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A B S T R A C T

Traffic congestion threats the growth and vitality of cities. Policy measures like punishments or
rewards often fail to create a long term remedy. The rise of Information and Communication
Technologies (ICT) enable provision of travel information through advanced traveler information
systems (ATIS). Current ATIS based on shortest path routing might expedite traffic to converge
towards the suboptimal User Equilibrium (UE) state. We consider that ATIS can persuade drivers
to cooperate, pushing the road network in the long run towards the System Optimum (SO) in-
stead. We develop an agent based model that simulates day-to-day evolution of road traffic on a
simple binary road network, where the behavior of agents is reinforced by their previous ex-
periences. Scenarios are generated based on various network designs, information re-
commendation allocations and incentive mechanisms and tested regarding efficiency, stability
and equity criteria. Results show that agents learn to cooperate without incentives, but this is
highly sensitive to the type of recommendation allocation and network-specific design.
Punishment or rewards are useful incentives, especially when cooperation between agents re-
quires them to change behavior against their natural tendencies. The resulting system optimal
states are to most parts efficient, stable and not least equitable. The implications for future ATIS
design and operations are further discussed.

1. Introduction

More than 53% of humanity (74% in Europe) lives in cities, and this figure will only increase, especially in developing and transition
economies (World Bank, 2016). People are attracted to cities because of the benefits of agglomeration – access to a wide range of services
and employment compared to rural areas. However, it is becoming harder to maintain road traffic in smooth working order. Traffic
congestion is a sign of a city’s vitality, but it also incurs negative externalities, such as time losses and delays, air pollution, noise and
decreasing safety (Mayeres et al., 1996). Non-recurring conditions, like accidents or bad weather, further contribute to exacerbating con-
gestion on the roads (Schrank et al., 2012). As more people are attracted to cities, future traffic congestion levels are unlikely to decrease.

Traffic and transport engineers traditionally believed that increasing road capacity would solve congestion problems. However,
road-space expansion is fiscally costly and strengthens car-dependency while weakening public transport attractiveness and in the
long run increasing urban sprawl (Goodwin, 1996; Guiliano, 1995). Public transport, though more environmentally sustainable than
car travel is not able to provide services to anyone to anywhere and anytime within acceptable operational and budget thresholds.
Evidence suggests that a notable share of driving is by choice (Handy et al., 2005), while car image retains strong symbolic and
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affective values (Steg, 2005). Thus, cars continue to be the most popular mode of transport.
While private cars maximize personal mobility, they remain costly from a social viewpoint. Thus, similar to Hardin’s ‘Tragedy of

the Commons’ (Hardin, 1968), we can claim a “social mobility dilemma” - too many cars on too little road space, ending up in
clogged traffic. Different strategies have attempted to discourage car travel to solve this social mobility dilemma. Bamberg and
Schmidt (2003) distinguish between soft strategies that focus primarily on influencing travelers’ attitudes, perceptions and moti-
vations in order to change behavior and hard ones aiming at influencing behavior by changing the physical, organizational or
financial conditions of car travel.

Hard strategies like road pricing are based on microeconomic foundations involving negative economic incentives that are de-
signed to internalize the marginal costs of congestion that car users naturally overlook (Rouwendal and Verhoef, 2006; Vickrey,
1969). However, the lessons learned from the implementation of congestion charges, in places like Singapore, Stockholm and London
confirm that to be effective pricing interventions have to be very strong. For example, being initially high, the congestion charge in
London has further spiked considerably since its inception a decade ago (Timms, 2013). Unsurprisingly, congestion charging remains
controversial regarding social equity and fairness, as well as public and political acceptability in liberal democratic societies (Eriksson
et al., 2006; Viegas, 2001). Research based on cognitive psychology theories (Geller, 1989; Kahneman and Tversky, 1984) suggests
that positive incentives – or rewards – can efficiently substitute charging (Ettema et al., 2010). However, Ben-Elia and Ettema (2011)
asserted that rewards encourage mainly temporal shifts in car use and can be regarded as an unfair and costly subsidy of car users.
Unsurprisingly, rewards have mainly been implemented as temporary relief strategies (e.g. for planned road closures in the Neth-
erlands), rather than to be maintained in perpetuity like congestion charges.

With the proliferation of information and communications technologies (ICT), soft strategies aimed at voluntary behavior changes
based on the provision of travel information, have become increasingly popular (Chorus et al., 2006; Davies, 2012). Travelers can
thus make better mobility choice, that will likely improve the level of service on the entire transport system (Ettema and
Timmermans, 2006; Levinson, 2003). In reality information is likely providing individual travelers with an illusionary sense of self-
control over ambiguous travel conditions (Kemel and Paraschiv, 2013), while their perceived trust in travel information remains
relatively high (Ben-Elia et al., 2013, 2008; Ben-Elia and Shiftan, 2010). Consequently, many travelers are developing a large degree
of dependence on information for their everyday mobility decisions.

More importantly, the collective outcome of information dependency seems to expedite traffic to converge towards the sub-
optimal state of User Equilibrium (UE). UE occurs when the trip time distribution is steady and travelers cannot improve their travel
time by switching routes (Arnott et al., 1996, 1993, 1991; Emmerink et al., 1998, 1995a, 1995b). Traffic theory asserts that UE is a
collective outcome of the non-coordinated choices of fully informed agents competing for shortest paths on a decentralized network
of limited capacity (Arnott et al., 1993). With the proliferation of real-time crowdsourced routing apps (like Waze©), car traffic could
be approaching a state of User Equilibrium more than ever before. Several experimental studies Lu et al. (2011, 2014), Selten et al.,
2007) attest that fuller information brings about a social outcome that is similar if not exactly replicating UE. Moreover, some
researchers claim that real-time navigation applications are leading to a state possibly worse than UE (Varga, 2014a). Depending on
the network design, traffic congestion in a UE state might be worse off for travelers, in particular when all routes are adversely
affected by the same global factor, such as bad weather (Lindsey et al., 2014).

Traffic theory relates the first principle of Wardrop (1952) as a working assumption that corresponds analytically to UE. Various
discrete choice models for explaining route-choice were developed in order to extend Wardrop's first principle (for a review see
Prashker and Bekhor (2004) as well as in multiple multiplayer economic experiments (e.g. Rapoport et al., 2014, 2009; Selten et al.,
2007). However, it is actually Wardrop's second principle that considers a secondary state, where the aggregate travel times (or costs)
are minimized. This system-optimum (SO) remains elusive - merely a theoretical concept in the eyes of many transportation re-
searchers and practitioners. Achieving this SO has been regarded mostly as impractical as apart for certain corner solutions, a road
network hardly ever arrives naturally at a global optimum without resorting back to hard policy strategies such as fines and tolls
(Rothengatter, 1982). However, simulations and experiments on SO-based traffic assignment in various road networks and regarding
the detrimental effects of pre-trip information on network performance illustrate the importance of bridging the gap between the
aggregate travel time in UE and in SO (Jahn et al., 2005; Rapoport et al., 2014).

