and how habitat features moti-
vate patch selection (Railsback, Lamberson, Harvey, & Duffy, 1999). In 
doing so, IBMs can lead to a predictive understanding of the environ-
mental conditions that allow species to invade new habitats and their 
subsequent shift in distribution (e.g. climate change; Pearson et al., 
2006; Randin et al., 2006; see Sears & Angilletta, 2015).

Owing to the multiple constraints imposed on animals, movement 
models can be complex. Interacting drivers, e.g. resources and cognition 
(Müller, Fagan, & Grimm, 2011), are often estimated with empirically de-
rived functions (Schurr et al., 2012). Such empirical models are necessar-
ily limited in their generality. We can be more general by capturing and 
bounding these interactions according to basic physical principles. The 
fields of metabolic theory and biophysical ecology provide this basis for 
understanding environmental constraints on animal movement. Metabolic 

theory (Brown, Gillooly, Allen, Savage, & West, 2004; Nisbet, Muller, Lika, 
& Kooijman, 2000) aims to understand how organisms take up energy 
and matter from their environment and allocate them to the processes 
of growth, development, maintenance and reproduction. Similarly, the 
principles of biophysical ecology (Gates, 1980; Porter, Mitchell, Beckman, 
& DeWitt, 1973) can categorise how these processes are constrained by 
the thermal and hydration state of an individual. Together, metabolic the-
ory and biophysical ecology provide a complementary understanding of 
how internal metabolic requirements and external patterns in resources 
and microclimates constrain movement options (Kearney, Shine, & Porter, 
2009; Kearney, Simpson, Raubenheimer, & Kooijman, 2013).

Our approach builds on previous work integrating biophysical 
ecology and dynamic energy budget (DEB) theory (Kearney, 2013; 
Kearney et al., 2010) by being explicit about space and movement 
costs. As such, we aim to link the physical environment and physio-
logical traits with movement- related phenomena, such as home range 
behaviour and displacement. We outline an energy and mass budget- 
driven IBM (individual dynamic energy budget movement model; 
IDEBM) of an ectothermic animal moving in space and time using the 
IBM protocol (Grimm et al., 2006). We explore how two contrasting 
movement strategies driven by physiological constraints generate dif-
ferent movement and home range patterns: optimising, where animals 
move during all thermally available activity times and satisficing, where 
animals move only when sufficiently hungry based on their metabo-
lism. We do this under two contrasting densities of food and shade.

The model comprises three coupled sub- models that operate si-
multaneously: (1) a metabolic model of an animal’s energy and mass 
balance, including direct movement costs, based on a general theory 
of resource uptake and use by organisms (DEB theory; Kooijman, 
2010), (2) a transient heat budget model for calculating changes in 
individual thermal state in response to varying habitat microclimates, 
and (3) a decision- making model driving movement in space and time. 
We compare simulated movements to real movement data of 60 adult 
sleepy lizards for the 2009 breeding season with two major aims:

1. To test whether the IDEBM model can predict movement and 
home range patterns based on individual physical limits under 
different food and microclimate constraints

2. To interpret the movement strategy that real individuals in the 
population use to navigate these movement constraints.

2  | OVERVIEW

2.1 | Purpose

The focal species is Tiliqua rugosa (Scincidae), a medium- sized herbivo-
rous lizard from Australia, for which we have detailed field movement 
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data (see “Data collection” in the appendix and Kerr & Bull 2006 for 
information on data collection and study site). In the model, the met-
abolic and thermal state of individuals updates on 2- min time steps 
to match observed data (see “Data collection” in the appendix and 
Kerr, Bull, & Cottrell, 2004) as they switch among different activity 
states of searching (including socialising), feeding (including handling), 
and sheltering (resting in shade, basking, and “sleeping”) depending 
on whether in sun, food or shade patches. These behavioural cat-
egories define the animal activity budget in space and time over a 
continuous time scale of the entire breeding season (September to 
December; 117 days). Individuals follow a correlated random walk 
(CRW) movement within a 2D model landscape of randomly distrib-
uted and clumped food and shade patches interspersed throughout 
open sun patches. We estimate distributions of shade patches from 
Light Detection and Ranging (LIDAR) data of the study site by combin-
ing a digital surface model and digital terrain model to reflect the spa-
tial arrangement of habitat features, thus providing a realistic picture 
of the thermal landscape. Hourly microclimates are computed with 
the NicheMapr microcl imate model  based on dail y weather inputs from 
Australian historic weather data queried from continent wide 0.05° 
gridded products (Australian Water Availability Project, AWAP [Jones, 
Wang, & Fawcett, 2009] and a daily wind database [McVicar et al., 
2008]). See “NicheMapr microcl imate model  overview” in the Appendix 
and model overview in supporting material from Kearney, (2013). 
These hourly predictions are then splined to 2- min intervals and used 
to update the landscape microclimate at each time step. See Figure 1 
for input pathways of microclimate data. Functions for the energy and 
mass budget calculations are part of the r (R Development Core Team, 
2015) package “NicheMapr” (https://github.com/mrke/NicheMapR). 
Metabolism is modelled using the function “DEB.R” and a transient 
heat budget “onelump_varenv.R” driven by the environmental output 

from the “microclimate” function updates the individual thermal state 
(https://github.com/darwinanddavis/MalishevBullKearney).

The decision- making IBM (Appendix 1 in Supporting information) 
is implemented in Netlogo (Wilensky, 1999) and simulated from r. The 
energy and heat budget models (Appendix 2 in Supporting informa-
tion) described above are first implemented in r, then integrated with 
the IBM simulations using the “rNetlogo” package (Thiele, Kurth, & 
Grimm, 2012). The detailed breakdown of the energy and mass budget 
is presented in Appendix 3 in Supporting information. Italicised text 
denotes DEB and NicheMapr variables and parameters, e.g. E, and code 
typeface denotes IBM simulation parameters, e.g. reserve-level 
and procedures, e.g. Feeding.

3  | ENTITIES,  STATE VARIABLES,  AND  
SCALES

The model has three entities—individuals, habitat and microclimate—
simultaneously driven by the energy budget (DEB), the heat budget 
(NicheMapr), and the decision- making model  (IBM).

