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ABSTRACT

Rather than the standard practice of selecting a single “best-fit” distribution from a candidate set, frequentist
model averaging (FMA) forms a mixture distribution that is a weighted average of the candidate distributions
with the weights tuned by cross-validation. In previous work we showed theoretically and empirically
that FMA in the probability space leads to higher fidelity input distributions. In this paper we show that
FMA can also be implemented in the quantile space, leading to fits that emphasize tail behavior. We also
describe an R package for FMA that is easy to use and available for download.

1 INTRODUCTION

Stochastic simulation is a method for analyzing the performance of a system that includes interactions
among stochastic processes. At a high level, a stochastic simulation consists of two parts: inputs and logic.
The inputs are the uncertain components of a system, while the logic is a collection of rules and algorithms
that govern the behavior of the system as a function of the inputs (Nelson 2013). Inputs are typically
described by fully specified probability models, which includes the case of resampling a fixed set of data.
Input modeling, as the name suggests, is the process of choosing simulation input models to approximate
the uncertainty in the target system. In this paper we are interested in situations when the input models
are “fit” to a relevant sample of real-world data. For instance, we later model data on lot sizes of surface
mount capacitors in a manufacturing simulation from Wagner and Wilson (1996).

Despite many advances in input modeling for complex situations—including non-stationary arrival
processes, time-series inputs and heterogeneous random-vector inputs—basic univariate input modeling in
practice has not advanced much in decades: fit a collection of plausible distributions via methods such
as maximum likelihood estimation (MLE) and select one of the candidates based on some ranking (e.g.,
goodness-of-fit test) or graphical assessment, perhaps giving extra consideration to a candidate suggested
by the real process physics (e.g., sums of more basic random outcomes tend to be normally distributed). Yet
under almost all circumstances the real-world data should not be expected to follow any of the candidate
distributions exactly: mathematical distributions are idealizations that describe some precisely defined
process physics (often in a limit), while the real-world processes generating the data have quirks and
oddities that make them “real world.”

The preceding paragraph might seem to suggest that one should avoid selecting a mathematical
distribution altogether, and instead just resample the available real-world data to drive the simulation. This
can be a good choice, but empirical distributions are inherently discrete (putting probability mass only
on the sampled values), and therefore manifest gaps and lack a (possibly important) tail. Which begs
the question, how much data are enough to forego the smoothing and inferred tails obtained by fitting a
distribution?

Recently, Nelson et al. (2018) introduced frequentist model averaging (FMA) as an effective way to
build input models that better represent the true, unknown input distributions, thereby reducing errors when
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making inference back to the real world. The premise of FMA is that there may, and often will, be one
or more parametric probability distributions that fit the real-world data reasonably well, but not perfectly
if employed alone. Therefore, FMA averages or mixes the candidate set of distributions to extend their
reach, with the ultimate goal of getting the most fidelity from a given candidate set. Cross-validation (CV)
is employed to tune the mixture and avoid overfitting. Nelson et al. (2018) provide strong theoretical and
experimental evidence that the FMA distribution gets as close as possible to the real-world distribution
when using only the component distributions in the given candidate set. By also including the empirical
distribution (ED) in the candidate set, FMA provides protection when none of the mathematical distributions
is adequate, and explicitly indicates how adequate the ED is by the weight assigned to it.

The FMA distribution explored in Nelson et al. (2018) is fit in probability space: it minimizes the
cross-validation error between the fitted and empirical cumulative probability distributions. Therefore,
we refer to it as a probability model average estimator (PMAE). In this paper we introduce FMA in
the quantile space, and refer to it as a quantile model average estimator (QMAE). As the name suggests,
QMAE minimizes the cross-validation error between the fitted and empirical quantile functions. The choice
between PMAE and QMAE depends on the application, and we show it is easy to fit both.

Although an FMA distribution is simple to use in a stochastic simulation once the fitting is complete,
the fitting process itself requires solving a numerical optimization problem. The second contribution of
this paper is to provide an R package for fitting and variate generation that can be downloaded from
http://users.iems.northwestern.edu/∼nelsonb/FMA/fma.R.

