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ABSTRACT

Recent advances in simulation optimization (SO) research and explosive growth in computing power have
made it possible to optimize complex manufacturing system problems. Semiconductor manufacturing is
known as one of the most complex manufacturing systems. Based on a review of literature in the field of
semiconductor manufacturing operational and planning problems, there is little reference to SO methods,
an approach that has many advantages over other solution approaches. In this paper, we first distinguish
between different users of SO then consider different approaches of SO applied to semiconductor and
other manufacturing problems. The article then describes the main operational and planning issues in
semiconductor manufacturing drawing actively from a Bosch fab, which could be addressed using SO.
Finally, we attempt to provide insights on how SO can be applied to these problems.

1 INTRODUCTION

This paper is concerned with the application of SO in semiconductor manufacturing problems. Discrete
Event Simulation (DES) is arguably one of the most widely accepted and used Operations Research (OR)
methodologies (Tako and Robinson 2010; Shannon 1998). SO is defined as the integration of simulation
with optimization to find good or optimal solutions (Figueira and Almada-Lobo 2014). Other approaches
can be used instead of SO, such as stochastic programming, fuzzy programming, and stochastic dynamic
programming. The accuracy and detail of these models are however much lower when compared to
SO approaches. With today’s and future projected computing power increasing, this article reviews SO
approaches and their application to semiconductor problems which are extremely challenging due to the
size and scale of problems (Liu et al. 2011). This article presents a brief classification of SO approaches
with focus on applications to semiconductor manufacturing.

In addition, this article will present different challenges, drawing from the Productive4.0 project
(Productive 4.0 2018). The main objective of Productive4.0 is to improve the digitization of the European
industry significantly by means of electronics and Information and Communications Technology (ICT).
The main goal of Industry 4.0 is digitization and our goal in Productive4.0 is to examine digitization of
semiconductor manufacturing and its supply chain to improve system efficiency. Therefore, our focus
is on simulation and more specifically systems simulation to examine how this can be applied to the
semiconductor sector. Within manufacturing and supply chains there are different decision-making, namely
strategic, tactical and operational (Stevenson 2017). In addition there are different expertise of users of any
developed decision support systems (DSS) (Dagkakis et al. 2016). Due to the complexity of semiconductor
manufacturing, simulation has been widely used, but mainly by simulation experts. Here we wish to
examine how simulation can be combined with optimization and applied to semiconductor manufacturing
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to allow the development of tools that can capture the variability within semiconductor manufacturing and
be used by personnel with lower levels of expertise within the tactical and operational level. The focus in
this paper is on the front-end of semiconductor manufacturing.

The article is organized as follows. In section 2, we present a brief overview of SO applications, and
note that there are few current applications in semiconductor manufacturing. In section 3 we provide an
overview of some of the challenges found in Bosch’s front-end manufacturing systems, highlighting the
large scale, complexity and variability in both the processes and demand found in these systems. Because of
these challenges there has been limited use of quantitative tools at the tactical and operational level in these
systems, due to their simplifying assumptions (Shanthikumar et al. 2007). Section 4 presents a discussion
of the application of SO within semiconductor front-end manufacturing while section 5 summarizes the
conclusions from the paper.

2 LITERATURE REVIEW: SIMULATION OPTIMIZATION IN MANUFACTURING

This section reviews the literature on different implementations of SO in manufacturing systems. A number
of different classifications have been presented considering different approaches in SO. Some reviews focused
on just optimization parameters like objective functions or solution spaces such as Fu (1994) who addressed
the difference between gradient-based methods, including perturbation analysis, likelihood ratio method,
and frequency domain experimentation. Shanthikumar and Sargent (1983) considered different modeling
approaches in SO methods. They organized their review by categorizing into analytic and simulation based
models. Fu (2002) focused on desirable features in a good implementation of optimization for commercial
simulation software. His categorization investigates different research based on features like generality,
transparency to the user and high dimensionality. Recently a comprehensive taxonomy on hybrid simulation
optimization methods was presented by Figueira and Almada-Lobo (2014). In their study, how simulation
and optimization integrated was discussed. They divided their review in three major streams of research:

• Solution Evaluation (SE): Developing a comprehensive simulation model to represent the system
and use that model to evaluate the performance of various solutions.

