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A B S T R A C T

This study developed a novel probabilistic agent-based approach for modeling of marine oily wastewater
treatment processes. It begins first by constructing a probability-based agent simulation model, followed by a
global sensitivity analysis and a genetic algorithm-based calibration. The proposed modeling approach was
tested through a case study of the removal of naphthalene from marine oily wastewater using UV irradiation.
The removal of naphthalene was described by an agent-based simulation model using 8 types of agents and 11
reactions. Each reaction was governed by a probability parameter to determine its occurrence. The modeling
results showed that the root mean square errors between modeled and observed removal rates were 8.73 and
11.03% for calibration and validation runs, respectively. Reaction competition was analyzed by comparing
agent-based reaction probabilities, while agents' heterogeneity was visualized by plotting their real-time spatial
distribution, showing a strong potential for reactor design and process optimization.

1. Introduction

Modeling of wastewater treatment processes has been of great im-
portance due to the need for a full understanding of complex treatment
systems and the optimization of their practical applications. Numerous
modeling techniques, such as reaction kinetics and equilibrium
(Mbamba et al., 2015; Eglal and Ramamurthy, 2015), computational
fluid dynamics (Wols et al., 2015; Santoro et al., 2015) and artificial
neural networks (Jing et al., 2015; Jing et al., 2016) have been ex-
tensively documented in the literature. An interesting note is that most
of the existing techniques are designed to simulate bulk properties and
rely much on the understanding of population-level dynamics rather
than individual-level responses, such as heterogeneity among in-
dividuals, local interactions, and adaptive decision making (Schuler
et al., 2011). The lack of individual-level information may result in an
incomplete understanding of treatment processes, especially when
competition and complex interactions among different components
exist (Schuler, 2005, 2006; Hellweger and Bucci, 2009). For example,
Hellweger (2007) argued that traditional lumped modeling approaches
can introduce significant errors when simulating individual phyto-
plankton growth and trace metal transformation during eutrophication.
Further, knowledge on the adsorption competition for photocatalytic

active sites (Wang et al., 2009) and heavy metal removal (Eglal and
Ramamurthy, 2015), and microbial competition in biological waste-
water treatment systems (Albuquerque et al., 2013) has not been made
explicit by population-level techniques.

Recently, the importance of individual variations in wastewater
treatment processes has favored the advancement of process-based
models, particularly agent-based models (ABMs). These bottom-up
models are particularly known for describing the behavior of individual
system components from a micro point of view and yielding different
predictions of bulk behaviors than conventional macro-scale ap-
proaches where population heterogeneity and intra-population varia-
bility are usually not appreciated. The core of ABMs emphasizes on the
autonomous and adaptive nature of individuals such that each in-
dividual has its own characteristics/goals and can make its own deci-
sions according to certain rules. By capturing the interactions of in-
dividuals with each other and with their surrounding environment, the
behavior of the population can be simulated as a whole (Wilensky and
Rand, 2015). Given most scientific knowledge exists at either in-
dividual- or population-level instead of both, ABMs can bridge this gap
via exploring the effects of individual decisions on collective behavior
and predicting how populations will change across time and space.
Such an intuitive concept makes ABMs well-suited to model highly
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complex dynamics using only simpler rules and assumptions. None-
theless, it is worth noted that the efficacy of agent-based modeling may
be compromised by its underdeveloped theoretical framework and high
computational demands (Esser et al., 2015). ABMs have been applied to
a variety of problems such as human and animal migration, traffic
control, stock trading, and land development (Bonabeau, 2002;
Matthews et al., 2007; Hellweger and Kianirad, 2007; Crooks et al.,
2008; Farmer and Foley, 2009; Schreinemachers and Berger, 2011;
Filatova et al., 2013; Müller et al., 2013; Klabunde and Willekens,
2016). It has been recently argued that ABMs should have high po-
tential for wastewater treatment modeling. The movement, behavior,
and spatial distributions of different agents in wastewater, such as
pollutants, reactive species, and microorganisms can be well simulated
by ABMs. Subsequently, population-level behaviors (e.g., concentra-
tions of pollutants) would emerge as a result of cumulative actions of
agents (Schuler et al., 2011). In addition, ABMs do not have the same
restrictions as population-level differential equations and can easily
account for the numbers, distributions, and time delays of different
molecules (Pogson et al., 2006). Xavier et al. (2007) applied agent-
based simulation to describe the complex dynamics of four bacterial
groups in an aerobic granular sludge sequencing batch reactor. Pereda
and Zamarreno (2012) proposed a Matlab-based ABM for modeling
activated sludge process in a batch reactor and obtained a better un-
derstanding of this phenomena. Bucci et al. (2012) developed an ABM
to predict the heterogeneity of an enhanced biological phosphorus re-
moval process. The biological variability in individual cell behavior and
states was predicted by randomizing model parameters and state vari-
ables, respectively. However, to the best of our knowledge, the appli-
cations of ABMs in modeling wastewater treatment processes are still
limited in the literature (Gernaey et al., 2004; Schuler et al., 2011).
Most of the relevant studies have either used macro-scale behavior rules
such as partial differential equations to approximate individual-level
responses, or focused on simplified processes without considering re-
action kinetics. In addition, the calibration of existing ABMs has mostly
been done by trial and error attempts, which relies mainly on expert
knowledge and may encounter problems when a large amount of ex-
perimental data is available.