3.1 | Energy budget model

The energy budget model uses individual morphology and physiology 
data with theory- driven principles of energy and mass balances to 
update the internal metabolic state of the animal, including food pro-
cessing and intake rates, somatic maintenance and movement costs, 
and growth and reproductive rates. We incorporate the core assump-
tions and basic rules of DEB theory (see Appendix 3 in Supporting 
information) as a coupled energy and mass budget model (see Figure 3 
in Kearney & Porter, 2009) into an IBM that updates the individual 

F IGURE  1 Schematic of data and 
model inputs of the individual dynamic 
energy budget movement model. Examples 
of weather data: monthly to annual 
temperatures microclimate; Microclimate: 
local solar and infrared radiation 
temperature, ground and air temperature 
(Table 2); dynamic energy budget model: 
See Tables 1 and 4; Heat budget model: 
See Table 2; Habitat data: food and shade 
patches (Table 3). The dynamic energy 
budget and heat budget models update 
with the time steps of the decision- making 
individual- based model to form feedback 
loops. All weather and habitat data are 
modeled on the sleepy lizard habitat 
(139°21′ E, 33°55′ S). Animal data are for 
the adult sleepy lizard
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internal state on 2- min time steps. This then drives movement and 
changes in metabolism (including direct movement costs) to generate 
changes among activity states and the overall activity budget, home 
range emergence, and habitat use. It thus provides a way to compute 
the animal’s motivational state for movement (hunger, reproduction) 
and predict fitness consequences (growth, reproduction, condition) of 
different movement strategies. Table 1 shows the DEB parameters 
estimated using the “covariation method” (Lika et al., 2011) from ani-
mal data and Appendix 3 in Supporting information shows a summary 
of DEB procedures.

3.2 | Heat budget model

The heat budget model computes heat exchange between animal and 
environment based on morphology (e.g. body mass, length, surface 
area, and solar reflectance), physiology (e.g. metabolic rate, rates of 
food intake and processing), behaviour (e.g. foraging temperature 
thresholds), and environmental conditions (e.g. ground and air tem-
perature, wind speed, solar radiation, and infra- red radiation) (Kearney 
& Porter, 2004). Following Porter et al. (1973), we compute body tem-
perature Tb as the sum of the steady ys and transient yt thermal state, 
Tb = ys + yt 

where j = (Qsol + hcAconvTair + hrAradTrad)/C, kTb = Tb(hcAconv + hrA rad)/ 
C, k is a time constant, Qsol is the total solar radiation absorbed, 
Aconv and Arad are the surface areas for convective and radiative 
heat transfer, respectively, C is the thermal capacitance (specific 
heat capacity × mass), hc is the convection coefficient, and hr is the 
radiation coefficient (approximated in our model by a Taylor series 
expansion 4εσ( Tb + Trad

2
)3 with emissivity ɛ and Stefan–Boltzmann 

constant σ). Note, for simplicity, we here neglect metabolism, evap-
oration, and conduction, but they can be incorporated if required 
(Porter et al., 1973). The time constant 1

k
 accounts for the response 

time of Tb between steady and transient states that influences heat 
transfer through the animal depending on individual thermal mass. 
See Table 2 for individual parameters and variables, Appendix 2 in 
Supporting information for detailed heat budget r code, Kearney 
et al. (2010) for complementary ways to integrate biophysics 
with energetics (DEB theory), and Kearney et al. (2013) for apply-
ing the combined framework in a spatially implicit manner with a 
steady- state heat budget model to the Cunningham’s skink, Egernia 
cunninghami.

(1)Tb=
j

k
+

(

Tb−
j

k

)

e−kt and
δT

δt
= j−kTb,

TABLE  1  Individual variables and parameters of the DEB (dynamic energy budget) model (Kooijman, 2010) parameterised for the sleepy 
lizard, Tiliqua rugosa. Parameters are estimated from available animal data (Table 4). Dimensions: —, dimensionless; J, Joules; L, structural length; 
t, time. Units: d, days; cm, centimetres. Square [*] and curly {*} parentheses denote parameters per volume and surface area, respectively; dot 
accents denote rates

Parameter Value Dimension Unit Description

ṗX 330.04 J/t d Flux for food uptake from environment to individual

ṗA 280.53 J/t d Flux for food assimilated to energy, where {ṗAm} is the 
maximum assimilation rate (f = 1).

κ 0.84 — — Kappa rule of energy allocation

ṗC 232.51 J/t d Energy flux mobilised from reserve. κṗC, energy allocated to 
soma; (1 – κ)ṗC, energy allocated to maturity

ṗM 117.56 J/t d Flux for somatic maintenance

ṗG 78.71 J/t d Flux for growth

g 1.95 — — Energy invested into growth (per maximum reserve [Em])

ṗJ 12.49 J/t d Flux for maturity maintenance

ṗR 23.75 J/t d Flux for maturation or, once fully matured, for reproduction

ν 0.03 L/t cm/day Energy conductance

r 0.00017 t−1 d Specific growth rate (of structure)

[EG] 7,772 J/L3 cm−3 Cost of structural tissue

{Fm} 6.5 L2/t cm2/day Maximum surface- specific searching rate of food

κX 0.85 — — Energy assimilation efficiency

κR 0.95 — — Reproduction efficiency

{ṗT} 0 J L2/t cm2/day Flux for surface- area specific somatic maintenance

k̇j 0.002 t−1 d Coefficient for rate of maturity maintenance

Eb
H

102,980 J — Maturity threshold at birth

E
p

H
249,580 J — Maturity threshold at puberty

ER 0 J — Reproduction buffer
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3.3 | Decision- making IBM

The decision- making IBM simulates CRW movement in a 2D model 
landscape of randomly distributed food and shade, where environ-
mental conditions update the coupled energy and heat budget to 
define the individual internal state and thus inform future behaviour 
and movement potential. Individuals follow either an optimising or 
satisficing movement strategy and move only when within their 
physiological limits (Tlower and Tupper, Table 2): optimising animals 
move during all available activity hours, whereas satisficing animals 
move only when hungry (gut fullness level is <75% [Kearney et al., 
2013]) and thus avoid socially motivated movement. We choose 
these strategies for their relationship with decision- making and an-
imal behaviour studies, i.e. foraging under environmental extremes 
is risk- taking and involves trade- offs. Individuals switch between 
three activity states depending on their current state and whether 
in food, sun, or shade: searching for food or shade (Searching), 
consuming food (Feeding), or sheltering in shade (Resting). 
For example, under either strategy, being in open sun while 
Searching or Feeding can push the animal outside its physi-
ological limits (Tlower and Tupper), forcing it to seek refuge in shade.