• Analytical Model Enhancement (AME): Enhancing the analytical model using simulation results.
• Solution Generation (SG) approaches: Using simulation not to verify the advantage of one solution

over another, but simply to compute some variables and hence be part of the whole solution
generation.

The most recent review of SO proposed by Amaran et al. (2014) emphasizes the application of different
algorithms in simulation optimization. They structured their review based on different simulation optimiza-
tion algorithms in seven categories (ranking and selection, metaheuristics, response surface, gradient-based
methods, direct search, model-based methods and Lipschitzian optimization). Furthermore, they presented
six domains for SO applications as follows:

• Operations: Buffer location, nurse scheduling, inventory management, health care and queueing
networks.

• Manufacturing: PCB production, engine manufacturing, production planning, Kanban sizing and
manufacturing cell design.

• Medicine and Biology: Protein engineering, cardiovascular surgery.
• Engineering: Welded beam design, solid waste management, pollution source identication.
• Computer science and networks: Server assignment, wireless sensor networks, circuit design.
• Transportation and logistics: Traffic control and simulation, metro/transit travel times, air traffic

control.

While articles on SO applications in semiconductor manufacturing systems exist, the aim here is to
highlight its applicability to this topic. This is because problems in semiconductor manufacturing are
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difficult to solve using quantitative methods, due to their complexity, high level of variability and they
are typically large scale problems (Hsieh et al. 2001). We therefore present a review of SO methods
in semiconductor manufacturing to add this category to the application domain. The article uses the
categorizations proposed by (Amaran et al. 2014) and (Figueira and Almada-Lobo 2014) to address SO
articles published in this area. We propose a new categorization scheme considering both the domain of
application and SO characteristics shown in Table 1.

Table 1: Classification of applications in manufacturing categorized using Solution Evaluation (SE),
Analytical Model Enhancement (AME) and Solution Generation (SG) (Figueira and Almada-Lobo 2014).

Domain of
Application Application SE AME SG

Operations

Inventory
Planning

Keskin et al. (2010),
Güller et al. (2015)

- Chu et al. (2015)

Assembly Line
Design

Kuo and Yang (2011) - -

Production
Planning

Yang et al. (2007),
Gansterer et al. (2014)

- -

Manufacturing

Remanufacturing
System

- - Li et al. (2009)

Dairy
Production

- - Armenzoni et al. (2016)

Process
Industries

- - Noguera and Watson (2006)

Process
Industries

- - Noguera and Watson (2006)

Semiconductor
Manufacturing

Hsieh et al. (2001),
Bang and Kim (2010)

Liu et al. (2011)
Klemmt et al. (2008),

Liu et al. (2011),
Ziarnetzky and Mönch (2016)