The paper is organized as follows. We describe our input model averaging method in Section 2, and
the fitting of the QMAE in Section 3 (fitting the PMAE is similar and is described in Nelson et al. (2018)).
Documentation of the R package we created follows in Section 4. An illustration using the package to
model two datasets is found in Section 5, followed by conclusions.

2 INPUT MODELING AND INPUT MODEL AVERAGING

The most common method for selecting a marginal distribution F to represent an independent and identically
distributed (i.i.d.) input process—as described in textbooks (e.g., Law and Kelton (1991)) and employed
by distribution fitting software (e.g., BestFit R©)—is some variation of the following:

1. Given: x1,x2, ...,xN an i.i.d. sample from some unknown input distribution Fc.
2. Fit q≥ 1 candidate parametric families of distributions F = {F1,F2, ...,Fq} using methods such as

MLE. This yields a set of fitted distributions F̂ = {F̂1, F̂2, ..., F̂q}.
3. Rank the fitted distributions using one or more goodness-of-fit measures and evaluate the top

choices. Standard measures are hypothesis-test statistics such as chi-squared, Kolmogorov-Smirnov,
Anderson-Darling and Cramér-von Mises, and likelihood-based statistics such as AIC and BIC.

4. Select F̂ = Best Choice{F̂1, F̂2, . . . , F̂q}. Alternatively, use the (possibly smoothed) empirical dis-
tribution of x1,x2, ...,xN if nothing fits well.

In contrast to the method above that selects one element of F̂ , the FMA approach of Nelson et al.
(2018) creates an “input model average” of the fitted distributions. This is different from finite-mixture
models, such as McLachlan and Peel (2004), that assume the true distribution Fc is a mixture of instances
of a common parametric family (e.g., normal). Instead, the premise is that there are one or more parametric
families of distributions in F that are plausible choices, perhaps supported by real-world process physics.
Therefore, the first two steps above are adopted, but rather than ranking the fitted candidate distributions
and selecting the best, the mth fitted distribution is assigned a weight wm ≥ 0 with ∑

q
m=1 wm = 1. Thus,

the model average distribution is

F̂(x,w) =
q

∑
m=1

wmF̂m(x), (1)
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where F̂m(x) is the mth fitted cumulative distribution function in the candidate set. Notice that some weights
may be 0. Virtually any marginal distribution may be in the candidate set, including finite-mixture models
and flexible families such as the generalized lambda distribution (Karian and Dudewicz 2000), as well as
the standard choices of normal, lognormal, exponential, gamma, Weibull, etc. The key to FMA is selecting
the weights w to obtain a better fit.

It is clear from (1) that F̂(x,w) includes each of the individual fitted candidate distributions as a special
case of w, while increasing their flexibility by allowing mixtures. Thus, FMA maintains the benefits of the
tried-and-true families which, for sound theoretical reasons, are often good approximations, but provides
additional degrees of freedom for adjusting to the complexities of real data.

For PMAE, the optimal weight is obtained through minimizing the difference between F̂(x,w) and
Fc(x) in a comprehensive way that guards against overfitting. Specifically, Nelson et al. (2018) solved
for w to minimize the cross-validation squared error with the ED, a consistent and unbiased estimator of
Fc(x). They proved that when the true distribution is not in the candidate set—which we never expect it to
be with real data—then the optimal cross-validation weights converge to the optimal weights as N→ ∞.
Additionally, Nelson et al. (2018) showed that when the candidate set includes the ED then the PMAE is
consistent for Fc in the sense that the weight on the ED ŵED

P→ 1 as N→ ∞.
Once we have the fitted weights ŵm, m = 1,2, . . . ,q, random-variate generation is easy:

1. Select M = m with probability ŵm, m = 1,2, . . . ,q.
2. Generate X ∼ F̂M.
3. Repeat.

Cross-validation in the probability space is just one possible choice for fitting an FMA. Because
probabilities are between 0 and 1, differences between the fitted and ED are also bounded, so large
differences (say) in the tails contribute small absolute differences. This suggests we might form FMA
distributions with different tail behavior if we do cross-validation in the quantile space. We introduce this
new idea here.