Therefore, to help fill these gaps, the objective of this study was to
establish a novel agent-based probabilistic approach for modeling of
wastewater treatment processes by 1) developing a probability-based
agent simulation model and 2) improving its performance through a
global sensitivity analysis and a genetic algorithm-based calibration.
The removal of naphthalene (NAP) from marine oily wastewater by UV
induced photodegradation (experimental results adopted from Jing
et al., 2014a) was modeled as a demonstrative example to examine the
applicability and accuracy of the proposed modeling approach.

2. Methodology

2.1. Experimentation data

The original work of Jing et al. (2014a) was comprised of a factorial
experimental design to study the removal of NAP from marine oily
wastewater. In brief summary, photodegradation of NAP was carried
out in a two-layer cylindrical reactor (Fig. S1 in Supplementary mate-
rial). The outer body and inner section are made of aluminum and clear
fused quartz, respectively, with eight 18.4 W low-pressure UV lamps
(254 nm peak, full width half maximum of 15 nm, Atlantic Ultraviolet,
Canada) evenly positioned between them. The inner quartz beaker
(11.1 cm internal radius, 11.5 cm external radius, and 20 cm height)
features a polycarbonate lid where a stainless steel paddle agitator, a
50 W heater, and a thermometer are mounted. The experimental system
was constantly stirred in order to ensure a well-mixed solution. NAP
(> 99%) and NAP D8 (> 99%, internal standard) were obtained from
Aldrich, Canada. Dichloromethane and acetone were purchased from
Honeywell Burdick and Jackson (USA) for stock solution preparation

and extraction. Seawater was obtained from a clean coastal site in St.
John's, Canada and filtered through a 5 μm filter to remove organisms
and debris. UV lamps were turned on once NAP stock solution was
spiked into 6 L seawater to simulate the discharge of oily wastewater
from offshore industries (Jing et al., 2015). Samples were taken half-
hourly and sent for GC-MS analysis after pre-treatment. More details
about the experiments are available in Jing et al. (2014a).

In this study, a probability-based agent simulation model was first
developed to simulate the removal of NAP and then calibrated with
data from 8 calibration runs (30 min interval from 0.5 to 4 h, excluding
the start point; 8 samples per run, 64 data points in total). Data from
another 4 validation runs (32 data points in total) were used to evaluate
the performance of the calibrated model. Details about the calibration
and validation runs can be found in Tables S1 and S2 in Supplementary
material.

2.2. The agent-based simulation model

A probability-based agent simulation model for NAP removal was
developed in the free software platform NetLogo 5.3.1 because it is an
intuitive and well-documented programming tool with high flexibility
and simplicity. NetLogo is a modified version of the Logo programming
language and is particularly suitable for modeling complex systems
which change over time. It employs a graphical environment to support
numerous breeds of programmable agents to wander and interact in a
grid of patches. All types of agents can interact with each other and
perform multiple tasks concurrently by receiving pre-set instructions on
their behaviors from the user. Detailed introduction to NetLogo can be
found in Wilensky and Evanston (1999) and Wilensky and Rand (2015).