Nowadays, the sharing economy is allowing cooperation to emerge between large number of people to collaboratively use re-
sources in a way that minimizes the cost of both consumption and coordination, using ICT as a medium (Kaplan and Haenlein, 2010).
Sharing economy implementations from the field of transportation include ridesharing and carsharing that revolve around sharing
rivalrous private goods i.e. the consumption of one prevents or disrupts the consumption of the other, and excludable – the owners of
the good can prevent others from consuming it. In contrast, the reality of a road networks is of common-pool goods. While a road
network is rivalrous, as the addition of more travelers influences its performance, it is not excludable – as it is impossible to prevent
travelers from using it (unless physically barred). To bring the sharing economy principles to road networks and improve their
performance, a behavioral approach is needed whereby the road network capacity is cooperatively shared in an optimal way.

As further described in Section 2, cooperation in large groups of mostly anonymous and rivalrous members (like car drivers)
hardly ever emerges spontaneously, we therefore suggest an advanced traveler information systems (ATIS) concept for supplying
fairly system-optimal routing information that could persuade and enable drivers to cooperate on the network’s usage (e.g. by
learning to taking turns on different possible routes). The ability to allow cooperation to emerge, the quality of the possible day-to-
day traffic states and the potential dynamics such an ATIS concept might generate are the main aims of our paper. As this idea has no
previous comparative result, we decided to focus and therefore tested our approach on a simplified road network that includes only
four nodes and four arcs, while generalizations for more elaborate, directed and decentralized networks are left for future research.
The rest of the paper is organized as follows: Section 2 presents a theoretical and methodological literature review on cooperation and
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its relation to the system optimum; Section 3 describes the methods applied in our study including the day-to-day agent-based model
and ATIS design, Section 4 reports the results of the agent-based simulation runs to test the performance of the ATIS for efficiency,
stability and equity; and Section 5 presents a discussion and conclusions.

2. Literature review

We divide our overview to theoretical aspects and methodological ones related to the emergence of cooperation in decentralized
networks.

2.1. Theoretical aspects

Traffic theory and Game Theory have several parallel concepts: UE is similar to a Nash equilibrium (Nash, 1951), a state where no
player has any incentive to deviate from her chosen strategy. SO is similar to Kaldor-Hicks efficiency – a measure where the aggregate
utility of all players is maximized. Dawes (1980) identifies these two features as the generators of social dilemmas i.e. the utility of all
players is better when they all cooperate than if all defect, and the individual utility from defecting is always higher than cooperating.
This logic explains why the natural behavior of travelers brings the network to a stable state of UE but rarely without hard inter-
ventions to SO.

Stark (2010) refines the concept of partial cooperation, which enables the system to reach an optimum by inducing some of the
players to act cooperatively, while other players choose the rational action – to defect. This concept is best explained using the route-
choice game, shown in Table 1. This 2× 2 game considers a fast route and a slow route that are sensitive to congestion. While the fast
route is always better than the slow route for the individual player, and hence, UE occurs when both players choose it, the social
optimum occurs when one player is on the fast route and the other is on the slow one. Hence, in a single game the chance that rational
players will reach is hypothesized to be very small. Conversely, partial cooperation can become the game’s equilibrium if it is
repeated, whereby the players learn to cooperate by taking turns and alternately switching between the faster and slower routes, and
thus sharing fairly the time savings between themselves.

Helbing et al. (2005) tested partial cooperation in an economic experiment that included a route-choice game carried out first
between two and then between four players. The players were informed that they would be able to achieve maximal time savings by
coordinating their actions (i.e. a context awareness signal). The results showed that players learn to coordinate their actions after a
certain adaptation period. These results are further backed by the studies by Browning and Colman (2004) and Colman and Browning
(2009), who use a genetic algorithm simulation to investigate the formation of strategies in four different games. Helbing et al. (2005)
realized that in games with asymmetric equilibrium points, coordinated alternating reciprocity can evolve without communication
between the players. However, even with participating four players and following the findings of Boyd and Richerson (1988) that it is
far more difficult for cooperation to emerge as group size increases, it seems that day-to-day learning, though necessary, is not
sufficient to encourage players to cooperate in large numbers over a long period of time.

Generalization of the previous studies to N-players is intractable, as demonstrated by Zhao et al. (2008) in the battle of the sexes
game. Nonetheless, we argue that the possibility to coordinate players' actions, and bring about the emergence of cooperation in large
groups, could be implemented within the scope of ATIS technology. Several conceptual approaches are possible here: A one shot
approach based on the correlated equilibrium principles (Aumann, 1974). A second approach is the online routing approach sug-
gested by Varga (2014a, 2014b) to utilize the available road resources in real-time. A third approach considers a day-to-day dynamic
traffic framework (Cantarella and Cascetta, 1995; Cascetta, 1989). The one shot setting ignores learning and long run formation of
behavior, while the online routing approach, overlooks agents’ freedom of choice and their consequent adaptive learning over time.
Therefore, in this study we adopt the day-to-day approach.

The parallelization of the concept of SO in the route choice game and in complex road networks is not intuitive as the computation
process of SO in complex road networks is computationally expensive, contrary to the simplicity of the route-choice game, where the
road network has only two routes and a predefined number of road users. The unit of flow in question is affected by this difference –
while in the simple route choice game one can relate to each player as a single unit of flow, in complex road network we do not relate
to the players individually, but as continuous streams of flow. This has an effect over the optimization method – while in simple road
network linear optimization is feasible, in complex road networks this optimization method is unavailable. It is also important to note
that each agent is in fact a unit of flow therefore, and different from classical traffic assignment optimization approaches, integer
programming is also a possible optimization approach for more elaborate networks. Moreover, multiple SOs can possibly co-exist in a

Table 1
The Route Choice Game. Assuming T > P > S > R, Nash equilibrium is where both players choose the defection strategy
(Route 2), and the aggregate score is 2*p, which is also the solution. The system optimum (S+T)/2 occurs when players take
turns, choosing route 1 and 2 alternately.