Various studies investigated SO in manufacturing systems. For example, inventory planning are
challenging issues in the management of shop floors. Chu et al. (2015) addressed a multi-echelon inventory-
planning problem in manufacturing under uncertainties. They propose a simulation-based optimization
framework for optimizing distribution inventory systems where each facility is operated with the (r,Q)
inventory policy. The objective is to minimize the inventory cost while maintaining acceptable service
levels quantified by fill rates. They considered an agent-based simulation model to address inventory of the
system and then to use simulation to determine the efficiency function in their optimization model. Keskin
et al. (2010) study a generalized vendor selection problem that integrates vendor selection and inventory
replenishment decisions of a firm. In addition to vendor-specific procurement and management costs,
they consider inventory replenishment, holding, and backorder costs explicitly to meet stationary stochastic
demand faced by the firm. They build a discrete-event simulation model to evaluate the objective function of
the problem that works in concert with a scatter search-based metaheuristic optimization approach to search
the solution space. More recent research concerned with inventory planning in manufacturing systems was
proposed by (Güller et al. 2015). They addressed a way of using a simulation-based optimization approach
to determine the optimal inventory control parameters of a multi-echelon production-inventory system under
a stochastic environment. They used a Multi-objective Particle Swarm Optimization (MOPSO) algorithm to
determine the appropriate inventory control parameters to minimize the total inventory cost and maximize
the service level utilizing an object-oriented framework for developing the simulation model to evaluate
the control parameters generated by the MOPSO.
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Production planning and scheduling problems have been considered by researchers using SO. One
of the first reported research on the application of SO to production planning of manufacturing systems
was by Kleijnen (1993). They presented a case study concerning a DSS for production planning in metal
tube manufacturing. Yang et al. (2004) propose a Tabu-search DES SO method which solves the flow
shop with multiple processors (FSMP) scheduling problem in a multilayer ceramic capacitor manufacturing
system. Yang et al. (2007) addressed an evolutionary-simulation optimization approach in solving a
multi-constant work-in-process (multi-CONWIP) pull strategy problem. They consider a case study to
illustrate the performance of the applied methodology. Both the single-loop CONWIP and the just-in-time
(JIT) control strategies are a special case of the proposed multi-CONWIP strategy. Kuo and Yang (2011)
propose a simulation optimization method which employs a particle swarm optimization (PSO) algorithm
with mutation based on similarity to address managerial parameters in a production system. They applied
their method to an assembly line design problem. Li et al. (2009) present a hybrid genetic algorithm
for optimization of a dedicated re-manufacturing system with simulation. Based on the simulation model,
a genetic algorithm is developed to optimize the production planning and control policies for dedicated
re-manufacturing. Gansterer et al. (2014) present a hierarchical production planning system in a make-to-
order environment. A challenging task in this context is to determine good production parameter settings in
order to benefit from established planning methods. They present a framework for hierarchical production
planning which they use to identify settings for three planning parameters, named planned lead times,
safety stock, and lot size. Within a discrete-event simulation model which mimics the production system
they propose a mathematical optimization model for replicating the decision problem. Another research
area in production planning which plays a key role to achieve an efficient production systems is capacity
planning. Uribe et al. (2003) applied a two stage SO approach to address a capacity allocation planning
problem for discrete manufacturing sites under an uncertain demand stream. The most recent research in
application of SO to production planning and scheduling problems presented by Yuan et al. (2017). In
their research a genetic algorithm based optimization model is built from improving initial population and
selection process and an elite mechanism is presented in the iteration. They integrated their optimization
model with a DES model to solve the flow shop scheduling problem.

An alternative application domain is Armenzoni et al. (2016) which propose a method to optimize
a dairy milking process. The ultimate goal of their analysis is to reduce the time required for milking
operations, through the development of a discrete-event simulation to reproduce the main processes of
milking and movement of animals. Another type of manufacturing system problems which is considered to
solve by SO is plant design and facility location problems. More details on plant design problems solved
using SO can be find in Noguera and Watson (2006).

2.1 Applications: Semiconductor Manufacturing

Re-entrant process flows, large scale systems, complexity, high level of variability, stringent production
control requirements and fast-changing technology and business environments are the main reasons why
applying simulation models to a front-end fab is challenging. One of the first research done in front-end
semiconductor manufacturing using SO proposed was by Hsieh et al. (2001) who investigated an ordinal
optimization (OO) based simulation method to solve scheduling problems in a semiconductor manufacturing
fab. Their method consists of six steps:

1. A fab model database.
2. A discrete-event simulator.
3. A library of scheduling rule options.
4. A library of performance indexes.
5. An ordinal comparator for ranking the performance measures.
6. An optimal computing budget allocation (OCBA) technique for further enhancing the simulation

efficiency.
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To evaluate their method they solved some benchmark problems proposed by Lu et al. (1994). Another
scheduling problem in semiconductor manufacturing solved using SO presented was by Klemmt et al. (2008).
They described a multi optimization approach for operative scheduling of a special oven process machine
group in a front-end fab. In their research, a mixed integer programming and simulation-based optimization
approach to scheduling batch processes are presented and compared with a rule-based dispatching approach.
Liu et al. (2011) attempted to develop a capacity planning approach using SO that addresses the uncertainty
in product demand (including the uncertainty in product mix) and takes the cycle time performance measure
into consideration. They tried to answer research gaps proposed by Geng and Jiang (2009). Bang and Kim
(2010) considered a production planning and scheduling problem in a semiconductor wafer fabrication
facility. They propose a two-level hierarchical production planning (HPP) method that employs an iterative
procedure for production planning and operations scheduling. In their method, production plans are obtained
with a linear programming model in the aggregate level, and schedules at the machines are obtained with
a priority-rule-based scheduling method and evaluated with discrete-event simulation in the dis-aggregate
level.

Liu et al. (2011) research concerned the problem in semiconductor manufacturing production planning,
which can be loosely defined as the problem of finding a release schedule of jobs into the facility over time
so that the actual outputs over time satisfy, as closely as possible, the predetermined requirements. They
adapt a genetic algorithm to search for a set of release plans that are near-Pareto optimal and a simulation
model to evaluate results. Ziarnetzky and Mönch (2016) present recent research that considered SO in a
semiconductor manufacturing system which addressed an integrated problem from front-end to back-end
of the manufacturing system. They considered a simplified semiconductor manufacturing that consists of a
single front-end facility and back-end facility. They present a production planning formulation that is based
on clearing functions. In their study, the minimum utilization of expensive bottleneck machines in the
front-end facility is a parameter of the model. At the same time, the less expensive capacity of the back-end
facility is increased to reduce the cycle time in the backend facility. They proposed a simulated annealing
method to determine appropriate minimum utilization levels for the front-end bottleneck machines and
appropriate capacity expansion levels for the back-end.

Semiconductor manufacturing operations are faced with a wide range of uncertainties. Therefore,
managers in strategical, tactical and operational levels of semiconductor manufacturing decisions must use
expected values without including uncertainties or try to incorporate them (Aytug et al. 2005). Different
studies have considered the role of uncertainties in semiconductor manufacturing decision making. Aytug
et al. (2005) presented a review on executing production schedules in the presence of unforeseen disruptions
in the semiconductor manufacturing shop floor. Barahona et al. (2005) proposed a stochastic programming
approach to capacity planning under demand uncertainty in semiconductor manufacturing. They considered
in their model multiple demand scenarios together with associated probabilities to identify a set of tools
that is an appropriate compromise for all different scenarios. Several articles consider capacity planning
that include uncertainties like Hood et al. (2003), Bermon and Hood (1999) and Chien et al. (2012),
simplifying the uncertainties in their models to reduce complexity.

A small number of articles deal with these complex problems by using queuing models. Brown
et al. (2010) developed and implemented the Enterprise Production Planning and Optimization System
(EPOS), a queuing network model for capacity planning. Their approach extends earlier queuing network
models by adding the ability to model product-specific batch service and batch arrivals and multi-chamber
process equipment. Another queuing model is presented by Hanschke and Zisgen (2011) which uses a
decomposition method for ordinary single class open queuing networks, extending the model to incorporate
batch processing.

Supply chain operation uncertainties have also been modeled in semiconductor manufacturing. Kempf
et al. (2013) provided research that focused on Intel’s supply chain to address optimizing capital investment
decisions. A good review in this field is Mönch et al. (2017) which describes research in the field of supply
chain uncertainties related to semiconductor manufacturing. Dobson and Karmarkar (2011) discussed in a
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chapter different uncertainties in production planning (an aspect of supply chains). There are two useful
reviews in this area provided by Mönch et al. (2011) and Mönch et al. (2013). In both articles they outline
different challenges related to uncertainties in the semiconductor production planning area.