In this study, UV induced photodegradation of NAP in seawater can
be described by the following simplified reaction scheme (Miller and
Olejnik, 2001). It is assumed that radical reactions of chloride and ni-
trate are not involved given their insignificant contributions (Lair et al.,
2008; Fang et al., 2017). NAP can absorb one photon (hv in Eq. 1) to
transit to its excited state NAP⁎ (Bayrakceken et al., 2012), which can
further return to the ground state (Eq. 2) by dissipating energy via
various ways such as internal conversion, energy transfer to other
molecules, and emitting its characteristic fluorescence. Oxygen mole-
cule (O2), which is known to be an efficient quencher of excited state
PAHs, in the ground triplet state can be excited into a reactive singlet
state (1O2) by encountering a NAP⁎ (Eq. 3). 1O2 can then attack NAP
and form products such as peroxides and hydroperoxides (Eq. 4) or
return to the ground state by emitting energy (Eq. 5). In addition,
humic substances (HS), which are the main components of natural or-
ganic matter in seawater, can also absorb one photon to transit to its
excited state HS⁎ (Eq. 6), return to the ground state (Eq. 7), react with
O2 to generate 1O2 (Eq. 8), or be degraded by 1O2 (Eq. 9) to form
products. All photodegradation products are assumed to further react
with 1O2 and generate one or two products (Eqs. 10 and 11). It should
be noted that Eqs. 6–11 are a lumped approximation of many photo-
reactions associated with HS and photochemical products.
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where p are set as fixed values in order to control the occurrence of the
reactions based on probability theory (see Step 3 below). According to
Eqs. 1–11, there are 8 different types of agents, including NAP, NAP⁎,
photon, O2, 1O2, product, HS, and HS⁎, and 1 type of patch. By default,
a two-dimensional simulation environment is set to approximate the
vertical cross section of the reactor with a grid of patches that had 33
rows and 33 columns (1089 patches in total) where each square patch is
13 pixels wide (Fig. S5 in Supplementary material). The two-dimen-
sional projection of the three-dimensional cylindrical reactor is used for
simplicity, given the UV irradiation and the solution are homogeneous
and the reactor is symmetric. The space taken by the agitator, ther-
mometer and heater is assumed to be negligible. The simulation steps
can be summarized as follows:

Step 1: Initialization
Prior to running the model, the values of all model parameters

(Table 1) and the initial numbers of NAP, photon, O2, HS, and tem-
perature need to be specified. The position (i.e., x-y coordinates in
pixels) and heading direction of each agent are randomized. All agents
are given a size of 1 by 1 pixel. Once the parameter initialization is
completed, the model is executed to run tick by tick (i.e., NetLogo timer
function, 1 tick = 1 simulation step).

Step 2: Move
During each tick, all agents are first asked to wander by turning left

a random positive degree less than dL, turning right a random positive
degree less than dR, and then moving a distance of D (pixel) along the
final direction (Table 2). To consider the effect of temperature, if
temperature changes from T1 to T2 (°C), then D is assumed to change as
suggested by a temperature enhancement parameter m:

= × + +D D T T(( 273.15)/( 273.15))m
2 1 2 1 (12)

Step 3: Reactions
The second law of photochemistry defines that for each photon of

light absorbed, only one molecule is activated for a photochemical re-
action (Roberts et al., 2017). During each tick, as indicated in Eq. 1,
when a NAP moves to the same position as a photon dose, this parti-
cular NAP has a certain probability to partner with this photon and be
converted to a NAP⁎ while the photon subsequently diminishes. This
probability is expressed by comparing a random number generated
within a certain range (e.g., 0–100) with a preset probability parameter
p1 (e.g., 50). If the random number is less than the value of p1, then the
reaction can proceed; otherwise it cannot and the two agents will move
apart from each other. In other words, the use of probability-based
interpretation here aims at differentiating reaction tendencies. An as-
sumption here is that a temperature change can also affect the

probability of all reactions (i.e., parameter n) as shown below:

+ + <Random number T T p/(( 273.15)/( 273.15))n
2 1 1 (13)

The rest of the reactions (Eqs. 2–11) can be explained by the same
concept. By assigning different p values to individual reactions, the si-
mulation model is able to mimic the difference in reaction tendencies
using a grey-box approach. At the end of each tick, the numbers of
different agents can be recorded and plotted.