Recall that the distributions in the candidate set are Fm(x), m = 1,2, . . . ,q, and F̂m(x) is the fitted
estimator of Fc(x) under the mth candidate distribution. Let Ĝm(u) be the quantile function corresponding
to F̂m(x), Gc(u) the quantile function of the true distribution Fc(x), and v = (v1,v2, . . . ,vq)

T a weight vector
belonging to the set V = {v ∈ [0,1]q : ∑

q
m=1 vm = 1}. The quantile model average estimator (QMAE) of

Gc(x) is

Ĝ(u,v) =
q

∑
m=1

vmĜm(u),

where 0≤ u≤ 1. Obviously, the QMAE is defined only for a candidate set of distributions with common
support, which will be assumed for all of our tests and analysis.

A good choice of weights v, as in PMAE, will make Ĝ(u,v) close to Gc(u) in a comprehensive way.
Of course, Gc(u) is unknown. However, based to the fact the empirical cumulative distribution function,

F̄(x) = N−1
N

∑
i=1

I{xi ≤ x},

is consistent for Fc(x), its inverse Ḡ(u) is also a consistent for Gc(u). By definition, the quantile function
of F̄(x) is

Ḡ(u) = F̄−1(u) = inf{x : F̄(x)≥ u}= (1− γ)x(buNc)+ γx(buNc+1),

where x(i) is the ith smallest x of the i.i.d. samples from Fc, and γ = 1 if uN−buNc> 0, and γ = 0 otherwise.
Therefore, Ḡ(u) is simply an order statistic of the observed values. Similar to the PMAE, cross-validation
with Ḡ(u) is used as we describe explicitly in Section 3 below.
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Although QMAE is a weighted average of quantile functions, the distribution parameters of these
quantile functions are identical to those of the cdfs for PMAE, which are simply MLEs for distributions in
the given candidate set F . The only difference between PMAE and QMAE is caused by the CV-estimated
weights. Therefore, given a good mixture weight v̂ that minimizes the CV criterion, variate generation
is identical to that of PMAE: each time a value of X is needed, generate integer M ∼ v̂m to select the
distribution, then generate X ∼ F̂M.

Remark: Although less familiar than mixture distributions, there has been previous work on quantile
mixture models. Carole and Vanduffel (2015) derive an explicit expression for the quantiles of a mixture of
two random variables as a function of the quantiles of the component quantile functions. The validity of the
expression is shown through examining all possible cases of discrete and continuous variables with possibly
unbounded support. Karvanen (2006) suggests the method of L-moments or sample Trimmed L-moments
(T L-moments) to estimate the parameters of quantile mixtures, where L-moments are linear combinations
of order statistics and T L-moments are generalizations of L-moments with increased conceptual sample
size. Although this paper proposes certain parametric families of distributions whose parameters can be
estimated by the method of L-moments (or T L-moments) with higher reliability than those estimated using
conventional moment matching, this method is difficult to apply in many cases because it is impossible
to derive closed-form L-estimators for many commonly used distributions. All of this work differs from
ours in that we do not assume that the true distribution Fc is a quantile mixture of known families of
distributions.

3 FITTING

The FMA approach uses CV to provide a good fit without overfitting. The J-fold cross-validation we use
is related to the Jackknife model averaging (JMA) of Hansen and Racine (2012), which was originally
proposed for improving the quality of estimators in a heteroscedastic linear regression model. The JMA
estimator was shown to outperform other estimators in terms of smaller asymptotic expected squared error.

To apply the JMA-like scheme for input modeling in stochastic simulations, we randomly divide the
real-world data set x1,x2, . . . ,xN into J groups such that each group has S = bN/Jc observations. For
the jth group, the observations are labeled x( j−1)S+1, . . . ,x jS, where j = 1,2, . . . ,J. Let G̃(− j)

m (u) be the
maximum likelihood estimator of Gc(u) for the mth candidate distribution with observations from the jth
group removed from the data set. Notice that this is just the inverse function of the MLE for candidate cdf
Fm using the same data. Therefore, the QMAE with the jth group removed is

G̃(− j)(u,v) =
q

∑
m=1

vmG̃(− j)
m (u).