Based on this review it is clear that although SO methods have a broad range of applications in
manufacturing systems with the flexibility of these methods to deal with stochastic environments and
uncertainties which are mentioned above, there are limited applications within semiconductor manufacturing
of SO, as shown above, due to the complexity and variability of semiconductor systems and the limiting
assumptions of quantitative models together with the advancements of computing power, SO could be more
widely used within these systems.

3 CHALLENGES IN BOSCH FRONT END SEMICONDUCTOR MANUFACTURING

Semiconductor microchips must be produced in one of the most complex production systems. Due to several
manufacturing requirements, such as clean room manufacturing, semiconductor production is extremely
cost intensive. This is the reason semiconductor production equipment require high utilization. The clean
room conditions due to the small sizes of the microchips make the production floor itself highly expensive.
Semiconductor microchips with around 1000 different production steps and re-entrant loops in a job shop
production system face lead times of one month and more. Additionally, in recent years product portfolios
are rapidly increasing with product demands experiencing high variability. To maximize and stabilize
utilization of expensive equipment semiconductor production is organized in job shop systems rather than
in product dedicated flow shop systems. On the one hand, this enables planners to balance utilization
by sharing capacities across different products, which increases material flow complexity increasing the
complexity of decisions. Within semiconductor manufacturing nearly in all equipment, a real-time material
dispatching decision is necessary to decide about the sequence of lots processed on the equipment. Thereby
global dispatching policies ensure material flows and priorities considering customer demands, to meet
customer due dates. Additionally, local dispatching policies helps to ensure maximization utilization of
specific equipment. In semiconductor industries equipment performance can be summarized in the following
four equipment models (Kohn 2014):

• Single wafer equipment,
• Batch equipment,
• Parallel equipment,
• Cluster equipment.

These different equipment models set various loading requirements for maximization of utilization. Ad-
ditionally, almost in every equipment model setup times have to be reduced and throughput maximized.
Thereby, static policies cannot cope with any variability in inventory distribution, process times, equipment
availability, process availability, worker availability and changes to demand. Too much expensive buffering
of material, time, capacity or capability is necessary to compensate static plans that do not integrate
variability of the different influencing random variables. This is the reason that in the past there was and
still is large effort to develop different DES models for semiconductor production systems to predict future
situations to support dispatching and control. Additionally, different optimization problems in semicon-
ductor manufacturing already have been addressed with some simulation-based optimization approaches
(see section 2). This section presents a number of semiconductor front-end optimization problems that
could be addressed with simulation-based optimization. The necessity of simulation-based optimization in
semiconductor manufacturing is due to the stochasticity that exists in these production systems. Nearly
every production parameter such as process times, equipment availability, worker availability, product
yield is stochastic. Actual simulation systems consider these random variables, however there is a need to
combine these to create tools for tactical and operational problems for different users within the production
system.
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3.1 Capacity and Process Flexibilization (Equipment and Process Availability)

In dynamic industries such as semiconductor manufacturing, industry equipment availability together with
changing demand creates high volatility. In a job shop production like semiconductor manufacturing, a
machine can be qualified for n different processes (process flexibilization). Considering high stochasticity of
machine availability this offers still a risk if the machine breaks unexpectedly. This risk can be reduced with
capacity flexibilization by transferring the n different processes to m machines. Of course, the flexibilization
of capacities induces costs. This leads to the following managerial question: Considering given costs for
capacity flexibilization and the stochasticity of machine availability what would be the efficient number of
qualified machines (m)? While Chien et al. (2013) propose a two-stage stochastic programming demand
fulfillment model to optimize inter-fab capacity allocation the efficient factor of flexibilization of existing
machines can still not be answered sufficiently for semiconductor job shop production systems. Several
other papers on optimization of capacity expansion scenarios are published (e.g. (Kim and Uzsoy 2008;
Wang et al. 2007; Liu et al. 2011)). While capacity expansion problems in semiconductor manufacturing
are addressed quite broadly there still is a lack of publications tackling capacity flexibilization to be used by
a wider set of users within semiconductor manufacturing which could be achieved using SO applications.
An example in the semiconductor supply chains is Bard et al. (1999) who address toolset configuration
with different algorithms like simulated annealing, two greedy algorithms and an exact method for the
system design phase.