Step 4: Termination
Repeat steps 2–3 for a preset number of ticks and then the simula-

tion is automatically terminated. The performance of the simulation
was evaluated by comparing simulation results with experimental ob-
servations in remaining NAP percentage (%) at multiple time points. It
should be noted that the proposed agent-based simulation model can be
modified and used for many other treatment processes.

2.3. Model initialization and settings

According to Tables S1 and S2, given the initial concentration of
NAP was 10 μg L−1, the number of NAP molecules spiked in 6 L sea-
water was calculated as 2.8 × 1017. The initial number of oxygen
molecules (i.e., assumed at 4.5 mg L−1) was estimated as 5 × 1020. The
number of photons was calculated from the UV fluence rate. For fluence
rates of 2.88 and 8.27 mW cm−2, the number of photons
(5.44 × 10−19 J per photon) penetrating through the vertical cross
section (1083 cm2) was estimated as 5.73 × 1018 and 1.65 × 1019 per
second, respectively. By assuming that one tick in the proposed model
corresponded to 1 min in the experiment, then the number of photons
was calculated as 3.44 × 1020 and 9.88 × 1020, respectively.

It should be noted that running an agent-based simulation model

Table 1
Optimization of model initial conditions using all 8 calibration runs.

Trial # Initial conditionsa RMSEb (%)

Photon1 Photon2 Oxygen HS1 HS2 T1 T2 Mean Std

1 172 494 250 125 200 23 40 35.69 0.05
2 860 2740 1250 625 1000 23 40 27.38 0.15
3 1720 4940 2500 1250 2000 23 40 25.41 0.07
4 4300 12,350 6250 3125 5000 23 40 25.56 0.09
5 8600 24,700 12,500 6250 10,000 23 40 25.26 0.34
6 17,200 49,400 25,000 12,500 20,000 23 40 25.56 0.21

a NAP is set to 1,400; photon1 and photon2 correspond to 2.88 and 8.27 mW cm−2
fluence rate, respectively; HS1 and HS2 refer to 25 and 40 psu salinity (Table S1).

b Each trial was repeated 5 times for all calibration runs. Model parameters were set to baseline values as shown in Table 2.

Table 2
Baseline values, variation ranges, main effects and calibrated values for all parameters.

Parameter Unit Baseline
value

Variation
range

Overall effect
index (%)

Calibrated
value

p1 – 50 1–100 36.1 8.4
p2 – 50 1–100 0.1 50
p3 – 50 1–100 0.2 50
p4 – 50 1–100 27.1 39.1
p5 – 50 1–100 0.1 50
p6 – 50 1–100 0.9 1.0
p7 – 50 1–100 0.6 41.2
p8 – 50 1–100 1.1 13.4
p9 – 50 1–100 8.1 94.8
p10 – 50 1–100 17.3 4.3
p11 – 50 1–100 3.1 39.2
m – 25 0–50 0.1 25
n – 25 0–50 4.9 7.2
D pixel 5 1–10 0.1 5
dL degree 180 0–360 0.1 180
dR degree 180 0–360 0.1 180

Note: p1, p2, and p8 are fixed at 50 during calibration according to sensitivity analysis
results.

L. Jing et al. Marine Pollution Bulletin 127 (2018) 217–224

219



with large numbers of agents could be computationally expensive and
time consuming (Ho et al., 2015). However, too small numbers of
agents may result in some agents theoretically staying unselected for a
long time, thereby leading to large fluctuations in modeling results
(Sweda and Klabjan, 2014). As the main scope of this paper was to
examine the potential of the proposed agent-based probabilistic ap-
proach for modeling of wastewater treatment processes, to reduce the
computational burden, the initial numbers of various agents were se-
lected based on their influence on the modeling performance using root
mean square error (RMSE). Each agent can then be interpreted as a
cluster of certain species of molecules. The simulated remaining NAP
(%) at 30-tick intervals were compared with the experimental ob-
servations (i.e., 8 data points per run, 8 calibration runs, 64 data points
in total) to calculate the RMSE. Given the stochastic nature of agent-
based modeling, each combination of initial numbers of agents was
repeated 5 times to get a mean RMSE and a standard deviation. As
shown in Table 1, the number of NAP was set as 1400 to reduce si-
mulation fluctuation. As the numbers of other agents increased, a de-
creasing trend was observed for the mean RMSE until it reached a
plateau value around 25.41% in trial 3. The standard deviation was
0.07%, indicating that the numbers of agents were not too small to
unveil fluctuations in modeling results. Therefore, the number of NAP
and oxygen were set as 1400 and 2500, respectively. The numbers of
photon were set as 1720 and 4940 for the measured average fluence
rates of 2.88 and 8.27 mW cm−2, respectively. In addition, the number
of HS was set as 1250 and 2000 for salinity levels of 25 and 40 practical
salinity unit, respectively. T1 and T2 were set as 23 and 40 °C, respec-
tively.

