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ABSTRACT

We describe the development and application of a model that simulates the impact of CommunityRx,
an information-based health intervention, on the utilization of community-based resources. The model
includes a synthetic population of agents matching the sociodemographic characteristics of the South Side
of Chicago, along with their activities and behaviors. We simulate the information-based intervention and
model agent decision-making about using community resources to maintain health, based on a dynamic
dosing of information about community resources, gained through interactions and experience. Through
in silico experiments, our model aims to demonstrate the flow and spread of information from primary
agents to others in the community, and through these dynamic interactions, the impact of an individual-level
information intervention on resource utilization.

1 INTRODUCTION

CommunityRx (Lindau et al. 2016), is an information technology-based health intervention, designed to
improve population health by systematically connecting people to community-based resources for wellness,
disease management and caregiving. This paper describes a computational agent-based model (ABM) to
investigate the impact of CommunityRx (CRx), by modeling health maintenance behaviors (use of wellness
or health promoting community resources) of agents in a population, as a consequence of information
diffused through network interactions.

Broadly, this research integrates clinical trial methodology with agent-based modeling to enable in-
silico (computational) experimentation at scale. Our methodological contribution is to introduce the use of
agent-based modeling as the integrating analytic framework and computational simulation tool to amplify
the impact of, and overcome inherent limitations to, individual-level clinical trials of information-based
interventions designed to improve population health.

1.1 The CommunityRx Intervention

CRx was developed in Chicago with the support of a Health Care Innovation Award (1C1CMS330997,
2012-15, ST Lindau, PI) from the U.S. Center for Medicare and Medicaid Innovation (CMMI). The study
region for the CRx program covered 16 ZIP codes on Chicago’s South Side, an area covering 106 square
miles with a population of 1.08M people. CMMI funding supported a large observational and case-control
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study of CRx. The roll-out of the CRx program across the South Side of Chicago over a 3 year period
between 2012 and 2015 is shown in Figure 1.

During the 2012-15 study period, each patient was given a “HealtheRx” prescription (hereafter denoted
HRx), a 3-page printed list of resources personalized to the patient’s gender, home address, health conditions,
and preferred language (Lindau et al. 2016). Community resource data for the HRx were populated via
an annual census of community service providers using direct observation, through a youth workforce
development program called MAPSCorps (Makelarski et al. 2013). The HRx is the primary vector of
information diffusion in the intervention; the diffusion of information into the patient’s social network
represented the secondary diffusion vector.

Figure 1: Rollout of CRx program between 2013-2015.

Clinical Trial: There have been two studies of CRx: i) a large scale observational study of 113,000
people of all ages, between 2012−15, where a case-control design was used to assess health, healthcare
utilization, and cost outcomes by a third party evaluator (Lindau et al. 2016, RTI-International 2017), and
ii) a prospective pragmatic clinical trial that assigned Medicaid and Medicare beneficiaries ages 45-74 to
intervention and control groups by alternating calendar week assignment. The pragmatic trial was conducted
in the primary care and emergency departments, and aimed to evaluate the impact of the CRx intervention
on mental and physical health-related quality of life, patient self-efficacy for self-care, and health care
utilization and costs.

Computational Trial: Although prospective trials are considered the gold standard in experimental
medicine, an information-based intervention delivered to an individual (unlike drugs and devices) spreads
non-linearly to other people who did not initially receive the intervention. Traditional linear models used
to assess such an intervention are thus bound to undervalue the impact on utilization and health at the
community level. Thus, we aim to run computational experiments by use of ABM to study the secondary
and interaction effects of the CRx information intervention on the utilization of community resources.

1.2 Related Literature and Research Goal

CRx is an information intervention delivered to an individual at a point of healthcare service use. This
information diffuses, not only from the individual who receives the intervention to other individuals in
their network, but also to and through the social network of the health care professional who delivers
the intervention. This diffusion pattern can be likened to an infectious disease - an individual is infected
with information that spreads via dyadic interactions and diffuses through the social network of the agent,
thus spreading across the population. The underlying stochastic interactions and dynamic interference (an
individual agent’s risk of information infection is dependent not only on their own behavior, but also on
that of that agent’s ego network) makes the use of ABM particularly useful (Marshall and Galea 2015).