Optimising animals have the additional socialising activity state, 
which involves the same CRW movement, but motivated by social and 
territorial requirements categorised within Searching. Socialising is in-
cluded in this strategy as it can contribute to dispersal potential and be-
havioural adaptation within an animal’s overall activity budget (Bateman, 
Lewis, Gall, Manser, & Clutton-Brock, 2015; Kays, Crofoot, Jetz, & 
Wikelski, 2015; Spiegel, Leu, Sih, & Bull, 2016; Wang & Grimm, 2007). 

Additional traits include perception range for locating food and shade 
patches and activity counters for time spent searching, feeding, and shel-
tering. See Table 3 for individual- based parameters and variables.

3.4 | Habitat

The habitat variables are food, shade and sun patches distributed 
in the environment (Table 3). Food is either a small or large food item 
per open sun patch and is either sparsely or densely distributed under 
the two movement strategies. Food intake by individuals is deter-
mined by handling time (patch residence). Shade is single patches and 
estimated from vegetation inputs from LIDAR data of the study site.

3.5 | Microclimate

Patches are either shade or open sun (including food) determined 
by microclimate inputs of air temperature, relative humidity, ground 
temperature, wind velocity, solar zenith angle and solar and infrared 
radiation from microclimate input data of the study site. We calcu-
lated microclimates from Australian historic weather data using the 
NicheMapr microcl imate model  (see model  overview in supporting material  
from Kearney, 2013), which we pre- computed hourly, then interpolated 
(splined) to 2- min time steps during the simulation with the r function 
“approxfun” from the stats package (Chambers, Becker, & Wilks, 1988).

3.6 | Scales

One patch is one cell on the model spatial grid (2 m2; Table 3). 
Simulations run on 2- min time steps. Initial microclimate inputs are 
initialised hourly then projected (splined) to 2- min time steps.

4  | PROCESS OVERVIEW AND  
SCHEDULING

Individuals are motivated both to find food (X) and to avoid environ-
mental extremes. Food may be small (3 kJ) or large (6 kJ) items with 
one (2 min) or two (4 min) handling time steps, respectively. These 
energy values reflect the stomach- emptying rate specified by DEB 
theory following the Holling Type II functional response (Holling, 
1959). Energy reserves change on each time step as dictated by the 
reserve (E) dynamics of the DEB model relative to body temperature 
(Tb) (influenced by microhabitat/microclimate) and by whether or not 
it is feeding in that time step. Movement incurs a direct movement 
cost estimated from O2 expenditure rates for a similar- sized ectotherm 
(John- Alder, Garland, & Bennett, 1986) and converted to maintenance 
costs per unit of body mass generated by the DEB model (O2 per gram 
converted into Joules). The reserve level then influences the dynam-
ics of fitness outputs, such as growth, development, and reproduction 
(see Appendix 3 Supporting information for summary of DEB param-
eters and primary metabolic pathways). Individuals also regulate their 
body temperature within their thermal constraints (Table 2) on each 2- 
min time step according to their current location in space, i.e. shade vs. 

TABLE  2  Individual variables and parameters of the transient 
heat budget model. Dimensions: —, dimensionless; C, Celsius;  
J, Joules; kg, kilograms; m, metres; s, seconds; t, time; W, watts

Parameter Dimension Description

Tb °C Core body temperature

Tlower °C Lower body temperature bound of 
activity range

Tupper °C Upper body temperature bound of 
activity range

σ °C Stefan–Boltzman coefficient

cp J/kg Specific heat of flesh

emis — Emissivity of skin

Foe — Configuration factor of animal to absorb 
infrared radiation

ρ kg/m3 Density of animal mass

abs — Solar absorptivity of animal

Q W Heat fluxes

y °C Thermal state of animal: steady ys and 
transient yt

j °C Temperature constant

k 1/s Time constant

C1 — Dimensionless constant

e−kt — Dimensionless rate of Tb change



     |  477Methods in Ecology and EvoluonMALISHEV Et AL.

TABLE  3 State variables and parameters of model individuals, habitat, and microclimate. Dimensions: —, dimensionless; C, Celsius; J, Joules; 
m, metres; s, seconds; t, time; T, temperature; W, watts. As in 2. Entities, state variables and scales

Entity
Variable/
parameter

Notation
Dimension 
(unit) DescriptionDEB IBM

Individual Reserve 
density

[E] Reserve-level J cm3 Dynamic energy budget (DEB) individual state variable 
that relates to nutritional state and contributes to part 
of the biomass. Dynamics of reserve flux is determined 
by the kappa (κ) rule of energy allocation that controls 
energy allocation to essential metabolic processes, 
such maintenance, growth, maturity, and reproduction. 
[Em] is maximum reserve density. See Equation 4 in 
Appendix 3 in Supporting information

Structure V — cm3 A DEB state variable proportional to physical length that 
contributes part of the biomass. Structure increases 
(growth) based on flux of mobilised reserve. See 
Equation 11 in Appendix 3 in Supporting information-
Growth is modelled by the DEB growth equation, the 
parameters of which are estimated from individual 
traits (e.g. snout to vent length (SVL)). See Table 4 for 
empirical data used to parameterise the DEB model

Maturity EH — J A DEB individual variable that determines the maturity 
stage of animal. The case study model considers a 
mature adult, so EH = Ep

H

Movement 
strategy

— Optimising
Satisficing

— An individual- based model (IBM) parameter defining the 
movement strategy of the individual in space. Optimising 
animals include an additional socialising activity state

Gut level Esm gutfull J cm3 A DEB variable representing stomach capacity that 
determines the level of food in the animal gut. 
Parameterised on the Cunningham’s skink (Kearney, 
2012)

Vision — min-vision Patch (m2) An IBM parameter defining the visual scope of the 
individual and its encounter probability of food and 
shade patches in space. Min-vision refers to the 
normal visual scope (10 m) (Auburn et al., 2009)

Functional 
feeding 
response

f energy-gain — A DEB individual parameter that defines food (X) intake 
per encounter rate with food patches. f (X) = X

X+K
, 

where K=
{ṗAm}

κX{Fm}
 the half saturation coefficient, 

following (Holling, 1959) (see Table 1 for K)
Habitat Food X Yellow patch: small food

Green patch: large food
Patch (m2) Food items vary in size (bites) per food patch. Small and 

large food items take one (2 min) or two (4 min) time 
steps, respectively (handling time). Food and sun 
patches represent similar microclimates