Player 2

Route 1 Route 2

Player 1 Route 1 R,R S,T
Route 2 T,S P,P

I. Klein et al. Transportation Research Part C 86 (2018) 183–201

185



complex road network, a fact that raises the relevance of the fairness concept – some SO states will be fairer than others, in the sense
that the inequality in travel time will be larger in some SO states than in others. Balancing between efficiency and fairness is one way
of solving this issue (Jahn et al., 2005; Zhu and Ukkusuri, 2017). Nonetheless, adopting the day-to-day approach is a different
solution to achieving fairness – the allocation of resources may not necessary be fair in a certain one-shot incident, but across a longer
period of time resources will be allocated in a fair and stable way.

Our idea is based on prescriptive information delivered to drivers in the form of daily route recommendations that are essentially
individually tailored recommendations aimed at persuading them on each day to choose a route based on an overall policy whereby if
all drivers cooperate, the network will likely reach a stable and more importantly fair system optimum. This is similar to the work of
Agogino and Tumer (2008), who explore the role of rewards as a part of agent's learning in dynamic and stochastic domains.
However, we also exploit two key technological behavioral and concepts: Persuasive Technology and Choice Architecture. Persuasive
Technology (Fogg, 2002) harnesses technological mediums to bring a change to human habitual behavior. Choice architecture
(Thaler and Sunstein (2008), considers the use of nudges that are small features in the choice environment that highlight the better
(e.g. healthier, safer) alternatives without restricting the consumer’s freedom of choice and without changing the physical en-
vironment or the choice set. Avineri and Waygood (2013) demonstrate an application of nudges to motivate carbon reducing travel
options like bicycling and public transit. Thus by implementing route recommendations as a type of nudge, drivers might be per-
suaded and learn to cooperate via an SO-ATIS application.

2.2. Methodological aspects

Dixit et al. (2015, pp. 2-3) suggest that multiplayer economic experiments seem suitable for the examination of social mobility
dilemmas, such as traffic congestion. Experiments could well overcome the pitfall of hypothetical bias – participants actively deal
with scenarios which have implication over their direct utility, and forced to reveal their preferences, as opposed to participants who
are just stating their preferences with no strings attached. However, as human decision making behavior is often based on different
sets of heuristics (for example: affect; Finucane et al., 2000, availability; Gilovich et al., 2002, anchoring; Tversky and Kahneman,
1974, to name a few), to understand complexity driven by the actions of bounded-rational human players, it may be better to initially
simulate the plausible system dynamics using programmable agents, thus focusing future research on factors which likely will have a
substantial effects over network performance while limiting the number of costly treatments required to be conducted with human
participants.

Simulation techniques are often used to represent the resulting dynamics of the collective outcomes of individual human decision
makers (Meijer and Hofstede, 2003). Agent-based models (ABM) are well suited to simulating such dynamics in transportation
systems, e.g., the Multi-Agent Transportation Simulation (MATSim) environment for simulating transportation networks (Balmer and
Rieser, 2009). The ABM consists of a collection of heterogeneous agents, the rules governing them, and the rules of agents' inter-
actions with the environment they live in (Shalizi, 2006). As such, ABM is a bottom-up method for capturing possible macroscopic
regularities (Epstein, 1999). In addition, ABM is suited for detailed hypothesis testing as discussed by Helbing and Balietti (2013).

ABM simulations are quite commonly used in transportation studies (see Bazzan and Klügl (2014) for a review). Shang et al.
(2017) explore the effect of information percolation (the spread of information) using a day-to-day ABM, and find that percolation
and the convergence to UE are positively correlated. Wei et al. (2016) also use day-to-day ABM to explore the effect of social
interaction on network dynamics and find that while the number of interactions a traveler encounters influences her route choice
strategy, the evolution of the aggregate network flow is not much affected. He et al. (2013) test the performance of route guidance
strategies on an asymmetric two-route traffic network using a time step ABM, and find that the mean velocity feedback strategy
(choosing the route with the lower mean velocity) is the only one that manages to equalize travel time on both routes. Wahle et al.
(2002) uses time step simulation to study the impact of different types of travel information over two-route traffic network scenario,
and discover that information about route density enhances network performance.

To the best of our knowledge, no ABM for simulating driver cooperation using ATIS has yet been developed neither for day-to-day
nor real-time traffic evolution. The exception is Levy and Ben-Elia (2016), who consider a simple binary network where agents are
provided with feedback of the daily network travel times and respond by switching routes when their last action increased it. Their
surprising result is a stable and equitable system optimum (i.e. all agents contribute similarly to the common pool). However, given
that their approach requires a strong assumption of altruism (or at least partially), it is not inconceivable to consider that this would
be quite difficult to maintain with human drivers. Therefore, it remains an uncharted territory if voluntary route recommendations
(as a soft policy) could change driver behavior from competition to cooperation without the need to work against human nature to
behave in a self-interested manner and without the need to resort to hard policies like punishments and rewards.

3. Methods

We develop an agent-based model for studying the emergent day-to-day traffic states on a simple road network with partial supply
of information. The model is comprised of five layers: temporal dimension, network design, agent behavior, routing policies allo-
cations and incentive mechanisms. We elaborate on each one of these components below.

3.1. Temporal dimension

As the concept of partial cooperation involves a repeated-like game, to examine whether the system actually converges in the long
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run to an optimum, the model in question should be analyzed according to the framework of day-to-day traffic dynamics (e.g.
Cantarella and Cascetta, 1995; Cascetta, 1989). To verify the robustness of agent behavior, the simulation first entails a phase where
no route recommendations are given, so that agents do not pre-adapt to the recommendations. We hypothesize the system will
converge to UE at this phase. Subsequently, a second phase starts where recommendations are given to the agents, and their behavior
is then hypothesized to adapt somehow to them.

3.2. Network design

The road network is formally represented by a directed graph G= (V, E) with vertex (i.e. node) set V (V∈ {“origin”, “throughA”,
“throughB”, “destination”}) and edge (i.e. arc or link) set E (E∈ {“origin”→ “throughA”, “origin”→ “throughB”, “throughA”→
“destination”, “throughB”→ “destination”}). G, therefore has a path (i.e. route) set P E ∈ {“origin”→ “throughA”→ “destination”,
“origin”→ “throughB”→ “destination”}). While it is possible to expand the network design into a more elaborate directional graph
with multiple nodes and edges that include independent link costs, here we focus on a simplified road network to investigate core
factors that influence the sensitivity of cooperation and emergence of SO. Congestion on path set P is derived directly from the agents'
choices, as they compete over road capacity. Competition means dependency of the travel time (Ti) on route i (i= A, B) on the
number of travelers taking it (Ni) using a monotonously increasing volume-delay-function (VDF) of the form = + ⩾T Nα β ;α,β,δ 0i i i i

δ ,
where: α is free-flow travel time, β is the congestion effect, and δ is the power effect. We consider mainly the effects of recurring
congestion and do not explicitly account for the influence of non-recurring incidents on traffic buildup. While this assumption can be
later relaxed, it is also not entirely imaginary in a future where road networks will be populated by intelligent autonomous vehicles
that are dramatically expected to reduce both the number and severity of road accidents (Fagnant and Kockelman, 2015). Let NA

SO be
the share of drivers on route A under the system optimum (SO) found by optimizing the aggregate travel time as a function of NA i.e.