Denote the ith smallest observation in the jth group as x( j)
(i) . The ED estimator of Gc(u) using observations

from the jth group only is denoted by Ḡ( j)(u). Our J-fold CV criterion is

CVJ(v) =
J

∑
j=1

S

∑
i=1

{
G̃(− j)

(
i

S+1
,v
)
− Ḡ( j)

(
i

S+1

)}2

=
J

∑
j=1

S

∑
i=1

{
G̃(− j)

(
i

S+1
,v
)
− x( j)

(i)

}2

.

In other words, we consider the sum of squared differences between the QMAE constructed without the jth
group of real-world data, and the empirical quantile function constructed from only the jth group, across
all groups. The optimal weight vector resulting from this criterion is

v̂ = argminv∈V CVJ(v),
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resulting in the quantile model averaging estimator Ĝ(u, v̂) of Gc(u). This contrasts with PMAE where the
weight ŵ minimizes

CVJ(w) =
J

∑
j=1

S

∑
s=1

{
F̃(− j)(x( j−1)S+s,w)− F̄( j)(x( j−1)S+s)

}2
.

The optimization problem we need to solve to find v̂ can be formulated as a quadratic program (QP).
Specifically,

Minimize: CVJ(v) =
J

∑
j=1

S

∑
i=1

{
G̃(− j)

(
i

S+1
,v
)
− x( j)

(i)

}2

=
J

∑
j=1

S

∑
i=1

{
q

∑
m=1

vm

[
G̃(− j)

m

(
i

S+1

)
− x( j)

(i)

]}2

=
J

∑
j=1

S

∑
i=1

{
q

∑
m=1

vmbm js

}2

(2)

=
J

∑
j=1

S

∑
i=1

vT B jsv

= vT Bv

subject to:
q

∑
m=1

vm = 1

vm ≥ 0, m = 1,2, . . . ,q.

where the matrices B js and B are defined in the obvious way. If the q×q matrix B is positive-definite, then
the objective function is strictly convex and the QP has a unique optimal solution (refer to Chapter 16 in
Nocedal and Wright (2006)). Since it is obtained from the quadratic term in (2), it is clear that the matrix
B js is positive semi-definite, and therefore so is its sum B; that it is positive-definite with probability 1 can
be shown in a similar way to Nelson et al. (2018) for PMAE. PMAE also leads to a QP.

Notice that the dimension of the QP is only the number of candidate distributions, q, and it only needs
to be solved once. It is hard to imagine the number of candidates ever being larger than q = 40, which is a
modest QP. In practice we expect that reasoned choices for the candidate set will lead to 2≤ q≤ 5, making
it a very small QP. The computational burden is in computing the MLEs for each candidate distribution
from all of the data, and from the data with each of the J folds removed (thus, q(J +1) MLEs in total),
and construction of the matrix B. Again, these are one-time calculations. The number of observations N
and folds J only affect the set up, not the size of the QP.

4 R PACKAGE

In this section we describe the R package we created for FMA fitting—either PMAE or QMAE—and
variate generation from the fitted distribution. The software may be downloaded from http://users.iems.
northwestern.edu/∼nelsonb/FMA/fma.R. This section is written in the form of standard R documentation.
We illustrate use of the software in the following section.

4.1 Description

Creation of an input model via the frequentist model averaging (FMA) approach and random-variate
generation for the fitted input model.
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4.2 Usage

fmafit(X,Fset,J,type)
rfma(n,myfit)

4.3 Arguments

X a numeric vector of nonzero length containing data values for fitting
Fset a list of character strings that specifies the set of candidate distributions;

supported distributions are ’normal’, ’lognormal’, ’exponential’, ’gamma’,
’weibull’, ’inverse gaussian’,’student t’, ’uniform’, ’cauchy’,
’loglogistic’, ’ED’, ’beta’, ’logistic’, ’pareto’, ’rayleigh’

J number of groups to divide the data into for cross-validation; if not specified, J = 10
type a character string specifying the type of model averaging estimator,