ABM methods have been used to study transmission dynamics of infectious diseases like MRSA (Macal
et al. 2014), information diffusion (Khelil et al. 2002), social network interactions (Bisset et al. 2009)
and are particularly suited to study health behaviors (Gorman et al. 2006). The use of ABM to evaluate
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policies and health interventions has been documented – Kumar et al. (2013), for instance, used ABM to
study population health impacts of influenza control policies, and Nandi et al. (2013) demonstrated the use
of ABMs to study the cost-effectiveness of health interventions. Our contribution to extant literature is to
introduce the methodological use of ABM to study information-based population health interventions.

Research Goal: While this paper focuses on resource utilization, our ultimate research goal is to
understand the CRx intervention’s impact on health, as a function of agent behavior, resource utilization,
and network interconnectedness. Our aim in this paper is to use data from the two CRx studies and other
sources, to inform, parameterize and develop the CRx ABM.

We describe the CRx ABM (Section 2), its implemented simulation (Section 3), and demonstrate an
experiment to study the diffusion of information as a function of repeated dyadic interactions over time, and
measure the intermediate outcome of resource utilization (Section 4). Future work will focus on verification
and validation of the model, followed by computational experiments designed to accurately forecast the
impact of the CRx intervention on resource utilization and health in the community.

2 AN AGENT-BASED MODEL OF CommunityRx INTERVENTION

In this section, we detail the conceptual model for the CRx ABM, describing our agents, objects, behaviors,
activities and interactions.

2.1 Building a Synthetic Population

A synthetic population of agents matching the sociodemographic characteristics of the population on the
South Side of Chicago, is built from the Synthetic Populations and Ecosystems of the World (SPEW) data
set (Gallagher et al. 2018). These data are publicly available at https://www.stat.cmu.edu/∼spew/. Resource
and Clinic location data are obtained from the MAPSCorps dataset (place-based data publicly available
at www.mapscorps.org) and the CRx database (service level data). These datasets allow us to create a
synthetic population and environment with statistical equivalence to the 16 ZIP codes corresponding to the
initial CRx study region.

Agents: Agents represent individual persons in a population P. Agents are decision makers with
respect to health related behaviors, which we model in the following pages. Each agent is characterized by
a set of demographic characteristics (age, gender, race,. . . ) which are classified into a finite set of unique
demographic buckets (BucketID), which remain static during our simulation. Each agent has a designated
home, work or school location, and is assigned to a household. We only consider adults (age ≥ 16) in the
16 ZIP codes of interest, resulting in a population of 802,191 agents.

We consider two additional types of entities making up the environment in the CRx ABM – Resources
and Clinics. The location of each of these entities is static throughout and is based on MAPSCorps data.
Service information for each resource is obtained from the CRx database.

Resources: Resources consist of service providers in the 16 ZIP codes, which signify locations
(outside of work, home and school) where agents obtain specific services and perform activities, including
health related activities. Let R denote the set of all resource agents. A specific service available at a resource
is denoted by a service code (ServiceCode), which in turn is mapped to specific activities (ActivityID) that
an agent can perform. Every resource in our data set is associated with relevant service codes, which are
then mapped onto corresponding activities. Considering the 16 ZIP codes in the CRx trial, we consider
4903 unique resources that feature in HRxs.

Clinics: Clinics are representative of healthcare providers, and also are the locations where an agent
can potentially receive a HRx. Clinics are thus a source of information for agents in P about community
resources R. Let C denote the set of all clinic agents.
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2.2 Agent Activities and Behavior

Agent activities are developed with the use of the American Time Use Survey (ATUS) dataset (https:
//www.bls.gov/tus/data.htm). We call the set of all activities available to an agent as the Master Activity
List, and denote this by MAL. Individual activities in the MAL are denoted by six digit ActivityIDs (e.g.,
10101 denotes ’sleeping’ while 030302 denotes ’Obtaining Medical Care for Household Children’). Each
ActivityID has some characteristics, a decision type AB ∈ 0,1 and an inertia score γ , which we define later.
Each activity in the MAL is mapped to relevant service codes (ActivityID→ ServiceCode). By construct,
each agent in P exclusively performs a singular activity ActivityID at every time-step t. An agent’s set of
activities over a day is called a schedule (denoted by ScheduleID).