Shade — Black patch Patch (m2) Shade patches are distributed randomly in the model 
landscape, reflecting typical spatial arrangement in 
nature

Microclimate Solar 
radiation

SOLR — W/m2 A NicheMapr variable. The model  environment is loaded 
with these data prior to simulation runs, updated hourly 
within NicheMapr, and spl ined to 2- minute time steps

Local air 
temperature

TALOC — T (°C) A NicheMapr variable. Input as per solar radiation

Infrared 
radiation

IR — W/m2 A NicheMapr variable. Input as per solar radiation

Relative 
humidity

RHLOC — % A NicheMapr variable. Input as per solar radiation

Soil 
temperature

TS — T (°C) A NicheMapr variable. Input as per solar radiation

Local wind 
speed

VLOC — m/s A NicheMapr variable. Input as per solar radiation
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sun patch and the time of day per month. See Figure 1 for data inputs, 
Figure 2 for schematic of simulation runs, and Appendix in Supporting 
information 1 for IBM simulation code.

5  | DESIGN CONCEPTS

5.1 | Basic principles

The environmental conditions (microclimatic values in the extremes 
of available shade), animal traits (DEB and the heat budget model) 
and resource densities (food and shade) are the three model inputs. 
The individual executes its movement decisions—searching for food 
or shade (Searching), consuming food (Feeding), or sheltering in 
shade (Resting) under either an optimising or satisficing movement 
strategy—in response to changes in these types of input, generating 
spatial movement patterns and fine- scale behavioural responses to 
changing constraints (see Figure 1).

5.2 | Emergence

Activity and home range patterns emerge from the two movement 
strategies in space and time in response to microclimate and food 
constraints. We interpret individual activity states and home range 
emergence in space using the 95% kernel utilisation distribution (UD)

where x, y and ti are x coordinates, y coordinates, and time for the 
ith coordinate relocation, respectively. Individual Tb, including the 
rate of Tb change, and current metabolic state of the animal updates 
the individual internal state per model time step to drive future 
movement decisions and thus home range emergence. For example, 
the individual will seek shade or forage depending on the external 

environmental temperature and whether within its activity tempera-
ture range (Tlower and Tupper). Based on how the external environment 
influences the internal individual state, this leads the individual to ei-
ther displace from its current location in search of shade or food or 
remain in a resting state in shade to avoid environmental extremes, 
thus expanding or contracting its home range area.

5.3 | Adaptation

The internal metabolic and thermal state drives individual responses to 
environmental change. For example, if environmental conditions are 
outside the specified range for emergence or activity, the animal will 
remain in its shelter. Within these limits, animals can bask by actively 
seeking sun patches when attempting to reach a preferred basking 
temperature, or search for food, feed, or socialise when within their 
Tlower and Tupper activity range limits. Individuals must regulate their Tb 
in response to changing microclimates by adapting their movement on 
fine scales to their current physiological state (mass, energy reserve), 
the level and availability of shade, and photoperiod. For simplicity, we 
assume no burrowing behaviour.

5.4 | Fitness

The DEB model computes the trajectory of the life history at any stage 
in the life- cycle and thus defines potential fitness components, such 
as growth or fecundity for a given simulation.

5.5 | Prediction

By simultaneously computing individual movement from thermal and 
resource limits of the habitat and the metabolic drive to move based 
on temperature and hunger levels, the model predicts movement con-
straints from purely individual physiological limits.

(2)UD
�
(x, y|ti)=

UD(x, y, ti)

∫
x� , y�

UD(x�, y�, ti)
,

F IGURE  2 Schematic of decision- 
making individual- based model simulation 
runs. Solid boxes are processes, dashed 
boxes are individual decisions, and ellipses 
are individual actions. Searching refers 
to either searching for food, shade, or 
socialising, depending on the current 
thermal or metabolic state or movement 
strategy of the animal. Hungry refers to 
whether the gut fullness threshold is <75%

Too hot/cold? 

In food patch? 

Y 

N 

Y 

Gut full? 

Feed 
Y 

N 

Search 

Rest 

In shade? 

Y 

N 

Optimal 
temperature? 

N 

Hungry? 

Make decision 

Satisficing? 

Y 

N 

Y 

N 

N 

Bask 

Update  
per hour DEB model 

Update  
per 2 min 

Heat budget 
model 

Zzz

Y 



     |  479Methods in Ecology and EvoluonMALISHEV Et AL.

5.6 | Sensing

Individuals are aware of their habitat (food and shade) in space and 
time within a defined visual range (min-vision; Table 3), allowing 
them to gravitate towards food or shade patches that lie within this 
range depending on their current activity state.

5.7 | Stochasticity

Individual decisions are to some extent random (e.g. which direction 
to turn) following correlated random walks (CRW), which assume the 
least about any preferences for habitat features. This stochasticity 
generates different activity budgets under different movement strat-
egies and resource distributions. When food or shade patches fall 
within the vision range, the individual will orientate and move itself 
directly towards the appropriate patch given the current activity state, 
i.e. Searching or Resting.

5.8 | Observation

The model produces individual outputs for body temperature (Tb), 
rate of change in Tb, activity budget in time and space (time spent and 
spatial coordinates of different activity states), accumulated direct 
movement costs, accumulated wet mass (structure, storage, food and 
reproductive mass), gut fullness and home range polygons for both 
movement strategies.

6  | DETAILS

6.1 | Initialisation

All animal data are based on the adult sleepy lizard, T. rugosa. Activity 
temperature range for Searching is 26°C and 35°C for the lower and 
upper bounds, respectively (Table 2), and basking temperature is 14°C 
(Pamula, 1997). Vision range (min- vision) is 10 m (Table 3) (Auburn, Bull, 
& Kerr, 2009). Table 4 details the parameters for initialising the DEB 
model for T. rugosa. We set up the IDEBM model to simulate real move-
ment data of location tags every 10 min and movement steps, body 
temperature (Tb), and energy reserves recorded every 2 min of 60 adult 
sleepy lizards in the 2009 breeding season (September to December).