’P’ for probability, ’Q’ for quantile; if not specified, type = ’P’
n number of random variates to generate
myfit a list object returned by fmafit containing the four components

needed for random-variate generation: w, MLE_list, Fset and data

4.4 Details

fmafit first fits each candidate parametric distribution in Fset to the data X using maximum likelihood
estimation, which yields a set of fitted distributions F̂ = {F̂1, F̂2, . . . , F̂q}. The MLEs for each distribution
are returned as MLE_list. Next a weight vector w= {w1,w2, ...,wq} is obtained through cross-validation
and also returned. The resulting model-average estimator of the true cumulative distribution of the data is

F̂(x,w) =
q

∑
m=1

wmF̂m(x).

The model average fitting can be either in probability space or quantile space. The difference between
the two types of model averaging is only in the weight vector associated with the candidate distributions,
which is obtained through cross-validation in either probability or quantile space.

rfma generates random variates that have the distribution of the model-average estimator. Each time a
random variate is needed, a distribution is selected with probability equal to the corresponding weight and
then a random variate from the fitted distribution is generated.

4.5 Values

fmafit returns an object called myfit which is a list with four components:

w weight vector associated with distributions in Fset
MLE_list list of MLEs for each candidate distribution with ’NA’ for ED (empirical distribution)
Fset same as the input argument
data same as input argument X (needed for ED)

rfma generates random variates from the distribution specified by myfit
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Figure 1: Histogram of financial returns (DATA1) and lot sizes (DATA2).

5 ILLUSTRATIONS

Nelson et al. (2018) provide a comprehensive empirical evaluation of PMAE by creating cases in which
the true distribution Fc is known. Both the fidelity of the fit, and more importantly the fidelity of the
simulation output with respect to the real-world system, tended to be greatly improved, especially when
the tails of the input distributions matter. A queueing example, a highly reliable system and a stochastic
activity network were considered, as well as a wide range of input distributions and candidate sets. Similar
conclusions hold for QMAE.

In this section we illustrate PMAE, the new QMAE and our software on two real data sets, examining
the fits that they provide and the protection afforded by including the ED in the candidate set. One data
set is 200 financial returns, which we call DATA1. The second is 417 lot sizes of surface mount capacitors
in a manufacturing simulation described in Wagner and Wilson (1996); we call this DATA2. The latter
data set is bimodal and therefore is not well represented by the usual unimodal distribution choices. See
Figure 1 for histograms of the two data sets. We used J = 10 in both cases.

We first model DATA1 using fmafit. Of the distribution choices in fmafit, the best-fit distribution as
measured by minimum AIC is ’gamma’. Notice that fmafit can be employed to fit a single distribution, if
desired, by only having a single choice in Fset. In Figures 2 and 3 we compare this single choice to a model
average of Fset=(’gamma’,’weibull’,’lognormal’) for PMAE and QMAE, respectively. We
also include the empirical cumulative distribution function (ECDF) in both plots for comparison. The R
command for QMAE fitting is

myfit <- fmafit(DATA1, c(’gamma’,’weibull’,’lognormal’), 10, ’Q’)

The weight vectors obtained for PMAE and QMAE are wP =(0,0.0804,0.9196) and wQ =(0,0.3627,0.6373),
respectively. From both figures it is clear that PMAE and QMAE are closer to the ECDF than the single
best-fit gamma distribution, which indicates that the two FMA estimators better represent the distribution
of DATA1. As illustrated in the figures and by the different weights, PMAE and QMAE lead to distinct
fits. The Kolmogorov-Smirnov distance between each fit and the ED is 0.08 for the gamma, and 0.06 for
both PMAE and QMAE, showing better conformance to the data for model averaging.