Assigning Schedules to Agents: We obtain data for our agents’ schedules from ATUS 2016 data,
which is based on a comprehensive survey of schedules in the general population. ATUS data specifies a
set of 10,493 schedules, to which we refer to as Master Activity Schedule List and denote by MASL. MASLs
are each associated with specific socio-demographic characteristics corresponding to a unique BucketID.
We map every ATUS schedule in MASL to an individual socio-demographic group BucketID. We define a
mapping function f : MAL→ R, where every activity in MAL is mapped to resources in R (via matching
ServiceCodes), indicating resources where an agent can perform an activity in their schedule. In cases where
an individual activity is linked to multiple service codes, we randomly pick one service code assignment
based on a probability distribution obtained from from expert informant surveys completed by a diversity
of researchers with expertise about the geographic region and its population (each expert completed an
exercise to assign likelihoods for using different services, by age group, associated with a specific activity).
Thus, each activity in an agent’s schedule is mapped to some resource via f . In order to account for this
variability in our model, we generate N multiple schedules based on the single MASL, thereby stochastically
ensuring the diversity in service code assignments for a given activity. Thus our set of generated schedules,
GSL, can be represented by |GSL|= N×|MASL|. An agent is randomly assigned a ScheduleID for every
simulated day, from all possible schedules in GSL with a matching BucketID. Each ScheduleID contains
a corresponding BucketID, a list of ActivityIDs’ with the corresponding start time and end time in seconds
and an associated ServiceCode for that activity. All schedules start at 0 seconds and end at 86400 seconds,
which corresponds to a 24 hour period. This method helps us connect two separate data sets, SPEW and
ATUS, and maintain a stochastic variability of the population activities and use of resources on the basis
of matching demographic characteristics.

2.3 Agent Behavior: AB Decision Model

We model an agent’s health maintenance behavior as a choice model, denoted as an AB Decision Model.
Recall that each ActivityID an agent undertakes is characterized by a decision type AB ∈ 0,1. Some
activities are classified as activities relating to health maintenance behaviors, our main behavioral focus, as
AB = 0. The set of such activities was obtained through expert informant surveys completed by a diversity
of researchers with expertise about the geographic region and its population. Agents with activities with
AB = 0 face a choice in behavior - either do the activity in question, or not. Agents with AB = 1 activities
do not face such a decision choice and simply do the activity in question at the specified time.

An agent choosing Decision A, implies a choice to do a health-maintenance related activity (use of
wellness or health promoting community resource), whereas Decision B denotes the choice of not doing the
specific health-maintenance related activity. We formulate this behavior on the basis of an agent’s real time
information dosing about community resources, their activation score (defined below), the characteristics
of the activity and an agent’s location. The variables which we define below represent the intersection
of characteristics of agents, resources and activities. Recall that agents are exposed to information about
community resources either from an HRx, or from a peer network, and this exposure to information is
used to influence each agent’s decision-making behavior. The dynamic nature of information is described
in the next subsection.
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We model the use of some wellness or health promoting community resource j ∈R, by agent i ∈ P, at
time t as a decision model, whose functional form is given by the following relationship between Activation

and Activation Threshold: if αi <
β t

i, j
γ j×δi, j

then Decision A, else Decision B, where {α,β ,γ,δ} ∈ (0,1),
j ∈ R, i ∈ P, and t ∈ 0,1,2, . . . ,T .

Patient Activation αi : Alpha Activation Score denotes an individual agent’s intrinsic threshold for
health related activities. An agent with a high (low) alpha score implies a higher (lower) level of difficulty
in performing tasks, and ceteris paribus, is therefore less(more) likely to perform health related activities.
This measure represents the heterogeneity of a population towards health behaviors in general. We derive
this measure from Skolasky et al. (2011), matching for individual demographics.

Resource Information Score β t
i, j : The Beta Resource Score denotes an agent’s dynamic level of

knowledge of the particular resource and its associated benefits. Beta is dynamic and changes over time
based on further dosing (exposure to information about the resource). Ceteris paribus, higher (lower) the
beta resource score, higher (lower) the likelihood of an agent performing an activity. At each moment in
time, we assume each agent has a Beta Resource Score for up to 200 resources known to them, mimicking
a cognitive memory load. The assumption of 200 resource memory load is made to represent the ability
and bounded knowledge of people to keep things in their mind and make decisions. Furthermore, in future
work, we could parameterize the cognitive load and conduct sensitivity analysis.

Resource Inertia γ j : Gamma γ j is a measure of resource inertia, which we define as the inherent
difficulty associated with performing an activity at a resource. This measure is specific to each activity in MAL
and represents resource heterogeneity. Ceteris paribus, higher(lower) the gamma (resource unattractiveness)
score, lower (higher) the likelihood of an agent performing an activity.