Individuals are initialised as adults at the onset of maturity and 
begin in a shade patch (Resting) in the centre of the landscape with 
maximum reserve (Maximum-reserve). Initial body temperature 
(Tb) depends on the user- defined location in space and time of year. 
Minimum and maximum activity temperature range (°C), basking tem-
perature (°C), body mass (g), and vision range (m) are user- defined. 
We simulated an individual in a habitat of randomly distributed food 
and shade patches for 117 days from September 5, 2009. Simulations 
were repeated 100 times using a seeded habitat arrangement for (1) 
the optimising vs. satisficing strategies and (2) sparse (1,000) vs. dense 
(100,000) food and shade distributions. We then compared movement 
pattern simulations with home ranges of sleepy lizard GPS data for this 
time period.

7  | INPUT DATA

7.1 | Habitat

The habitat represents an arid, terrestrial environment in South 
Australia (139°21′ E, 33°55′ S), 1.5 × 1.5 km. Grid cells in the model 
landscape are 2 m wide.

7.2 | Microclimate

The habitat is a mosaic of sun and shade patches (sparse or dense) that 
animals, when simulated to enter either patch type, are exposed to the 
respective sun or shade microclimate for the study site throughout 
the breeding season (September to December, 2009). We estimated 
distributions of shade patches from the LIDAR data of the study site 
and calculate hourly microclimates from the NicheMapr microcl imate 
model, using continent- wide weather data.

8  | SUBMODELS

8.1 | Activity budget

Individuals switch between three separate activity states that encom-
pass the fundamental behavioural repertoire: Searching for food, 
Feeding (including handling), and Resting (sheltering, seeking 
shade, and basking). For example, less time spent sheltering relative 
to feeding could imply that the animal is malnourished or lives around 
patchy resources. Emergent individual behaviour generates transition 

TABLE  4 Organism data for parameterising the standard dynamic 
energy budget model of Tiliqua rugosa. Unit: d, days; g, grams; K, 
Kelvin. All data are from Kearney, M. R., Munns, S. L., Moore, D., 
Malishev, M. and Bull, C. M., unpubl. data, (http://www.bio.vu.nl/
thb/deb/deblab/add_my_pet/entries_web/Tiliqua_rugosa_res.html), 
except life span, which is from (Snider & Bowler, 1992)

Parameter Value Unit Description

ab 150 d Age at birth at f (age 0 is at onset of 
embryo development)

Tab 302.25 K Temperature for ab

ap 1642.5 d Time since birth at puberty at f

Tap 302.25 K Temperature for ap

am 7628.5 d Life span at f (accounting for ageing only)

Tam 296.35 K Temperature for am

Lb 16.5 cm Snout to vent length at birth at f

Lp 23 cm Snout to vent at puberty at f

Li 32.8 cm Ultimate snout to vent length at f

Wb 29.7 g Dry weight at birth at f

Wp 54 g Dry weight at puberty at f

Wi 215.1 g Ultimate dry weight at f

Ri 0.0024 d−1 Maximum reproduction rate at f (for 
individual of max length)

TRi 296.35 K Temperature for Ri

http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/entries_web/Tiliqua_rugosa_res.html
http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/entries_web/Tiliqua_rugosa_res.html
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probabilities between activity states and thus a global state space 
model. Optimising animals have the extra activity state of socialising.

9  | RESULTS

9.1 | Does the model capture realistic home range 
area and behaviour?

We used a metabolic theory- based movement model defining the in-
ternal energy and mass budget to drive movement decisions and gener-
ate activity budgets and home range emergence in response to external 
environmental constraints of food and microclimates explicitly defined 
in space and time. Using satisficing and optimising strategies as prox-
ies for minimum and maximum potential movement, the IDEBM model 
produced distributions of home range size which overlap with that of 
the wild population (Figure 3). Mean home range area for real animals 
(0.038 km2) was significantly greater than simulated satisficing animals 
(0.0126 km2, t54.6 = 7.0376, p < .001), but not different from simulated 
optimising animals (0.0397 km2, t69.5 = 0.39715) (Figure 3). This implies 

that actual lizard movement extends beyond basic behaviours of feed-
ing, searching, and resting to include extra movement relating to social-
ising (Figure 4b). Some home ranges of real animals were larger than 
those from any of the two simulated movement strategies, but this 
portion of the total number of observed animals was only 10% (n = 6). 
Further, the mean home range area of observed animals is closer to that 
of either simulated movement strategy than the maximum observed 
home range area. Under an optimising strategy that allows socially mo-
tivated movement, individuals covered more ground and thus explored 
more food and shade patches within a similar time period compared to 
satisficing ones (Figure 5c–d). Animals were also able to successfully ne-
gotiate different habitat arrangements, as shown by similar home range 
sizes between sparse and dense resource distributions (Figure S1).

9.2 | How does movement strategy shape activity 
budgets?

From individual- based decisions based on the internal energetic 
and thermal state of the animal in response to a spatial resource 

F IGURE  3  (a) Distributions of home range area (km2) of real (pink) and seeded simulated optimising (orange) and satisficing (blue) movement 
strategies under dense resource distribution (food and shade). Home range polygons in space showing overlap of seeded simulated (b) satisficing 
and (c) optimising individuals and (d) real individuals. Home ranges in (d) appear more scattered due to different starting locations of real animals, 
whereas (b) and (c) have seeded starting locations in the centre of the landscape. The vegetation layer in (d) is generated from Light Detection 
and Ranging data of the habitat site, showing the thermal mosaic of the landscape
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landscape, home range vertices show that optimising individuals 
under high resource distribution covered 1.2- fold more area (km2) 
feeding than either searching or resting. Optimising animals spent 
on average 4.1- fold more time searching, 2.7- fold more time feed-
ing, and 1.8- fold more time transitioning between activity states 
than did satisficing animals (Figure 4). As expected, the largest dif-
ference in activity between movement strategies was for resting; 
satisficing animals, who spent 1.2- fold more time resting than opti-
mising animals, were restricted from any non- feeding activities, i.e. 
socialising. Optimising animals spent 10.5- fold more time searching 
and 47.9- fold more time resting than feeding. Conversely, satisfic-
ing animals spent 6.9- fold more time searching and 149- fold more 
time resting than feeding.

9.3 | How does movement potential affect individual 
metabolic outputs?

Movement was, on average, 1.4- fold more costly for maximum (op-
timising) over minimum (satisficing) movement potential due to 

extra overall time engaging in non- feeding movement (Figure 6a). 
The IDEBM model predicted relatively minor impacts on the energy 
budget of the two movement strategies: structure, wet mass storage, 
converted food mass, and reproductive organ wet mass of optimising 
animals were, on average, 0.0004%, 0.0008%, 0.0009%, and 0.0023% 
(g) lighter after the breeding season than in satisficing animals, respec-
tively (Figure 6b).