The maximum number of ticks was set to 240 in accordance with
the experimental data (i.e., 240 min duration). The baseline values of p
and other model parameters were all set to the mid points of their
preset ranges (Table 2). At the end of each simulation tick, the singlet
excited state agents (i.e., NAP⁎, 1O2, and HS⁎) that did not react with
other agents at the same position were set to diminish because singlet
excited state species usually have a drastically short half-life time. In
addition, the numbers of photon and oxygen were readjusted to their
initial values after each tick because UV fluence rate (i.e., photon
supply) was kept constant whereas the available oxygen in seawater, as
stated above, far exceeded the demand during the experiments (Jing
et al., 2014a).

2.4. Baseline simulation and global sensitivity analysis

Due to the random nature of agent behavior, for each of the 8 ca-
libration runs listed in Table S1, the baseline simulation was repeated
100 times by employing the baseline parameter settings. As all runs
were sampled at 30-min intervals, therefore, the simulated remaining
NAP percentages at 30-tick intervals were first averaged and then
compared with the experimental observations to calculate the overall
RMSE for all calibration runs.

To find out which model parameters were most influential to the
overall RMSE, the Fourier amplitude sensitivity test (FAST) was con-
ducted for all 16 model parameters (Table 2). FAST is a variance-based
global sensitivity analysis method that can assign characteristic fre-
quency to each parameter through a search function, and then single
out each parameter's first-order (i.e., main effect) contribution to model
output by its characteristic frequency. A total-effect index can be cal-
culated to accommodate contributions from high order interactions. It
is computationally efficient and can be used for nonlinear and non-
monotonic models such as chemical reaction models (Haaker and
Verheijen, 2004). More details about FAST can be found in Xu and
Gertner (2008) and Vanuytrecht et al. (2014). In this study, all para-
meters were simultaneously sampled 500 times within their preset
ranges via Matlab (Table 2). The overall importance of each parameter
was then normalized by calculating its global contribution to the total
variance of the overall RMSE. The most influential parameters (i.e.,

with normalized effect index> 0.5%) were then selected to be included
in model calibration.

2.5. Model calibration using genetic algorithm

In order to improve model performance, model calibration was
implemented by tuning selected parameters and matching simulated to
experimental results. As mentioned earlier, NetLogo's own
“BehaviorSpace” module can only provide iterative simulation results
by changing one factor at a time. Users need to manually find the best
parameter combination including environmental settings and the logic
of agents' behaviors through trial and error. Therefore, to reduce cali-
bration time and to enhance performance, this study adopted genetic
algorithm (GA) to optimize the most influential parameters through the
integration of Matlab and NetLogo. GA is a powerful probabilistic
global optimization technique. It combines the “survival of the fittest”
principle of natural evolution with a randomized information exchange
which helps to form a stochastic search routine and produce new in-
dividuals with higher fitness. More details about GA can be found in
Arad et al. (2013). By taking computation time and resource constraints
into account, population size (Np) and maximum generation count (Ng)
were set as 50 and 20, respectively (Jing et al., 2015).

As shown in Fig. S2 in Supplementary material, model calibration
started from creating a random initial population according to Np. Each
individual in the population had random and fixed values assigned to
the most influential parameters and those non-influential ones, re-
spectively. Then each individual was used as inputs to run the agent-
based simulation model in headless mode, which can be directly called
in Matlab using Java scripts. Simulation results for all calibration runs
were averaged for overall RMSE calculation as stated in Section 2.4. The
population was then ranked prior to generating its offspring population
via GA operators including reproduction, mutation, and crossover. This
process continued until any one of the convergence criteria of GA was
met and then the top ranked individual was obtained as the final so-
lution.