Distance Threshold δ t
i, j : Delta represents the distance thresholds between an individual agent and

the location for a resource/activity, accounting for a “location effect” with respect to an agent’s decision.
Ceteris paribus, higher (lower) the distance to an activity, lower (higher) the likelihood of an agent performing
an activity. Using data from (Garibay et al. 2014) we identified distances to which surveyed participants
traveled to access community resources of different types. Splitting these distances into tertiles by resource
type (common services), we derive resource-specific thresholds for low-medium-high distances.

Thus, an agent chooses to perform a conscious health related activity, Decision A, only in cases where
the patient’s activation score α is less than the Activation Threshold β

γ×δ
.

2.4 Dynamics of Information Diffusion

As described in the previous section, each agent has a dynamic resource score β for any given resource,
based on information dosing, which represents the dynamic level of knowledge of the particular resource
and its associated benefits. We model repeated information dosing of the Beta Score for an Agent-Resource
pair, over time. Our model for the diffusion of information is a function of the source of information
dosing, the propensity of information sharing, and the evolution of agent’s knowledge with respect to the
information.

Source of Information Dosing: Different sources for information dosing are denoted in set X ∈
{Doctor, Nurse, PSR, Use, Peer}. Let εx ∈ (0,1) be a dosing parameter for dosing source’s effect on recall,
for sources x ∈ X . Let ε1 represent dosing from a physician, ε2 represent dosing from a HRx delivered in
the Emergency Department (ED) typically by a nurse, ε3 represent dosing from a HRx from a clinic staff
or patient service representative (PSR), ε4 represent dosing from using a resource and ε5 represent dosing
from a peer in any network.

Evolution: Let λ be a decay parameter over time representing the effect of a resource receding
from an agent’s attention, possibly replaced with knowledge about other resources. Let nt

i j = 1 denote the
instance of information dosing for agent i about resource j, at time t by some source X . Initialization of
Beta follows from function fβ (I), which is described in detail in Section 3.2. Then the dosing dynamic is

2604



Kaligotla, Ozik, Collier, Macal, Abramsohn, Lindau, and Huang

given by: ∀i,∀ j,β 0
i, j = fβ (I), β t

i, j = λ ×
(

β
t−1
i, j

)
if nt

i j = 0 , and β t
i, j = λ ×

(
β

t−1
i, j

)εx(1−β
t−1
i, j )+β

t−1
i, j

if nt
i j = 1,

where x ∈ {1,2, . . . ,5}. The parameters of dosing sources (εx) dictate the relative values of sources of
information, where we also include the effect of diminishing returns as Beta increases. In the absence of
robust empirical data, we estimate these parameters based on survey data (where available) about the relative
relationships across sources and perform sensitivity analysis on these parameters. An illustrative example
is shown in Figure 2, highlighting the relative effects on information dosing across different sources.

Figure 2: Illustrative example of dosing dynamics showing relative effects of information across sources.

Agent Interactions and the Propensity to Share Information: Agents interact with each other and
transmit information about resources when co-located (at work or school for instance). Each activity and
individual has an an associated Propensity score, representing the likelihood of an agent sharing information
to other agents who are co-located at that time. This is represented as Propensity(ActivityID) ∈ [0,1] and
Propensity(i) ∈ [0,1]. As an agent follows their schedule, they share information about their known places
with the other agents collocated at the same resource at the same time. Information sharing is dependent
on the person’s propensity to share information and the amenability of the activity the agent is currently
performing to information sharing (e.g., propensity to share information while an agent is sleeping, is
markedly different than when an agent is at work or school). Values for Propensity scores were obtained
through a survey of researchers with expertise about the geographic region and its population. This setup
leads to endogenously generated networks depicting the primary pathways by which information about
community resources diffuses through the population. For instance, agents are the nodes in these networks,
while edges represent the information exchanges via interactions that occur when agents are co-located.

3 CommunityRx SIMULATION AND EXPERIMENTS

The conceptual model of the CRx intervention is implemented as a computational ABM, to use as an
experimental tool for studying dynamic behaviors and information diffusion. In this section, we describe
our implementation and illustrate an experiment.