∗ + ∗ ⩾ + =min T N T N s t N N N N D{ }; . : , 0 andA A B B A B A B , where D is the total number of agents departing from the origin vertex. Let
NA

UE be the share of drivers on route A under the unique user equilibrium (UE) found for the value of NA we obtain TA= TB. Naturally,
multiple UE might exist in more elaborated networks (e.g., Schulz and Stier-Moses, 2003, 2006).

It is important to note that route recommendations that work in one network design might not necessarily work in another, due to
the diverse features each network has. In order to examine the efficiency of route recommendations in different topologies of road
networks, two attributes of road networks can be used as a scale: the “Price of Anarchy” and the “Share of Agents on the Faster Route
under the System-Optimum“ (AFRSO). The Price of Anarchy, as defined by Roughgarden (2005) and formulated in the road networks
context by Mak and Rapoport (2013), is the ratio between the aggregate cost of the system under the worst UE (when travel costs on
all routes are equal) and the aggregate cost of the system under SO (when the overall travel costs are minimized). In our case, the
costs are the agents’ experiential travel times. As that price of anarchy is influenced by the total flow of agents populating the system
(O’Hare et al., 2016) which for consistency purposes we wish to keep constant, we chose to make use of the AFRSO instead for the
comparisons between networks. Similarly, we use the share of agents on the faster route under UE – AFRUE for the same purpose.
Under SO, one route almost always has a shorter travel time than the other depending on the specific network design parameters, and
AFRSO will also change accordingly. As AFRSO increases, more agents are required to use the faster route in SO. Therefore the agents
will likely experience lower travel times more often and we hypothesize that their propensity to cooperate by complying with route
recommendations will also likely increase.

While the investigated network is simple in a sense that it emphasizes the steady flow of the network, as opposed to intermittent
and transient flow more reminiscent of microsimulation models that complicate the vehicle routing problem, we consider this ne-
cessary in order to reach some basic comprehension as to the dynamic quality of SO-targeted route recommendations to bring about
the emergence of cooperation. Naturally, many modifications to this model are possible in future research with more elaborate car
following models that account for acceleration and deceleration of vehicle dynamics. We return to this issue when we elaborate on
the simulation procedures.

3.3. Agent behavior

We assume that the agents’ decision making process is based on two strategies: exploration and exploitation. These strategies have
been well-established in the psychological literature regarding reinforced learning (Hills et al., 2015). Exploration suggests that once
in several trials, an alternative from the choice set is randomly chosen, based on a predefined probability function. Exploitation, in
contrast, is based on a maximization strategy where the agents assess the utility of the different alternatives based on a reinforced
learning process that is derived from their past experiences. This is similar to the studies by Horowitz (1984) and Wahle et al. (2002)
on learning in a simple binary network. Two cognitive models for exploitation are worth mentioning: Total Recall and Sampling and
Weighting.

Total Recall (TR) can be considered as a simplistic machine learning model. Agents behave similarly to robots capable of perfectly
recording all the outcomes (gains and losses) of their previous choices. Accordingly, the agents evaluate the mean utility of each
alternative, and choose the one with the highest utility. In essence TR emulates a fully rational choice process. In contrast, The
Sampling and Weighting (SAW) model (Erev et al., 2010) is a generalization of the Total Recall model. We chose it to model agent
behavior due to its successful predictions in market entry games. Reward shaping (e.g. Babes et al., 2008) is an additional interesting
model for formulating agent behavior. Regarding the different alternatives, the SAW model assumes agents consider both their short-
term memory that reflects the outcomes of the most recent experiences, and long-term memory that takes into account the entire
range of the agent's experiences. These memory components are weighted using a weighting parameter. Compared to TR, SAW can be
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attributed to a bounded-rational choice process. The SAW utility function is described in Equation 1.
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where Uj is the average utility when choosing alternative j, Cj is the travel cost on alternative j, kj indexes the trips the agent travelled
on alternative j out of t trips, W is the long/short term memory weighting parameter, and δ is the number of recent trips drawn from
the agent’s long-term memory.

3.4. Route recommendations allocation policies

A key problem of traffic dynamics is that optimality conditions require the agents often choose in contradiction to their natural
heuristics mentioned above. We consider the provision of route recommendations to the agents as a possible solution to the afore-
mentioned problem by providing each agent with a daily personalized route recommendation (i.e. prescriptive information), de-
signed in such a way that if all agents were to comply with such guidance, cooperation would emerge and the network will be at a
stable SO state. Helbing et al. (2005) first conceived this idea, but it was never tested analytically or empirically.

We assume that agents are capable of gradually learning to cooperate by complying to the recommendations using two additional
memory slots – travel time experienced when complying with the recommendations, and travel time experienced when not com-
plying. When we translate these memory slots into ATIS concepts, we give the agents an indicator to the utility of the re-
commendation. This mechanism is a prerequisite in order that the agents will learn to comply with the ATIS while human memory is
different due to other traits such as forgetfulness, recency, etc. Regret minimizing behavior – the notion of making decisions that
reduce future regret can also be considered here as shown by Blum et al. (2006) whereby in routing games regret minimizing
behavior converges to UE. However, our model differs from regret minimizing behavior because it includes two separate decision
planes – compliance to the recommendation and the actual route-choice. Compliance to the recommendation is not necessarily regret
minimizing. Box 1 depicts the algorithm we applied for agents’ decision making with recommendation adaptation.

While route recommendations are always provided to all agents, their allocations between the agents can vary. The efficiency of
the recommendation allocation process (i.e. allocation policy) is critical, as the perception of trust the agents have regarding them is
directly dependent on their own experience. If the allocation process is perceived as unreliable, agents would learn not to trust the
recommendations making the ATIS essentially ineffective. Furthermore, in SO, one route is more attractive than the other, and if the
allocations are distributed in a way that discriminates agents, the trust in them would further decrease.

Although many allocations are possible, we focus here on five specific ones. These allocations are sorted into two approaches:
Predefined-static and Adaptive-Dynamic. Predefined-static – The recommendation allocation is independent of the agent's actions or
characteristics, that is, the recommendations are allocated for all days in a predefined way. Two types of predefined allocations can
be considered: Random and Queue. Their operationalization is depicted in Fig. 1.