2.6. Model validation

Data from 6 extra validation runs (Table S2) were used to test if the
calibrated model was able to well predict NAP removal using inputs
that were different from the calibration runs. The prediction accuracy
was evaluated using overall RMSE as stated above.

3. Results and discussion

3.1. Baseline simulation and global sensitivity analysis

A baseline simulation was conducted using the baseline parameter
settings and repeated 100 times for each calibration run, from which an
overall RMSE of 25.44% was obtained, indicating that the simplified
reaction scheme (Eqs. 1–11) was reasonably justified. As shown in Fig.
S3 in Supplementary material, in spite of the small range, the 100-time
repeated simulations were still able to reflect the stochastic feature of
agent heterogeneity and the randomized nature of agent-based mod-
eling. For calibration runs 1–4, the modeled results were within rea-
sonable agreement with the observed results. For example, in run 1, the
observed remaining percentages at all eight sampling points were 47.2,
35.8, 19.5, 10.0, 4.9, 3.1, 1.7, and 1.4%, respectively. The average
modeled remaining percentages were 22.5, 17.6, 15.7, 14.6, 13.7, 13.0,
12.3, and 11.9%, respectively, with a RMSE of 13.14% as compared to
the observed results. However, for calibration runs 5–8, the modeled
results largely deviated from observations with RMSEs of 36.01, 40.07,
23.90, and 26.89%, respectively. Note that the only difference between
runs 1–4 and 5–8 was the change of the number of photons from 4940
to 1720. This may be attributed to the fact that p1–p11 were not at their
optimal values to balance the reactions. In addition, the temperature
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factor n may also need to be adjusted in order to reduce such deviation.
The normalized overall importance of each parameter given by

FAST is shown in Table 2. By adopting a threshold level at 0.5%, p2, p3,
p5, m, dR, and dR were determined to be non-influential; therefore, all
other parameters were included in model calibration. The two most
influential ones were found to be p1 (36.1%) and p4 (27.1%), which
controls how fast NAP molecules can be excited and degraded, re-
spectively. Interestingly, the temperature-related reaction probability
enhancement factor n was also found to be influential. As suggested by
Jing et al. (2014a), fluence rate and temperature were the two most
important factors for the removal of NAP. Given fluence rate was al-
ready taken into account as the number of photons and was not in-
cluded in FAST, the sensitivity analysis results therefore agreed with the
experimental findings. The exclusion of p2 and p3 meant that the re-
laxation of NAP⁎ was not significant to the removal process because a
large amount of HS (Table 1) was also available for radical-induced
reactions. The reason why p5 was also excluded from calibration may be
attributed to the fact that the relaxation of 1O2 was mandatorily exe-
cuted after each simulation tick.

3.2. Model calibration and validation

Fig. 1 shows that the modeling results after calibration were in
better agreement with the experimental observations as compared to
the trends before calibration (Fig. S3 in Supplementary material). The
overall RMSE of all calibration runs after calibration was determined as
8.73%, which was lower than the baseline results (before calibration) of
25.44%, indicating the effectiveness of model calibration. For instance,
in run 8, the modeled results were in good agreement with the observed
results at a small average deviation of 4.52% and a RMSE of 5.16%. Fig.
S4 (Supplementary material) further supports this argument by high-
lighting that the modeled results after calibration were closer to the
observed results with a slope of 0.86 for the linear regression line, as
compared to a linear slope of 0.19 for the modeled results before

calibration. The calibrated model was further tested with 4 validation
runs. As depicted in Fig. 2, the modeled results agreed reasonably well
with the observed results with an overall RMSE of 11.03%. The in-
dividual RMSE for each of the validation run were 8.28, 7.82, 8.56, and
16.74%, respectively.