3.1 Implementation on Repast HPC

The CRx model is implemented in C++ using the Repast for High Performance Computing (Repast
HPC) (Collier and North 2013) and the Chicago Social Interaction Model (chiSIM) (Collier, Ozik, and
Macal 2015) toolkits. Repast HPC is an agent-based model framework for implementing agent-based
models in MPI and C++ on high performance distributed-memory computing platforms. chiSIM is a
framework for implementing models that simulate the mixing of a synthetic population, in this case, the
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inhabitants and places in the 16 ZIP codes comprising the South Side of Chicago. Each agent has a
baseline set of socio-demographic characteristics (e.g., race/ethnicity, age, gender, educational attainment,
income). All places are characterized by place type, including households, schools, and workplaces, and
have a geographic location. In the synthetic population, agents are assigned to households, workplaces and
schools (for those of school age).

In a chiSIM based model, such as the CRx model, each agent, that is, each person in the simulated
population, resides in a place (a household, dormitory or retirement home/long term care facility, for
example) and moves among other places such as workplaces, homes, clinics, and community resources.
Each agent has a schedule that determines at what times throughout the day they occupy a particular
location. Agents move between places according to their activity schedules. Once in a place, an agent
mixes with other agents in some model or domain-specific way. In the case of the CRx model, agents can
share information with other co-located receptive agents, who having received that information can then
in turn spread that information to other agents as they move.

chiSIM itself is a generalization of a model of community associated methicillin-resistant Staphylococcus
aureus (CA-MRSA) (Macal et al. 2014). The CA-MRSA model was a non-distributed model in which
all the model components, including all the agents and places, ran on a single computational process.
chiSIM retains and generalizes the social interaction dynamics of the CA-MRSA model and allows models
implemented using chiSIM to be distributed across multiple processes. Places are created on a process
and remain there. Persons move among the processes according to their activity profiles. When a person
agent selects a next place to move to, the person may stay on its current process or it may have to move
to another process if its next place is not on the person’s current process. A load balancing algorithm can
be applied to the synthetic population to create an efficient distribution of agents and places, minimizing
this computationally expensive cross-process movement of persons and balancing the number of persons
on each process (Collier, Ozik, and Macal 2015).

3.2 Beta Initialization

At the start of our model, we posit that an individual agent would have prior knowledge of some resources
in their vicinity (to best represent a baseline reality). We implement this prior knowledge through a
Beta Initialization Algorithm. First consider two radii, rLM and rMH representing the Low-Medium and
Medium-High distance boundary an agent might consider as a resource being near, in the middle, or far.
Consider three distributions representing f (l), f (m), f (h) the range of number of resources that are known
a priori. The conditional assumption is that an agent will know more resources that are closer to them, than
compared to medium or far. Then an agent i randomly draws L ∈ f (l),M ∈ f (M),&H ∈ f (H) representing
the number of a priori known resources, with an initial Beta score of κ .

Based on expert informant surveys completed by a diversity of researchers with expertise about the
geographic region and its population, we assume rLM = 1 mile, rMH = 3 miles, f (l) =U [10,100], f (m) =
U [1,5], f (h) =U [1,5] and κ = 0.02. This implies an agent knows between 10 and 100 resources in a 1
mile radii around their home location, 1 to 5 resources in the medium (less that 3 miles) and far (more
than 3 miles) distance. Each of these initial known resource has a Beta score equal to κ , while all other
resources have Beta score of 0. Given our assumption of a cognitive load per agent of 200 resources, an
agent at any time point only has Beta scores for the top 200 resources.

3.3 Generating Agent HRx’s

The original sets of algorithms that generated a HRx based on patient demographics, home address, health
conditions, and preferred language was implemented via a combination of Java code and stored procedures
within an MSSQL database. We extracted the central logic and ported it to an open source MariaDB database
for the purpose of generating HRx’s for our CRx ABM synthetic population. The ported HRx algorithm
was validated against historical data from July 1, 2016 to September 30, 2016, when the underlying data
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on CRx resources used by the algorithm was expected to be relatively stable. For HRxs matching over
95% of the service codes generated, indicating the the HRx was generated based on the patient’s reported
diagnoses and not prior clinic visits, we found that the algorithm achieved an accuracy of over 92%. That
is, the individual service providers produced by the ported HRx algorithm exactly matched the actual
generated HRx’s over 92% of the time. We used the validated HRx algorithm to pre-generate the HRxs of
all 802,191 agents in the model. This was done using parallel queries to the MariaDB database, and took
approximately 35 hours on a 2.9 GHz Intel Core i7 laptop. For a larger population this would be run in
an HPC cluster environment to take advantage of additional concurrency. While each agent was assigned
an HRx, this did not mean that each agent would actually receive one over the course of a simulation.
Rather, if the agent did go to a clinic location and was to receive an HRx, the HRx would not have to be
generated dynamically. This HRx pre-generation was done to reduce unnecessary run time coupling of the
CRx model code with any external libraries needed to interface with databases.