9.4 | Does the individual heat budget model capture 
realistic thermal changes and costs?

We found the upper and lower Tb limits per hour of the day for the 
different simulated movement strategies encompassed those of the 
wild population throughout the breeding season, while average hourly 
simulated Tb varied from observed by ±5°C (cf. Figure 7a–b). An ex-
ample of the fine scale changes in Tb as the individual enters and exits 
shade patches across the day is shown in Figure 7. Rates of Tb change 
for simulated minimum and maximum movement potential showed a 
similar range to those of the real animals (Figure S2).

F IGURE  4 Activity budget for all optimising and satisficing animals throughout the breeding season showing proportion of time spent (a) 
feeding, (b) searching, and (c) resting, as well as (d) proportion of number of transitions between activity states. Radius = time spent in activity 
state; circumference = days throughout the breeding season. Black arrows indicate a 5- day period where environmental conditions were not 
conducive to activity, so animals spent this time resting in shade
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10  | DISCUSSION

We built an individual- based spatial movement model driven by 
mechanistic models of heat exchange and metabolism to predict 
movement and home range patterns under different food and micro-
climate constraints. Our aim was to interpret how animals navigate 
these movement constraints from interacting internal (physiology and 
metabolism) and external (resource and weather) cues under different 
movement strategies to capture habitat use of the wild population.

Simulated average home ranges under the optimising strategy 
closely approximated real home ranges throughout the breeding 
season (Figure 3). Therefore, our movement model driven from bot-
tom- up physiological and metabolic consequences was able to pro-
vide biologically realistic predictions. Given that real animals move 
significantly more than predicted by the simulated satisficing strategy, 
our results imply that sleepy lizards are exploiting available thermally 
suitable time for activities above and beyond what is needed for feed-
ing (Figure 3). This is consistent with field studies of sleepy lizards 

F IGURE  5 Movement path and home ranges of real vs. simulated sleepy lizards. (a) Individual #11885, a real sleepy lizard showing active 
movement and (b) individual #11533, a real sleepy lizard showing passive movement, throughout the breeding season. (c) A random simulated 
optimising individual representing the maximum potential movement and (d) a random simulated satisficing individual representing the minimum 
movement necessary throughout the breeding season based on its physiological limits. (c–d) green = food patches, black = shade patches, and 
polygons represent home ranges. Patch size in simulations represents time elapsed on patch
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showing that males in particular engage in extensive movements asso-
ciated with mating and social behaviour (Kerr & Bull, 2006).

The motivations of animals to trade- off available time for differ-
ent activities are diverse e.g. growing vs. mortality risk (Stamps, 2007; 
Werner & Anholt, 1993), rapid habitat change (Fahrig, 2007), and the 
interplay between the internal state and external environmental cues 
(Clobert, Le Galliard, Cote, Meylan, & Massot, 2009; Schick et al., 2008; 
Shaw & Couzin, 2013). Animals face movement trade- offs depending 
on how food and microclimates change in space and time on fine 
scales (McClure et al., 2011; Porter et al., 1973; Stevenson, 1985b). By 
adjusting behaviour and activity windows to exploit different thermal 
landscapes, animals can better regulate their body temperature (Sears 
et al., 2011; Vickers et al., 2011; Villén- Pérez, Carrascal, & Seoane, 
2013) and better adapt to fine- scale environmental change. The 95% 
home range vertices we computed for each activity state showed that 
simulated patch use from searching for food and feeding covered the 
most ground because when food is abundant, i.e. under high resource 
distribution, animals can easily find and move to nearby food patches. 

Animals can then use food patches as stepping stones to find more 
food; in contrast, more patchy food distribution lowers the chance of 
finding and thus moving to food patches. Therefore, space use by sim-
ulated animals when feeding required more directional movement and 
was less random than when searching, including socialising. More time 
spent feeding suggests that, under physiological constraints, foraging 
drives movement over socialising.

Simulated shade- seeking behaviour, including retreating to shade, 
covered less area because resting animals are more stationary and dis-
place less than foraging ones. This result is likely due to the time costs 
of different activities. For example, animals heat up and cool down 
over much shorter time intervals than those involved in searching for 
and handling food. That is, they may have to continually leave a food 
patch to cool down in a shade patch in hot weather. Therefore, thermal 
extremes can impose significant overhead costs to foraging time. For 
example, active lizards in open patches can spend up to 20- fold more 
time in foraging than non- foraging behaviour (Wilson & Lee, 1974). 
We found simulated animals spent more time exposed to thermal 

F IGURE  6 Energetic outputs showing 
differences in maximum (optimising) and 
minimum (satisficing) potential movement. 
(a) Cumulative movement costs (kJ) for a 
random simulated optimising (orange) and 
satisficing (blue) individual throughout the 
breeding season. (b) Difference in mean 
structural volume (g−1 cm3; green), wet 
mass storage (g; blue), converted food mass 
(g; black), and reproductive organ wet mass 
(g; pink) between optimising and satisficing 
movement strategies throughout the 
breeding season
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F IGURE  7  (a) Hourly Tb for individual 
#11885 (orange), a real sleepy lizard 
showing active movement and individual 
#11533 (blue), a real sleepy lizard 
showing passive movement, throughout 
the breeding season. (b) Hourly Tb for a 
simulated optimising animal (orange) and 
satisficing animal (blue). (c) Example of daily 
Tb profile for the same optimising animal 
during the hottest (orange curve) and 
coldest (blue curve) day of the breeding 
season. Dashed horizontal lines show 
thermal limits of activity period (26–35°C) 
and black graphics atop (a) represents the 
sun cycle
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extremes when foraging than when retreating to refuges. Our mod-
elling framework directly links these time costs to food availability in 
the model landscape and to metabolism via satiation, i.e. a gut fullness 
threshold imposing hunger. Therefore, we can naturally capture how 
changes in Tb affect gut emptying rates via metabolic rate to drive 
foraging opportunities and thus movement decisions. By connecting 
the web of metabolic and heat pathways of the animal (Figure 1; see 
Figure 2 in Kearney et al., 2010), the IDEBM model shows the feed-
backs in time and space between the internal energetics of the animal 
and external environmental change of the habitat form inescapable, 
interacting constraints. From these interacting constraints arises com-
plex conditional movement behaviour from simple rules.