The calibrated parameters are listed in Table 2. It can be seen that
the value of m an n are all far> 1, indicating that temperature increase
had a positive effect on both the movement of agents and the prob-
ability of reaction occurrence. This was in accordance with Jing et al.
(2014a) that increasing temperature from 23 to 40 °C seemed to sti-
mulate the removal of naphthalene by exciting the collision between
photons and molecules. The final values of most p were lower than the
midpoint (i.e., 50) of their allowable ranges, especially for p1, p4, p6, p10
and p11 that represented the excitation of NAP and HS, and the de-
gradation of NAP and product. This finding suggested that, from a
probability point of view, two different agents moving to the same
position did not necessarily lead to reactions. Such an interesting
finding could be caused by the settings of the maximum number of
simulation ticks and the fact that the number of photons and oxygens
were greater than the numbers of NAP and HS. Within 240 simulation
ticks, the number of meetings between photons/oxygens and NAP/HS
was greater than what would be required to degrade a limited amount
of NAP. Therefore, degradation had to be somehow suppressed in order
to fit the experimental results. As a direct competition, the absorption of
photon by HS (p6) appeared to be less favored than that by NAP (p1).
This may be interpreted as an outcome of the greater number of HS
since more HS⁎ may lead to a large number of singlet oxygen for NAP
consumption, which needs to be suppressed as stated above. Interest-
ingly, p11 was far greater than p10, implying that the generation of
multiple products was more competitive in order to increase the con-
sumption of singlet oxygen. And p9 was the only one that was higher
than the midpoint and close to the upper bound, implying that the
occurrence of HS degradation was not only fairly important (8.1%
overall effect in Table 2) but also more favored to balance the

Fig. 1. Comparison between modeled and observed remaining NAP (%) for all 8 calibration runs after calibration.
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concentration of 1O2. It also indicated that the concentration of HS was
a driving factor in the photodegradation of naphthalene, given its well-
known filter effect of UV light at 254 nm with extinction coefficient
around 3.15 (L m−1 mg−1) as reported by Kong et al. (2016).

Fig. S5 in Supplementary material depicts the modeling results ob-
tained from using the calibrated parameters (Table 2) and the initial
settings of calibration run #4 (Table S1). The visualization of the si-
mulation environment (Figs. S5a–S5h) shows the variation of the
numbers of selected agents during the entire simulation period. It can
be seen from Fig. S5i and j that the numbers of NAP and HS kept de-
creasing while the number of products maintained a steady increasing
trend. Interestingly, the numbers of reactive species NAP⁎ and HS⁎ were
kept at a low level, while the number of singlet oxygen first increased
and then started to decrease, possibly due to the increasing number of
reaction products. Such a trend agrees well with the literature, in spite
of a much coarser time-scale in this study (Alarcón et al., 2010;
Pyryaeva et al., 2014).

3.3. Spatial distributions of agents

The proposed agent-based simulation model can also report the

spatial distribution of any type of agent at selected time points. Fig. 3
plots the interpolated spatial distributions of NAP at eight different time
points for calibration run #4 (Table S1). The overall shapes of the
distributions in all subplots seem, to some extent, similar but not
identical throughout the time points evaluated. This can be explained
by the fact that the moving distance (D) of all agents was set at 5 pixels/
tick, which was significantly smaller than the side length of the square
simulation environment (33 patches × 13 pixels/patch = 429 pixels
per side). Therefore, the moving range of agents including NAP was
limited. Nonetheless, it can be seen from the subplots that as simulation
time progresses, the total number of NAP gradually decreases. At
30 min, there are multiple areas that have 10–15 NAP, whereas at
240 min, the highest density of NAP revolves around 4–5. It should also
be noted that, due to the two-dimensional projection of the reactor
chamber and the random initial agent positions, the spatial distribution
of NAP appears to be somewhat inhomogeneous and slightly different
from the well-mixed condition. However, such difference can be ac-
counted for by readjusting the position of each agent after each simu-
lation tick. If the experimental conditions were more heterogeneous
(e.g., non-symmetrical or non-uniform UV fluence rate, gas/liquid in-
jection, and multi-layer non-symmetric reactor) or the distributions and

Fig. 2. Comparison between modeled and observed remaining NAP (%) for all 4 validation runs.

Fig. 3. The spatial distribution of NAP at different time points (based on calibration run #4).
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movement of agents were constrained, then the agent-based modeling
may be carried out in a 3D NetLogo environment and the results may be
more valuable for reactor design and optimization.