Interesting results are observed when fitting the bimodal lot size data, DATA2. The single best-fit
distribution based on AIC is ’weibull’. We compare it with the PMAE and QMAE when Fset=
(’exponential’, ’weibull’,’gamma’,’lognormal’). The weight vectors associated with
PMAE and QMAE are wP = (0.4343,0.5657,0,0) and wQ = (0,1,0,0), respectively. Figures 4 and 5 are
plots of the CDFs of the resulting estimators. PMAE is better than the single best-fit distribution in the left
tail of Figure 4 but worse in the right tail. QMAE, on the other hand, places all weight on ’weibull’,
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Figure 2: CDF of single best-fit distribution ’gamma’, vs. PMAE with Fset =
(’gamma’,’weibull’,’lognormal’) for DATA1.
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Figure 3: CDF of single best-fit distribution ’gamma’ vs. QMAE with Fset =
(’gamma’,’weibull’,’lognormal’) for DATA1.
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which is exactly the same as the single-best distribution and better models the right tail. Thus, QMAE
emphasizes the (long) right-tail behavior of the unknown input distribution more than PMAE does.

That said, neither fit is very good for this bimodal data when Fset includes only unimodal distributions.
This is the common context when no standard distribution represents the data, even approximately, and
including the ED as a candidate has significant value. To illustrate, we fit DATA2 with two candidate
distribution sets, one including the ED (Fset+ED) and one without (Fset). The weight vector for the two
PMAE fits are wP = (0.4343,0.5657,0,0) and wP = (0.1596,0,0,0,0.8404), respectively. The correspond-
ing weight vectors for the two QMAE fits are wQ = (0,1,0,0) and wQ = (0.0180,0.1583,0,0.0167,0.8070).
Both PMAE and QMAE place most, but not all, of the weight on the ED for Fset+ED. Thus, there is
still some benefit of including the standard distributions. Figures 6 and 7 demonstrate the superior fit of
Fset+ED, and thus the protection offered by including the ED in the candidate set of distributions. The
Kolmogorov-Smirnov distance between each fit and the ED is 0.12 for the ’weibull’, and both the
PMAE and QMAE with ’exponential’, ’weibull’, ’gamma’ and ’lognormal’; however, it
is only 0.02 for both PMAE and QMAE when the ’ED’ is included, showing a substantially better fit.

6 CONCLUSIONS

In this paper we described two methods for “frequentist model averaging” that allow a simulation modeler
to exploit the proven value of the standard families of distributions included in every simulation language
(normal, lognormal, exponential, gamma, Weibull, etc.), while acknowledging that real-world input data
will never perfectly conform to such distributions. Through model averaging we greatly extend the reach
of these distributions, and by tuning the model average via cross-validation with the empirical distribution
we insure that the fit is representative of the given real-world data. Including the empirical distribution as
one of the candidates provides protection against data sets for which none of the standard distributions fit
well.

Our R software fmafit makes fitting a model average distribution easy and fast. We recommend
doing both probability and quantile fitting and comparing the results. The user may then take the weights
and parameter estimates returned by fmafit and implement them as a simple mixture distribution in any
simulation software, or use rfma to generate observations outside of the simulation model to read in as
needed.

We recommend keeping the candidate set, Fset, small, remembering that the weights are estimates
that will be noisier the more candidate distributions q there are. A set of q ≤ 5 distributions including
any with the right physical basis for the situation (e.g., Weibull for failures), that have good fit measures
(e.g., AIC), plus the ED is our suggested approach. Our method also provides a way to judge when it is
acceptable to use the ED alone: when the weight on the ED is close to 1. On the other hand, when this
weight is far from 1, it indicates that the ED alone is insufficient. In any event, mixing smooths the ED
in a way that is less arbitrary than, say, linear interpolation, and extends the ED’s tails, which is often
desirable.
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Figure 4: CDF of single best-fit distribution ’weibull’ vs. PMAE with Fset =
(’exponential’,’weibull’,’gamma’,’lognormal’) for DATA2.
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Figure 5: CDF of single best-fit distribution ’weibull’ vs. QMAE with Fset =
(’exponential’,’weibull’,’gamma’,’lognormal’) for DATA2.
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Figure 6: CDF of PMAE with Fset = (’exponential’,’weibull’,’gamma’,’lognormal’)
vs. PMAE with Fset+ED for DATA2.
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Figure 7: CDF of QMAE with Fset = (’exponential’,’weibull’,’gamma’,’lognormal’)
vs. QMAE with Fset+ED for DATA2.
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