We used theory- based estimates of direct movement costs to 
represent the metabolic investment of movement between differ-
ent strategies of the sleepy lizard to further interpret differences in 
minimum (satisficing) and maximum (optimising) movement potential. 
On average, movement for satisficing animals cost less (Figure 6a), 
allowing for more metabolic input into structural volume, storage, 
converted food mass and subsequently reproductive mass (Figure 6b). 
Despite affording increased space use and more freedom when find-
ing resources, non- essential movement, i.e. socialising, for optimising 
animals yielded a lower, albeit marginal, metabolic return than satisfic-
ing ones after the breeding season across all mass properties. Coupled 
with the home range overlap of optimising and wild animals (Figure 3), 
this suggests real sleepy lizards may indeed invest substantial amounts 
energy into movement with little nutritional return. This is supported 
by field observations that male sleepy lizards in particular spend large 
amounts of time mate guarding in addition to foraging (Godfrey, 
Bradley, Sih, & Bull, 2012; Kerr & Bull, 2006).

Movement is a costly process (Wilson et al., 2013, 2014; Wilson, 
Husak, Halsey, & Clemente, 2015) and difficult to generalise across 
models due to the complexity of how metabolic pathways allocate 
energy and mass to different metabolic functions. This complexity 
means movement models often apply ad hoc or field- based move-
ment costs (Ayllón et al., 2016; Buchmann, Schurr,  Nathan, & Jeltsch, 
2011; Kułakowska et al., 2014; Louzao, Wiegand, Bartumeus, & 
Weimerskirch, 2014) and thus can overlook or ignore key physical 
processes essential to energy budget estimates, such as how meta-
bolic rates depend on temperature. We can gain a more structured 
approach to the problem of integrating movement costs with energy 
budgets by incorporating these costs into formal metabolic theory. 
DEB theory applies a metabolic hierarchy to energy allocation via 
the κ rule (Table 1), where energy diverges to the κ branch to sup-
ply somatic maintenance and growth (Equation 2 in Appendix 3 in 
Supporting information) and the remainder to the 1 – κ branch for 
reproduction (Equations 7 and 8 in Appendix 3 in Supporting infor-
mation). Movement costs could indeed be added to either of these 
branches, but they are most often considered part of somatic main-
tenance costs (Kooijman, 2010), as per our simulations. In this case, 
movement costs compete directly with growth. Because we modelled 
animals that were near to maximum size, and thus very little energy 
was being allocated to growth, the costs were mostly manifested as 
minor reductions in body condition. For juveniles, where a greater 

proportion of this energy flow is allocated to growth, the fitness costs 
of movement would be manifested as reduced growth rate. An al-
ternative would be to impose locomotion costs on the 1 – κ branch. 
Here, costs for adults would manifest as reduced size- specific repro-
ductive output, while costs for juveniles would be an increased time 
to sexual maturity. A mixed strategy is also possible, where a portion 
of movement costs come from the κ branch and some from the 1 – 
κ branch. Indeed, the extra movement costs of male sleepy lizards 
(Kerr & Bull, 2006) could equate to the energy females allocate to 
offspring. Exploring these various ways of imposing movement costs, 
and thus movement decisions in space and time, under the IDEBM 
framework is an interesting avenue for future research.

Rapidly changing thermal environments from climate change may 
reduce activity time and consequently increase localised extinction 
risk (Sinervo et al., 2010). However, animals experience microclimates 
that vary substantially within and between habitats, on daily cycles 
(Figure 7), in their spatial patterns (Sears et al., 2011), and in proximity 
to resources (Kearney, 2013). We found rates of Tb change of sim-
ulated satisficing and optimising strategies were similar to observed 
passive and active movement between the morning (06.00–12.00) 
and afternoon (12.00–18.00) hours of the day (Figure S2), suggesting 
that animals incur similar thermoregulatory time costs when exposed 
to morning and afternoon thermal extremes. For animals to tolerate 
these costs and exploit available activity time depends on basic individ-
ual differences, such as body mass, food requirements, and movement 
strategy (Huey & Pianka, 1981; Kearney & Porter, 2004; Stevenson, 
1985a). For example, small, opportunistic foragers, such as Sceloporus 
serrifer, require more time exposed to thermal extremes to satisfy 
foraging needs than larger and hardier omnivorous foragers, such as 
T. rugosa. Therefore, a smaller body mass runs a higher risk of over-
heating and thus restricted dispersal ability (Kearney & Porter, 2004; 
Sinervo et al., 2010). Indeed, high rates of Tb change on fine scales 
impose direct physical limits to animals in space due to the trade- offs 
between choosing to move and the distance required to escape envi-
ronmental extremes (Sears et al., 2011, 2016); this in turn can restrict 
movement patterns to localised areas in space, thus limiting available 
activity time (Grant & Dunham, 1990). Therefore, the challenge for 
the animal is to balance its movement trade- offs, i.e. the frequency at 
which they emerge and retreat from and to shelter and use different 
movement strategies (Figure 4), against available and actual activity 
time as changing weather shifts activity windows throughout the day 
and year (Kearney et al., 2009; Stevenson, 1985b; Vickers et al., 2011).

Ideally, a model capturing these detailed individual responses to 
varying environmental processes ought to be general and applied to 
biologically relevant scales (Sears & Angilletta, 2015). The IDEBM 
model achieves these ideals using general principles of energy and 
mass exchange, realistic microclimatic inputs, and basic movement 
rules in a spatially explicit context (Figure 1), addressing the need for 
more detailed physiology- based movement models in space (Sears 
et al., 2016). This provides a general, bottom- up framework to cap-
ture different movement motivations and highlights the importance 
of attributing individual- based physiological constraints to movement 
when exploring fine scale patch to home range behaviour (Kearney 
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& Porter, 2009; Martin, Calenge, Quenette,  & Allainé, 2008; Sears & 
Angilletta, 2015; Sears et al., 2016). Populating the model landscape 
with realistic fine- scale microclimate inputs generates detailed and 
varied environmental scenarios. In our simulations, changing resource 
distribution had no effect on home range size between simulated 
movement strategies (Figure S1). However, using LIDAR data of the 
study site to configure resource (food and shade) distribution in space 
(see insets of Figure S1), the model landscape can simulate realistic 
changes in habitat structure expected in nature, such as the boom 
and bust of shady vegetation following rainfall and fire events. This 
captures movement and behavioural responses to habitat change by 
allowing users to simulate how environmental disturbances (external 
cues) influence individual decisions (internal cues).