Under a random allocation, the number of agents that receive a recommendation to take a specific route remains constant.
However, the specific identity of those agents can change stochastically from one day to another. Although some agents end up
receiving a recommendation to take the slower route while others should take the faster route, the average chances of the better/
worse recommendation remains essentially equal across all agents, i.e. their expected value is kept identical.

Under the “Queue” allocation, agents receive the better/worse recommendations in sequential turns, based on the number of
times they received the better recommendation – if they received recommendations to take the faster route more times than others,

Box 1
Algorithm of agent's decision making process with recommendation adaptation.

If random number< exploration rate:

• Choose random route[A or B]

else:

• If Ucomplied>UNot Complied:
• Choose route according to recommendations system

• Else:
• If Ua>Ub:

• Choose route A
• Else if Ua<Ub:

• Choose route B
• Else:

• Choose random route[A or B]
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they will receive the worse recommendation, and vice versa – if they received it more times than others, they will receive the better
recommendation. Over time, all agents will have certainly received an equal number of better/worse recommendations. This process
is designed to mimic the turn-taking strategies in the route-choice game theoretical framework.

As opposed to predefined allocations, dynamic ones are not independent of the agents' actions or their characteristics. That is,
whether an agent receives a better or worse recommendation depends on its previous actions and attributes, as illustrated in Fig. 2. In
this sense, the recommendation system is recording the behavior of the agents and adapting to different traits the agents reveal. We
consider three approaches how this can take place: Justice, Anti-Merit, and the Reformer allocations.

Under the “Justice” allocation better recommendations are given each day to those agents whose average travel time is higher.
The rationale behind this allocation is the presumption that if the equality between the agents will increase, their trusts in the
recommendations will also increase, and consequently their propensity to comply with the recommendations. This allocation also
serves the agenda of Rawls (1999), by striving to create a more equitable set of travel times between the agents. Under the “Anti-
Merit” allocation, better recommendations are provided to those agents who least cooperate. At first glance, this mechanism seems
unfair as it is rewarding agents who do not comply with the recommendations. However, the rationale here is to increase those
agents' trust in the guidance system, encouraging them to learn to eventually cooperate. The “Reformer” allocation is similar to Anti-
Merit in its rationale, but differs in its implementation. Better recommendations are given to those agents whose difference between
the experienced travel time when not cooperating and the experienced travel time when complying is the largest. The connotation
“Reformer” implies this mechanism is designed to persuade agents in concordance with what they actually remember, thus in a sense
“reforming” them to maintain cooperating. Box 2 describes the algorithm applied to the recommendation allocation policy com-
putation.

3.5. Incentive mechanisms

Cooperation depends on whether the agents remember their previous actions. Rather than relying solely on the agents' own
learning, hard policy measures involving punishments and rewards – can be also incorporated if needed. Helbing et al. (2005)
postulated that the agents who do not cooperate and instead behave selfishly should pay society for the proportional time they added
to all other agents in the system. Conversely, cooperating agents should be compensated for their proportional increase in travel time.

Fig. 1. Hypothetical representation of “Random” and “Queue” allocations. The system optimum occurs when Na= 2 and Nb=4. In random, recommendations are
allocated to agents stochastically. In queue, recommendations are allocated to agents by their turn.

Fig. 2. Illustration of the operationalization of Dynamic allocations (SO occurs when Na= 2, Nb= 4, and route A is faster). The parameter according to which the
recommendations are allocated serve as an input layer, route recommendation recommendations are the output allocated according to the minimal values in the input
layer.
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Over time if agents cooperate and learn to trust the ATIS, the size and number of these transactions should decrease. We adopt this
idea into the operation of the ATIS, with some modifications: every noncompliance event is met with a penalty (punishment),
whereas compliance is met with a reward. This modification becomes crucial when dealing with more than two players, as there is
the possibility the faster route is underused and the aggregate travel-time could be even higher than UE.

Punishments are computed as the average time wasted by defectors, and rewards are computed as the sum of the time wasted by
cooperators divided equally between them. In real life, the value of time is different across drivers, but in the model we simplify
reality by applying the same value of time to all agents. Agents experience the effect of a punishment/reward the same way they
would experience changes in travel time. Thus we consider the punishment/reward to be additive to the experienced travel time, the
equivalence of which is “translating” the value of time into monetary terms, and imposing monetary fines on defectors, while
awarding a monetary incentive to the cooperators. The individual treatment of each road user could be done by tracking them using
their mobile phones. The aforementioned “translation” is done because of the added complexity of value of time and its variance
across the population. We explore three different combinations of these incentive mechanisms: reward only, punishment only, and no
incentive mechanism (i.e. no punishment or rewards). The suggestion by Helbing et al. (2005) considering both punishments and
rewards simultaneously was tested initially. However, the simulated results of this mechanism were practically identical to the results
of the punishment mechanism. One reason is that the behavioral response to punishments masks every other kind of intervention in
its presence. Consequently we modeled separate scenarios for rewards and punishments.

3.6. Simulation procedures

Each of the five recommendation allocation designs and 3 incentive mechanisms previously discussed was simulated – in total
5× 3=15 treatment combinations were investigated. In addition, the simulation runs were performed across 49 different road
networks, consisting of 49 different free-flow-time parameters for Route B as portrayed in Fig. 3. In total, 36,750 simulations (50 runs
of each setting, 3× 5×49×50=36,750) were run in order to test the model and compare between different recommendation and
incentive mechanisms. Agents were not provided with route recommendations in the first 5000 rounds of the simulation, (out of
10,000 rounds in total) and learned from experience which route is better off, allowing the road network to stabilize and reach a UE-
like state. Only in the subsequent 5000 rounds, were the agents provided with route recommendations.

Box 2
Algorithm for allocation computation.

Set faster route in SO, slower route in SO, AFRSO according to network design.
Set agentlist as the list of agents and their attributes.
If allocation = queue:

• Foreach Agent in agentlist set attribute as number of times agent was sent to faster route in SO.

If allocation = random:

• Foreach Agent in agentlist set attribute as random number.

If allocation = justice:

• Foreach Agent in agentlist set attribute as average utility (U)

If allocation = anti-merit:

• Foreach Agent in agentlist set attribute as number of times agent complied with recommendations.

If allocation = reformer:

• Foreach Agent in agentlist set attribute as Ucomplied – Unot complied.

Order agentlist (ascending) according to attribute and give agents indices.
Foreach agent in ordered agentlist:

• If agent's index<= AFRSO:
• Send agent faster route in SO as recommendation.