4 MODEL OUTPUT AND DISCUSSION

While the model will require further calibration and validation to reach its full potential as a trusted tool for
information-based health intervention analyses, these results nonetheless, provide preliminary insights into
the following two general questions: (1) How does an agent’s knowledge about resources (β ) evolve? and
(2) How does the HRx intervention affect the knowledge about HRx resources within the model population?

4.1 Evolution of β Dynamics

In order to better understand how an agent’s knowledge about resources evolves, i.e., the β dynamics within
each agent, we ran a single ZIP code (60615) version of the model and tracked the dosing events that
agents experienced over a simulated 8 week period. This run was executed as part of a small model input
parameter sweep using the Extreme-scale Model Exploration with Swift (EMEWS) framework (Ozik et al.
2016) on the Midway2 computing cluster at the University of Chicago. The run was not distributed, running
only on on a single process, and took one hour and forty-one minutes to complete. The dosing events
result in different effects on the β t

i j score that an agent i retains about resource j at time t, parameterized by
the εx variable, where x is the source of the dosing ∈ {Doctor, Nurse, PSR, Use, Peer} (see Eq. ??). The
dosing strengths ordered from weakest individual dose to strongest are {Peer, PSR, Use, Nurse, Doctor},
with associated εx values {0.9, 0.25, 0.2, 0.15, 0.05}.

Figure 3 shows the β dynamics for a single agent’s knowledge about 15 different resources over time.
We again note our prior assumption that at any one time, an agent can retain at most 200 resources in
“memory,” where those with lower scores are discarded. The resources are identified by unique IDs in
the gray bars above each graph and each panel is additionally labeled A-O. The vertical axes are the β

scores and the black dots indicate the β levels at each point in time (measured in simulated hours). The
multi-colored vertical lines show the different dosing events that the agent experiences for each particular
resource. For the purpose of our investigation, we collapsed the dosing categories into {HRx, Peer, Use}
and colored them {blue, green, red}.

The left most panels (A-E) show that the agent receives multiple HRx’s that include those resources
over the course of the simulation. Panel A shows that the HRx was responsible in informing the agent about
that particular resource and multiple HRx doses eventually led to the agent using the resource. Once the
agent started using the resource, the β score was seen to be maintained at a high level. This pattern, an HRx
nudging a person to use a resource by informing them about it, is a central goal of the HRx intervention.
Panel B shows a similar pattern, with two differences. First, the agent is seen to have known about the
resource at the very beginning, but through the dynamics of the β scores of other resources, this knowledge
was temporarily pushed out of its memory. Second, the agent does start using the resource after learning
about it through multiple HRx doses but, unlike in panel A, does so only once within the tracked period.
Nonetheless, the resource continues to be peer dosed and its β score does not decay substantially. Panels
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Figure 3: β dynamics for a single agent’s knowledge about 15 different resources over time for a single
ZIP code (60615) version of the model over an 8 simulated week period. HRx (blue), peer (green) and
usage (red) dosing events are indicated by vertical lines.

C-E show additional patterns, including early usage after HRx dosing (C), a resource known throughout
the tracked period, buoyed only through peer dosing (D), and use preceding HRx dosing (E).

Panels F-L show patterns involving only peer and resource use dosing, where we can observe the
relative strength of resource usage with respect to peer dosing. We also observe (panel M) that peer dosing
alone, when sufficiently repeated, is enough to keep the knowledge about a resource in an agent’s memory.
Panels N and O show the scenarios where long known resources are eventually pushed out of memory
when resources such as those in panels A-C are pushed in.