By combining both internal and external movement drivers, the 
IDEBM model highlights how food and shade patterns determine 
suitable movement corridors and the frequency at which activity win-
dows occur and persist based on physiology- driven movement limits. 
Simulations of home range behaviour from physiology- based esti-
mates shows that the relationship between potential home range pat-
terns and spatial distances among food and refuge sites is subtle, but 
crucial (Leu, Bashford, Kappeler, & Bull, 2010). We need a solid, bot-
tom- up understanding of this relationship to interpret shade- seeking 
behaviour in specific habitat contexts (Belliure, Carrascal, & Díaz, 
1996; Kearney et al., 2009) or predict home ranges when resources 
vary in time and space (Figure 3; Tracy & Christian, 1986; Mitchell & 
Powell, 2004; Moorcroft, Lewis, & Crabtree, 2006; Börger, Dalziel, & 
Fryxell, 2008). The time animals spend within various activity states 
(e.g. Searching, Feeding, or Resting) can shift their activity 
patterns as habitat conditions change. For example, a switch in the 
frequency of time spent in different states depends on food avail-
ability and temperature; after depleting local food sources, animals 
can increase their searching effort (measured as space use) assuming 
that suitable conditions, such as more foraging hours in the later and 
warmer breeding season, permit further foraging (Sears et al., 2016; 
Sinervo et al., 2010). We show optimising animals searched and for-
aged more in the later and warmer breeding season (Figure 4a–b). 
Further, despite a similar gut fullness threshold for foraging, satis-
ficing animals in our simulations still only fed less than half as much 
as optimising animals. Therefore, optimising animals more often 
transitioned and spent more time overall transitioning among activ-
ities, suggesting habitat conditions during this time of year permit-
ted increased searching and foraging (Figure 4a–b), but still induced 
movement trade- offs by forcing them to regulate their internal state, 
i.e. shuttling in and out of shade while trying to forage (Figure 4d). 
Optimising animals, however, displaced further throughout the land-
scape when feeding, despite spending more time resting and search-
ing than feeding. This implies that, in the short term, the surplus time 
for optimising animals to move freely during available activity hours 
meant locating food patches or at least settling in areas where food 
was more abundant, such as shade adjacent to lots of food, was easier 
(Figure 5). In the long term, however, this benefit yielded little en-
ergetic return (Figure 6b). These results also suggest that directional 
(gravitating towards food) over correlated random movement is more 

useful for negotiating landscapes when animals are constrained by 
physiological limits to movement (Fronhofer, Hovestadt, & Poethke, 
2013), such as thermal limits and movement costs, including turn 
costs (Wilson et al., 2013). Building movement models around differ-
ent behavioural states fills necessary biological gaps in model devel-
opment and addresses inherent model fitting issues across varying 
time scales (Morales, Haydon, Frair, Holsinger, & Fryxell, 2004). The 
IDEBM model adds to these important modelling criteria by incor-
porating a theoretical basis to the mechanisms driving movement, 
thereby providing a generic framework to address movement costs 
and motivations across scales.

11  | LIMITATIONS AND FUTURE WORK

Feedback delays between the rate at which activity states update 
and the scale of the decision- making model time steps could influ-
ence overall activity budgets and thus space use over time for each 
activity state. This is a potential artefact of the model update proce-
dures that requires further fine tuning. The similar home range sizes 
of animals under sparse and dense resource distributions was surpris-
ing (Figure S1). Future work could consider simulating habitats with 
larger thermal extremes (Blouin- Demers & Nadeau, 2005; Christian 
& Weavers, 1996), different topography (Sears et al., 2011) and eco-
clines (Sunday et al., 2014), or similar resource distributions, but under 
increased warming scenarios. Our aim here is to deconstruct how the 
subtlety of habitat arrangement influences displacement and home 
range behaviour.

Because the model assumes 50% shade levels and no burrow-
ing, some simulated animals reached unnaturally high Tb on the 
hottest day of the season (Figure 7c). Future model configurations 
incorporating varying shade levels and perhaps burrowing be-
haviour would refine Tb outputs during resting and shade- seeking 
behaviour. Further work dissecting how the consequences of di-
rect movement costs, including turn costs (Wilson et al., 2013), 
change throughout the animal lifecycle is also needed. Our study 
species is long- lived and slow to mature. By simulating longer time 
periods, the life- history consequences of movement costs will be-
come more apparent for this species, including how energy allo-
cated among maintenance, growth, and movement shapes juvenile 
dispersal periods and gender differences in movement for females 
encumbered by the heavy metabolic demands of reproductive egg 
investment. We can also use the interacting internal and external 
drivers of the model to summarise basal metabolic rates of endo-
therms and thus use a similar approach to how internal energy and 
water costs constrain their movement decisions (Kearney & Porter, 
2009; Porter, Munger, Stewart, Budaraju, & Jaeger, 1994). Finally, 
the physiology- driven mechanics of the model opens opportunities 
to explore within- species behaviour differences, including territori-
ality and interacting individuals (Leu, Farine, Wey, Sih, & Bull, 2016; 
Spiegel, Leu, Bull, & Sih,  2017; Spiegel et al., 2016), as well as scal-
ing to population- level responses, such as using GPS data of move-
ment rates to forecast range expansion of invasive species fronts, 
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e.g. cane toad dispersal (Phillips, Brown, Greenlees, Webb, & Shine, 
2007).

12  | CONCLUSIONS

Here, we presented an individual- based movement model built on gen-
eral biophysical and metabolic principles of the individual animal and its 
direct relationship with food and weather in space and time. By explic-
itly capturing the physical limits driving movement, the IDEBM model 
presents a realistic and flexible approach for predicting current and 
future movement and home range activity under changing food and 
weather. This flexibility also makes the model robust to different time 
and space scales, so animals can experience different weather and habi-
tats throughout the year. That is, we can refine how we interpret behav-
ioural limits necessary for survival across scales and the physiological 
and ecological limits under which animals persist over their lifetime. The 
theory- driven estimates of movement costs in the model represents a 
reliable physiological understanding of movement and bottom- up fore-
casting of fine scale environmental change on habitat use and interpret-
ing the ecological niche. Using a general, first principles approach to 
animal movement, the IDEBM model is thus suitable for tackling a wide 
range of questions in ecology and behaviour to improve our understand-
ing of how spatial patterns of resources and microclimates influence 
complex behaviour, especially in the context of environmental change.
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