• Else:
• Send agent slower route in SO as recommendation.
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In the simulations, Route A is designed with fixed parameters while the share of agents on route B under SO is allowed to wander
reflecting its increasing free-flow travel time relative to route A. Table 2 describes the different parameters which were used in the
simulation runs. The behavioral parameters were chosen after a process of trial and error of multiple parameter values. Although
there were differences between various sets of behavioral parameters, these were not significant.

The simulation runs were written in JavaScript, based on a car-following microsimulation in a similar binary road network built
previously in Netlogo (see Levy and Ben-Elia, 2016). As the running time was significantly higher with Netlogo and given the large
number of simulations required we preferred to use JavaScript. However, to verify parameter robustness, we regressed the Netlogo
volume to delay results and estimated the parameters of the VDF for each network design that was later applied in the JavaScript
source code.1

It is important noting that by allowing the free-flow-time on Route B (αB) to wander two decision spaces for the agents were
essentially produced. As depicted in Fig. 4, by modifying αB, the share of agents on route A under UE and under SO also has to
change. The first decision space occurs when Route A is only in some cases faster than Route B i.e. Route A has relative dominance
over Route B. The second space occurs when Route A is always faster than route B i.e. Route A has absolute dominance over route B.
We hypothesize different behaviors will emerge in these two spaces.

3.7. Performance indices

Five performance indices were applied to compare between the different simulated treatments, and are presented as their mean
across the last 5000 rounds:

(1) Efficiency – the mean difference between the aggregate utility in SO and the actual aggregate utility, divided by the difference

between the aggregate utility in SO and the aggregate utility in UE: ∑ − ∑

∑ − ∑

= =

= =

U U

U U
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1 1

1 1
;

(2) Stability – the coefficient of variation of Efficiency (mean to variance ratio), which encapsulates the size of deviation from the
mean. The higher the stability index, the less stable the system is; naturally other formulations are possible, e.g. the study by
Como et al. (2013).

(3) Cooperation – The mean percent of agents complying with the recommendations (i.e. concordance with the recommendations).

Fig. 3. Illustration of different network designs. Route length expresses free flow time. Route A (full line) is fixed; the free flow time of Route B (dashed line) is allowed
to change.

Table 2
Specification of simulation parameters.

Parameter Value

Time perspective Rounds without recommendations 5000
Rounds with recommendations 5000

Agent behavior Exploration rate 3%
Sampling and weighting W 0.5
Sampling and weighting δ 3

Recommendations Allocations Random, Queue, Justice, Anti-merit, Reformer
Incentive mechanism Punishment, Reward, None

Network design N 100
αA 50
αB 51, 52…99
βA,βB 0.0016666
Δ 2

1 Source code is available in https://github.com/idshklein/system-optimal-ATIS.
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Where Mk is 1 if the agent complied with the recommendation, and 0 otherwise. Then, compliance is computed in the following
manner: ∑ =

MN k
N

k
1

1 ;
(4) Willingness to cooperate – The mean percent of agents who are willing to comply with the recommendations. Let Wk be 1 if

<U Uk
complied

k
notcomplied, and 0 otherwise. Then, willingness to cooperate is computed in the following manner: ∑ =

WN k
N

k
1

1 ;
(5) Equity: The mean Gini index (Gini, 1912) of the agents’ cumulative utility. The Gini index measures income inequality in

individuals. We understand that it can be used not only for measuring income inequality in monetary terms, but also for mea-
suring time costs of road users, as done regarding accessibility (Jang et al., 2017). Gini index is computed in the following

manner:
∑ ∑ −
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4. Results

Before reporting the results, we note that as hypothesized, all network designs managed to converge to a stable-state UE in the
first 5000 rounds with no route recommendations provided. This implies that the agents' behavior appears to be well calibrated to the
networks in question.

4.1. Efficiency

The results of the efficiency index (as defined in Section 3.7) are shown in Fig. 5. It is apparent that across all the different
allocations and incentive mechanisms, an increase in AFRSO brings an increase in efficiency. It is also clear that networks in the
absolute dominance space have less variability than networks in the relative dominance space. However there are differences be-
tween the treatments. Table 3 shows the index means in the last 1000 rounds (9000–10,000) for each factor, and results of the
Duncan test for between-group differences regarding allocation and incentive mechanism. Table 4 shows the efficiency indices means
for those rounds regarding AFRSO values.

In relation to the incentive mechanisms (Table 3), all three treatments are significantly different from each other with the highest
gain in efficiency attributed to punishment. The punishment also appears to smooth out the opposing effects of network design over
efficiency. The reward is more efficient than having no incentives but the effect of network design still remains quite large.

Regarding the allocations, apart for the difference between random and anti-merit all are significantly different from each other.
Reformer eclipsed all other allocations. Queue is also quite efficient, random and anti-merit come third with a similar effect (but with
changes across different road networks, as will be later discussed), whereas justice performs rather poorly. Given the poor efficiency
performance of justice we will omit it from the rest of the analysis.

Traffic states having no incentive mechanism are shown in Fig. 6. Remarkable patterns of interaction between network design and
allocations can be observed. It can be seen that anti-merit and random compete for supremacy in different network designs (random

Fig. 4. Number of drivers on route A in SO (AFRESO) and UE (AFREUE) as a function of αB.
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when AFRSO is larger than 70 – most of the absolute dominance space, anti-merit if it is smaller – the whole relative dominance
space). The adverse effect of the different network designs prompts the question regarding the interaction of allocations with more
complex network designs.

4.2. Stability

Regarding stability (as defined in Section 3.7), Fig. 7 shows that as AFRSO increases, the system becomes more stable. Duncan test
reveals that networks with AFRSO > 72 are not significantly different, and networks with AFRSO≤ 72 are usually significantly
different. The instability in the networks in the relative dominance space can be explained by the emergence of oscillations in each
network between UE and SO as depicted in Fig. 8, that presents the time sequence of rounds 9500–1000 for one single simulation run.
Theses oscillations occur when the network approaches closer to a state of SO, it seems agents respond less to the recommendations
and reduce the rate of compliance, until the system returns closer to UE where the recommendations seem to become more effective
again bringing the system back to SO and these cycles continue over and over again. Nonetheless, these oscillations disappear when
averaging out the results of the entire set of 50 simulations for the same treatment combination. In contrast, when the network is in
the absolute dominance space, these oscillations occur less frequently, since the gaps between the recommendations and agents
natural behavior is smaller – that is, agents will receive recommendations to take the faster route more often and are less inclined to
develop distrust in the recommendations compared to the relative dominance space.

Stability is also influenced strongly by incentives. Punishment as expected provides the largest influence on stability compared to
rewards and no incentive. In respect of the difference between allocations, this replicates the same picture observed for efficiency.