3.2 Operator Availability in Semiconductor Manufacturing

In deterministic systems necessary operator availability can be calculated exactly. Due to stochasticity of
the production and demand, the expected necessary operator availability is often insufficient. This issue
is poorly tackled in the literature for semiconductor manufacturing systems. Wu and Fu (2005) propose a
linear programming approach for the general staffing problem to minimize operator staffing costs. Similar to
this publication most solve the assignment problem taking qualification of workers as given (i.e., (Campbell
2011; Chen and Dabbas 2002; Pollitt and Matthews 1998)). Campbell (2011) indirectly addresses the
operator availability problem with the development of a two-stage stochastic program. The results of the
worker assignment show the value of cross-trained workers which increases in environments with high
demand uncertainty. Iravani et al. (2005) develop an algorithm for evaluation of system responsiveness
to environment volatility, while considering operator cross-training. Nembhard et al. (2005) model and
financially evaluate a cross-training policy with a dynamic investment in workforce flexibility. Generally,
cross-training of workers has to be fostered if demand uncertainty increases. More research is required
in solving the optimization problem of demand and system volatility related to the degree of worker
generalization in a semiconductor environment, as qualification of an operator for a system, costs time and
money.

3.3 Parallel Machine Loading (Throughput Maximization with the Parallel Loading of Equipment)

Each process has stochastic process times on the relevant process chambers of equipment. According to the
actual machine setup and the inventory waiting for the process, the sequence of parallel machine loading
can be optimized according to the maximization of parallel machine throughput. Therefore, a schedule has
to be developed for the different process chambers of the equipment. Jiang et al. (2015) model a preemptive
scheduling problem of parallel machines with deterministic process times with classical heuristics. Gan
et al. (2012) use a branch and price algorithm for the scheduling problem with parallel process chambers
and a common handling server. Wang et al. (2013) tackle the problem with a genetic algorithm minimizing
the makespan of the remote server to assign jobs on the parallel single servers. All papers treat parallel
machines as multiple units consisting of a common server, assigning jobs to the parallel single server
machines or process chambers. The target function destines maximization of throughput of the parallel
equipment or minimization of makespan. The preconditions are maximum utilization of the common server
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and of the single parallel chambers. The single chambers can only be occupied once at the same time.
For example, a wet bench has several parallel batches with different acids. The machine can be loaded in
parallel. Additionally, in each batch, a batch of maximal two lots of the same type can be processed at the
same time. According to the inventory waiting and forecasted for the wet bench and the availability of a
single batch, the lot sequence can be optimized with multi-objective target function.

4 DISCUSSION

The above sections present a preliminary overview of SO applied to manufacturing in general, and more
specifically, to semiconductor manufacturing. In addition it highlights some challenges, that SO could
address, for the efficient operation of semiconductor manufacturing, with special focus on the front-
end. Maximizing machine capacity (subsection 3.1) to meet customer deadlines is an important issue in
semiconductor manufacturing so answering this question is important. An early example application of SO
is Yang et al. (2004) where Tabu search (TS) optimization algorithm is used with discrete event simulation
(DES). One of the best examples of solving capacity planning problem is Chung et al. (2008) but in
their study and other later studies in this field like Chen et al. (2016) they assume deterministic features
of production, while in practice they are stochastic. For cases like the photolithography area which is
mostly considered for capacity planning in the literature some features like processing times and machine
availabilities have high variability. Therefore, SO can be used as an effective means of addressing these
problems because not only is it capable of dealing with stochastic features of the system but also it can
provide a planning procedure. In other words, the simulation phase of SO can be used in the shop floor
by considering a DES system to deal with uncertainties of the system and provide an evaluation method
for production plans which are considered in the optimization stage. The optimization phase of SO can
provide capacity plans (Uribe et al. 2003) and integration of simulation by these plans will provide an
efficient DSS which is able to answer deterministic planning, stochastic features and dynamic situations
of the semiconductor manufacturing capacity planning problems. A stochastic DES model can however
be difficult to solve, both in how the optimizer is used to locate the optimal and also the computational
aspects of the DES model, but cloud computing may overcome this last restriction (Kiss et al. 2015).