3.4. Advantages and limitations of the agent-based modeling approach

The proposed agent-based modeling approach is an intuitive tool
bridging the void between kinetic models depicted by reaction path-
ways and artificial intelligence-based models depicted by a black-box
nature where no physical insight is available. By setting the behavior
rules for each type of agent, the interactions among individuals and
with their surrounding environment can be successfully captured to
understand how their autonomous decisions and competition could
affect the population-level outcomes. The use of global sensitivity
analysis and model calibration can help model development by iden-
tifying parameters that contributed significantly to variations and im-
proving modeling accuracy, respectively. In this study, the proposed
approach was able to accurately predict the UV-induced degradation of
NAP in marine oily wastewater. It could simultaneously track the po-
pulations and locations of multiple types of agent including con-
taminants, radicals, and products in a pre-defined simulation environ-
ment. The use of probability-based reaction pathways can be a good
approximation of reaction kinetics with controllable reaction rates. On
the other hand, it has adaptive learning ability and good generalization
property for unseen data. Its performance (RMSE of 8.73% after cali-
bration) was comparable to that of artificial neural networks (RMSE of
6.68% adopted from Jing et al., 2014b). The proposed agent-based
modeling approach can also provide users more physical insight
through a graphical user interface, especially the spatial distributions of
selected agents that can be used for reactor system design and process
analysis.

In spite of its technical advantages, however, there are several other
important factors that need to be considered for further improvement.
Firstly, the partnership between two different agents moving to the
same position was evaluated one by one following the reaction se-
quence (i.e., Eqs.1–11). Competition rules may be applied here when
numerous agents move to the same position. In other words, pre-
ferences may be assigned to partnerships between certain types of agent
(e.g., known high reaction rates) such that their combinations may be
more likely than other low priority partnerships. Secondly, the occur-
rence of a particular reaction was determined by a probability-based
interpretation as a lumped approximation of its reaction rates under
different conditions. Such an approximation can remarkably simplify
the modeling process but at the expense of less physical insight. To
remediate this, the relationships among reaction rates may either be
sampled from given probability distributions or incorporated into the
proposed modeling approach as calibration constraints (e.g., p1 > p2
because the rate of the first reaction is generally higher). Thirdly, the
initial numbers of some agents (e.g., oxygen, photon and HS) were
arbitrarily set in order to reduce computational burden. Further opti-
mization may be carried out to find the most appropriate initial settings
on how many molecules should be clustered as one agent. Fourthly, in
this study, the number of NAP was measured and modeled while the
numbers of many other substances were not able to be verified. By
experimentally measuring more substances (e.g., different inter-
mediates and products) and adopting multi-objective GA in model ca-
libration, the modeling accuracy and applicability may be further im-
proved. Last but not the least, agent behavior rules were fixed in this
study. However, they can be set as time- or position-dependent during
the simulation in order to accommodate the complexity of the treat-
ment system.

4. Conclusions

This study shed light on the modeling of wastewater treatment
processes using a novel agent-based probabilistic approach. Most

existing techniques focus on population-level dynamics rather than
individual-level behaviors, which may impede the understanding of
heterogeneity within populations, reaction competition, and complex
interactions among individuals. The use of agent-based modeling may
help overcome such barriers by capturing the autonomous and adaptive
nature of individuals and then exploring how the population would
change across time and space. The developed approach was tested for
its applicability in modeling the removal of naphthalene from marine
oily wastewater by UV irradiation.

The removal of naphthalene was described by an agent-based si-
mulation model using 8 types of agents and 11 reactions. Each reaction
was governed by a probability parameter to determine its occurrence.
Based on the available experimental results from 8 calibration runs and
baseline model settings, a global sensitivity analysis was conducted to
identify the most influential parameters. The modeling accuracy in
terms of root mean square error (RMSE) was then reduced from 25.44
to 8.73% after a genetic algorithm-based calibration. Temperature was
found to have positive impact on the movement of agents and the
probability of reactions. All probability parameters were lower than
their upper bounds, suggesting that two agents moving to the same
position may not lead to reactions. The calibrated model was further
tested with 4 validation runs with a RMSE of 11.03%. In addition, the
spatial distributions of agents can be predicted at any given time point
and may be used to complement computational fluid dynamics tools for
reactor design and process optimization purposes. In spite of its lim-
itations on reaction mechanisms and computational demands, the
proposed agent-based modeling approach was able to introduce a novel
way of describing wastewater treatment processes by investigating how
individual behavior can affect population dynamics. It has a high po-
tential to be applied, with certain modifications, to other environmental
research areas, such as water treatment, biosurfactants production,
groundwater remediation and environmental emergency responses.
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