Fig. 5. Efficiency index mean in rounds 9000–10,000 by allocation and incentives. The area to the right of the dashed line represents the absolute dominance area (A),
and to area the left of the dashed line represent the relative dominance area (R).

Table 3
Performance indices means in rounds 9000–10,000 for incentive mechanism and allocation design. In the Sig. group column, factors that have the same letter are not
significantly different for each other (p < .01), according to the Duncan test.

Efficiency Stability Compliance Willingness to comply Equity

mean Sig. group mean Sig. group mean Sig. group Mean Sig. group mean Sig. group
Incentive mechanism Punishment 0.97 a 0.099 a 97.34 a 96.23 a 0.0013 a

Reward 0.87 b 0.07 b 94.99 b 88.32 b 0.0013 a
No incentives 0.79 c 0.028 c 94.098 c 85.22 c 0.0013 a

Allocation design Reformer 0.98 a 0.0207 d 98.5 a 99.5 a 0.0015 b
Queue 0.93 b 0.063 c 96.51 b 93.021 b 0.00074 d
Random 0.85 c 0.083 b 93.86 c 85.66 c 0.00084 c
Anti-merit 0.85 c 0.096 a 93.035 d 81.52 d 0.00230 a
Justice 0.78 d
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4.3. Cooperation

Fig. 9 presents the results for cooperation (as defined in Section 3.7). Duncan test reveals that networks with AFRSO > 80 are not
significantly different, and networks with AFRSO ≤ 80 are usually significantly different. Surprisingly, networks in the relative
dominance area retain very high cooperation rates, despite lower efficiency. Nevertheless, as the difference between AFRSO and

Table 4
Efficiency index means in rounds 9000–10,000 by AFRSO. In the right column, factors that have the same letter are
not significantly different (p < .01), according to the Duncan test.

AFRSO Efficiency mean Efficiency Sig. group

[80, 81,…99] [0.997, 0.999] a
79 0.995 ab
78 0.993 ab
77 0.99 ab
76 0.986 abc
75 0.981 abc
74 0.975 abcd
73 0.969 bcde
72 0.962 cde
71 0.954 def
70 0.945 efg
69 0.935 fgh
68 0.926 ghi
67 0.917 hi
66 0.905 ij
65 0.891 jk
64 0.876 kl
63 0.863 lm
62 0.854 lm
61 0.84 mn
60 0.828 no
59 0.806 op
58 0.785 pq
57 0.767 q
56 0.742 r
55 0.721 r
54 0.694 s
53 0.664 t
52 0.561 u
51 0.151 v

Fig. 6. Efficiency index mean in rounds 9000–10,000, under no incentive mechanism.
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AFRUE increases with the rise of AFRSO in the relative dominance space, lower cooperation rates correspond to larger impacts on
efficiency. The reason is that while the majority of the agents were cooperating, the few defectors had a large negative influence over
the network's efficiency in the relative dominance area. This does not occur in the absolute dominance area for the same reasons
described above.

4.4. Willingness to cooperate

Fig. 10 presents the willingness to cooperate rates (as defined in Section 3.7). As described earlier, willingness to cooperate is
based on the percent of agents who have Ucomplied < UNot Complied, i.e. it is subjective, whereas “cooperation” is only based on
objective concordance between the choice of the agent and the recommendation it received. This measure divides the agents’ po-
pulation into two classes – those who are willing to cooperate, and those who are not.

In the relative dominance area, there appears to be an anomaly: The rate is much lower than the objective compliance rate. The
explanation lies in the fact that some agents may not necessarily be willing to comply to actually choose to comply. For example –

Fig. 7. Stability index mean in rounds 9000–10,000. This plot shows only values between 0 and 1, where zero suggests that the ratio between the standard deviation
and the mean is low, and vice versa when the stability index is 1.

Fig. 8. Rounds 9500–10,000 in a random allocation with no incentive, αA = 50 and αb = 65 of one sample simulation.
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agents who consider that Route A is better than B receive a recommendation to take A but are not willing to comply because
compliance works on a different memory slot than route choice but will eventually be complying (i.e. concordance) despite of not
willing to comply. In comparison between the allocations, the least anomaly happens under Reformer. Punishments followed by
rewards naturally work to increase the willingness to comply for any given network design, while no incentive hampers the will-
ingness to comply especially in Random and Anti-Merit and to some extent in Queue. Duncan test reveals that networks with
AFRSO > 81 are not significantly different, and networks with AFRSO≤ 81 are usually significantly different.

4.5. Equity

Regarding equity (as defined in Section 3.7), the overall picture observed in Fig. 11 is quite positive as all allocations retain very
low Gini values. Nevertheless, some allocations and network designs result in less equity than others. Apart for Anti-Merit, pun-
ishments have a positive effect on equity, whereas rewards and no incentive have almost no difference. It also appears that the greater

Fig. 9. Mean cooperation rate in rounds 9000–10,000.

Fig. 10. Mean willingness to cooperate rate in rounds 9000–10,000.
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the gap between AFRUE and AFRSO moving from relative to absolute dominance the larger is the change in equity. Anti-merit is the
least equitable allocation but the differences between the other allocations appears negligible. Without incentives, Reformer is most
equitable while random is more equitable with punishments. Duncan test reveals some significant differences between networks.

5. Discussion and conclusions

In this study we investigated the potential of a system-optimal ATIS to bring about the emergence of cooperation in a simple road
network thus improving its performance. We developed an agent-based model for simulating day-to-day traffic evolution on a simple
binary network based on the adaptation of the ‘sampling and weighting’ algorithm. We included tailored policies (static and dynamic)
for allocating route recommendations between agents as well as testing the influence of incentive mechanisms based on punishments
and rewards. We allowed the network to converge to UE before introducing the ATIS and measure the efficiency, stability and equity
of the resulting system. We only considered direct effects of recurring congestion.

We showed that the network retains efficiency and equity even without hard policy measures. In addition, recommendation
allocation policies have different effects and when combined with specific network design parameters, result in different levels of
efficiency. The Justice allocation was not found to be efficient which was counterintuitive, whereas the Reformer that works to
“convert” deviant agents was found to be very effective. These results provide evidence that cooperation in simplified road networks
with a large number of participating agents can emerge without strong assumptions regarding travelers' behavior (e.g. altruism as
considered by Levy and Ben-Elia, 2016). Instead, emergence of cooperation can be the outcome of the agents’ bounded-rational
decision making that does not strongly contradict their self-interest. This illustrates that even without an explicit agenda of ‘Tikkun
Olam’,2 travelers can learn how to share simplified road networks in a way that maximizes both personal and societal utility.