4.2 Information Diffusion of HRx Resources on the South Side of Chicago

From the individual agent’s perspective, next we turned to analyzing aggregate model outputs from running
the CRx ABM on all 16 target ZIP codes (802,191 agents) with the goal of investigating how the HRx
intervention affects the knowledge about HRx resources within the full model population. HRx resources,
as opposed to the more general CRx resources that exist in the model, are those that are recommended on
the pre-generated HRxs for our synthetic population. We ran two scenarios, one where HRx dosing was
completely turned off (no-HRx) and another where it was administered with probability 0.25 per clinic
visit (HRx). The clinics that could dispense HRxs were limited to the 25 clinics which have historically
issued them. These scenarios were run for one simulated week to include both weekday and weekend
activities. The scenario runs were executed as part of a model input parameter sweep using the EMEWS
framework (Ozik et al. 2016) on the The Laboratory Computing Resource Center’s Bebop cluster at
Argonne National Laboratory and took one day, thirteen hours and thirty-four minutes to complete, running
on a single process. (Future work will distribute the model across hundreds of processes, resulting in a
substantial performance gain.) We found that, compared to the no-HRx scenario, the population in the
HRx scenario showed 18% greater knowledge about HRx resources, measured by the total number of HRx
resource β scores tracked by the synthetic population (64 million vs. 54 million). Table 1 shows how the
individual HRx resources were distributed with respect to the fraction of increased knowledge about them
between the two scenarios, defined by

(
NHRx

j −Nno−HRx
j

)
/Nno−HRx

j , where NX
j is the number of j resource

β scores tracked by the population in scenario X . We observe that some resources see a significant increase
in exposure.

For instance, agents referred to one large grocery store located on the South Side of Chicago saw a
fractional change of 2.95, meaning there was a 295% increase in the amount of people who knew about
this particular business. A large grocery store such as this would be indicated on HRxs for a number of

2608



Kaligotla, Ozik, Collier, Macal, Abramsohn, Lindau, and Huang

Table 1: Distribution of service providers based on the fractional increase of agents with knowledge about
them (Beta scores) between the no-HRx and HRx scenarios.

Fraction Increase Range Number of Service Providers
[-1.0, -0.5) 7
[-0.5, -0.2) 104
[-0.2, 0.0) 511
[0.0, 0.2) 362
[0.2, 0.5) 153
[0.5, 1.0) 100
[1.0, 2.0) 57
[2.0, 5.0) 49
[5.0, 20) 11

conditions, including diabetes, hypertension or wellness and may provide a number of services such as a
place to buy fresh fruits and vegetables or healthy eating classes.

5 DISCUSSION AND FUTURE WORK

We have demonstrated two key elements of our CRx ABM. The first is the change in an agent’s knowledge
about resources over time, as a function of their daily activities and interactions with other agents and
resources. The second is the effect of the primary vector of information diffusion, the HRx, on resource
utilization. We see an 18% average increase in knowledge of HRx resources in the 16 ZIP codes over a
one week simulated period.

These elements provide a key insight into the CRx ABM to study the multi-level impact of the
CRx intervention. Primary dosing vectors along with secondary network interactions enable an increased
knowledge about resources, which in turn can affect an individual agent’s future choice of health maintenance
behaviors. As agents increasingly choose to partake in health maintenance behaviors, there is an increase
in utilization of resources on average. The CRx ABM allows us to focus on an individual agent or an
individual resource, or different environmental parameters, allowing us to run computational experiments to
robustly evaluate the CRx intervention. The strength of our modeling approach is in the use of diverse data
sources to inform and build a representative dynamic interacting system in which we can perform otherwise
inefficient or prohibitive computational “what-if” trials that complement more traditional approaches, such
as clinical trials. Clinical trial data were used to inform details of the model. Limitations of our study
include the sensitivity of results to input data and model assumptions, for e.g., the utilization of a resource
being driven by Beta scores that indicate exposure. It might be informative to additionally include a measure
that also incorporates sentiment toward a resource, which would reflect an agent’s like or dislike.

The CRx ABM is in its early stages and will require additional calibration and validation studies
before extending it to evaluate the intervention’s effect on health in addition to resource utilization. We
also plan to conduct extensive robustness checks and sensitivity analysis. Given the computational burden
of running individual models, we will utilize the Extreme-scale Model Exploration with Swift (EMEWS)
framework (Ozik et al. 2016) to run complex model exploration workflows on HPC resources. These will
include dynamic workflows that implement heuristic algorithms such Genetic Algorithms (Holland 1992)
or Active Learning (Settles 2012) to efficiently characterize the CRx ABM input parameter space and to
run intervention analyses.

In the context of our larger research agenda, this paper demonstrates the use of the CRx ABM to begin
modeling the impact of the HRx intervention on information diffusion and resource utilization. In our
future work, we will extend our investigations to include the impacts of agent information acquisition to
health maintenance behaviors and to overall community health trends.
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