A cross-training policy can be regarded as a set of rules for determining the distribution of workers
skills. These rules specify what decisions are made concerning aspects that are considered important in
the development of a cross-training policy (Bokhorst 2005). Based on the literature review three steps are
considered in cross-training are: 1) cross-training policy; 2) cross training configuration; 3) cross training
performance evaluation. Rotondo et al. (2015) is an example of the use of SO in the allocation of operators
in an assembly line that uses a multi-objective function that dynamically alters to conditions on the line.

Parallel scheduling problems are NP-Hard in terms of complexity (Arnaout et al. 2014). To answer a
parallel scheduling problem we consider the research done by Yuan et al. (2017) which proposed a SO
approach to solve the flow shop scheduling problem and considered a genetic algorithm integrated to a DES
model. A possibility is to adapt their SO approach to the parallel scheduling problem in semiconductor
manufacturing.

5 CONCLUSION

In the operational and tactical managerial levels of the semiconductor manufacturing, the concept of SO
DSS approaches could be more widely applied to semiconductor manufacturing, to facilitate wider use
of these tools. The classifications used so far in the literature of semiconductor manufacturing problems
focused on particular streams of methods like optimization methods or just from operational aspects. To
conclude, our review addressed different problems encountered in a Bosch semiconductor front-end fab
and in addition provided a brief overview of future possibilities to extend SO applications in semiconductor
fab problems.

3679



Ghasemi, Laipple, and Heavey

ACKNOWLEDGMENTS

This project has received funding from the Electronic Component Systems for European Leadership Joint
Undertaking under grant agreement No 737459. This Joint Undertaking receives support from the European
Unions Horizon 2020 research and innovation program and Germany, Austria, France, Czech Republic,
Netherlands, Belgium, Spain, Greece, Sweden, Italy, Ireland, Poland, Hungary, Portugal, Denmark, Finland,
Luxembourg, Norway, Turkey.

REFERENCES

Amaran, S., N. V. Sahinidis, B. Sharda, and S. J. Bury. 2014. “Simulation Optimization: A Review of
Algorithms and Applications”. 4OR 12(4):301–333.

Armenzoni, M., E. Bottani, M. Rinaldi, S. A. Gallo, and R. Montanari. 2016. “Analysis, Simulation
and Optimization of the Milking Process in a Cowshed for the Production of Parmigiano Reggiano”.
International Journal of Food Engineering 12(9):851–865.

Arnaout, J.-P., R. Musa, and G. Rabadi. 2014. “A Two-Stage Ant Colony Optimization Algorithm to Minimize
the Makespan on Unrelated Parallel Machines – Part II: Enhancements and Experimentations”. Journal
of Intelligent Manufacturing 25(1):43–53.

Aytug, H., M. A. Lawley, K. McKay, S. Mohan, and R. Uzsoy. 2005. “Executing Production Schedules in
the Face of Uncertainties: A Review and Some Future Directions”. European Journal of Operational
Research 161(1):86–110.

Bang, J. Y., and Y. D. Kim. 2010. “Hierarchical Production Planning for Semiconductor Wafer Fabrication
based on Linear Programming and Discrete-event Simulation”. IEEE Transactions on Automation
Science and Engineering 7(2):326–336.
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