Self-organization with system-optimal ATIS managed to maintain high levels of equity between the agents in the long run. The
Gini index achieved by the simulations runs was always quite low (the highest Gini value was 0.00768), despite of the embedded
inequity that the ATIS possesses, i.e. – recommending faster routes to some travelers and slower routes to others. Apparently, as
hypothesized in the route-choice game, agents switch routes frequently enough to avoid any one of them being considered a free rider
or a saint. This also reflected in the high stability scores for most network design parameters we investigated.

The important conjecture raised by Helbing et al. (2005) regarding the functionality of a system-optimal route guidance system,
appears in hindsight to be much more complicated than was initially considered. While the implementation of punishments and
rewards simplifies maintaining the efficiency of the network, it seems that the impacts of recommendation allocation policies and
network design were not considered profoundly enough. As expected, punishment as an incentive has a strong impact over network
efficiency - a kind of hammer effect – quite blunt but effective. For this reason, in earlier runs we could not find differences between
the ‘punishment+ rewards’ and ‘punishment only’ scenarios. This clearly explains the apparent operational success of congestion
charging schemes. Rewards also maintain a positive impact over efficiency, albeit to a lesser degree than punishments as they are also
on average much smaller per capita. In many of the examined cases, hard policies can be avoided altogether with the proper

Fig. 11. Mean equity (Gini index) in rounds 9000–10,000.

2 Tikkun Olam is a Jewish concept that means people bear responsibility not only towards their own material welfare, but also to the welfare of the entire society
(Shatz et al., 1997).
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consideration of recommendation allocation policies in the ATIS application.
Regarding recommendation allocation policies, although the dynamic ‘Reformer’ was the best performing policy, its im-

plementation in reality is doubtful. It seems too optimistic to assume that all travelers will respond similarly, and therefore ATIS will
not necessarily be able to determine the required signaling sequence in concordance with the cooperation rates and experiential
travel times. Reformer is a possible route recommendation allocation policy that could be investigated for fully autonomous vehicles
(Automation level 5) under the assumption that V2I telecommunications will become ubiquitous. In the meantime, simpler static
allocation designs like ‘Queue’ can be further investigated on multi-arc directed and decentralized graphs that are more re-
presentative of complex urban road networks.

We found that network design parameters (in our simplified context) to have a significant influence over the efficiency of the
ATIS. Moreover, it is important to consider in what space the network is operating – relative or absolute dominance regarding the
gaps between AFRSO and AFRUE. Absolute dominance almost always promotes high efficiency and stability as drivers adapt easily to
the route recommendations without strong resistance to their self-interest. In contrast, relative dominance is much trickier and
requires more elaborate manipulations based on recommendation allocation policies and in some cases application of incentives to
maintain the network in near-SO states.

Future research directions: First, we only accounted for homogenous bounded-rational agents with equal values of time. Future
research should also introduce greater agent heterogeneity to verify if SO can still be maintained if agents respond differently to the
same set of recommendations. Moreover, different behavioral response models beyond SAW should also be tested. One interesting
aspect is to introduce inertia which was found in various studies to influence route-choice (Cantillo et al., 2007; Cherchi, 2009;
Chorus, 2014).

Second, the simplicity of the road network in question limits our ability to generalize our results to more elaborate road networks.
More simulations are needed on more network designs including: more complicated network structures (number of routes and ODs),
congestion effects, diverse departure times, cost functions and within day dynamics framework, as done by Varga (2014a). Pre-
liminary simulations we carried out in more complex networks show that achieving SO becomes more difficult as the number of
routes per OD increases, as asserted by Jahn et al. (2005). However, with multiple ODs system-optimal self-organization is unlikely to
emerge spontaneously as cooperation has to include both the routes and OD levels. Another intervention broker to govern traffic
between ODs is therefore likely needed. Perhaps, in this case hard policies cannot be avoided and a fair ‘traffic light’ concept for
reconciling between opposing traffic streams should be thought of. A good starting point to this effect would be the Braess paradox
network where some degree of overlap exists between the traffic streams.

Third, more work is needed to study the impact of non-recurring congestion on the efficiency and stability of the proposed ATIS
design. While it is expected that in the far-future the number of severity of accidents is likely to decrease with the introduction of
autonomous vehicles, in the near future road safety will still be a significant stumbling block. Moreover, day-to-day changes globally
affecting the network behavior, such as bad weather, are also factors that need to be accounted for in future research (as asserted by
Lindsey et al., 2014).

Fourth, additional investigations regarding the route recommendation allocation policies are vital. In this paper, we assume all
agents perceive and react to the route recommendations in the same way. However, in reality, this is not necessarily true, and
nondiscrimination between the agents, as well as system stability, may be very hard to achieve. More advanced allocations, that take
into account other characteristics of the road users, will be able to learn their reactions to system optimal ATIS and treat all road users
in a way that their willingness to cooperate will be maximized, creating a state in which stability is maximized and discrimination
between the agents is minimized. Another important research direction is the computation time of calculating the system optimal
assignment and the allocation of users according to the system optimal ATIS. Currently brute force is used to find a global optimum
but online optimization approaches could be a very interesting way forward perhaps using swarm like algorithms (e.g. bee colony
optimization; Jovanović et al., 2017).

Lastly, beyond simulations, results need to be tested with real human beings to estimate the parameters of rationally bounded
models. Empirical respondent data can be derived from economic multiplayer game-experiments, and this data could, in turn be used
in agent-based models. In addition, parameters can be used to build game-based models of mixed populations of human and agents
(Klein and Ben-Elia, 2016). Nevertheless, the ABM results can serve as a benchmark to test initial hypotheses and estimate effect sizes
(and prior statistical power) for effectively designing experiments with human agents that are always costly. We recently used the
outputs of a simulation with N=10 agents to estimate the necessary sample sizes for a future experiment planned.

Notwithstanding the concurrent limitations, we believe our study shows the importance of further investigations of out-of-the-box
approaches for managing congestion. In particular, during a period of transition from human controlled to machine controlled
vehicles an SO-ATIS could be tested for possible implementation in existing routing apps operated via drivers’ smartphones revealing
the degrees that different classes of drivers would be willing to deviate from their shortest paths to more efficient and fair uses of
pooled network resources. As the Internet of Things (IoT) proliferates and V2V and V2I telecommunication architectures mature,
response to system-optimal routing could be possibly coded into the algorithms controlling the motion of fully autonomous vehicles
and given robust recommendation allocation policies that maintain fairness between travelers, can be determined for real urban
networks in future research, such an ATIS, could well be embraced by citizens, manufacturers and regulators alike.
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