
Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A.A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

REGRESSION-BASED SOCIAL INFLUENCE NETWORKS

AND THE LINEARITY OF AGGREGATED BELIEF

Michael J. Garee Wai Kin Victor Chan
Hong Wan

School of Industrial Engineering Environmental Science and New Energy

Purdue University Technology Engineering Laboratory
315 North Grant St. Tsinghua-Berkeley Shenzhen Institute

West Lafayette, IN, 47907, USA Shenzhen 518055, P. R. CHINA

ABSTRACT

Consider an agent-based social influence (belief adoption) network where agents share beliefs with
neighbors using a linear regression model. One relevant question is: can aggregated, system-level belief
also be fit by a linear regression model? Earlier work demonstrated several scenarios where system-level
linearity of belief holds. This paper extends that research, varying model and simulation factors through
experimental design. When linearity does not hold, we isolate the responsible factors. Finally, we
investigate whether system-level linearity is as an absorbing state, that is, when system-level linearity is
present at some time t, it continues to hold for all later times.

1 INTRODUCTION

Agent-based simulation is a useful tool for building and analyzing social influence networks—systems in
which agents exchange information with their neighbors and influence each other’s levels of belief over
time. In this study, agents update their beliefs via a linear model, based on a weighted sum of their
neighbors’ beliefs and modified by internal bias and white noise. Similar update functions are used
elsewhere in social network analysis (Jackson 2010) and sensor network consensus modeling (Touri and
Nedic 2009). We build system-level measures of influence by aggregating values from each agent. One
reasonable hypothesis is that when agents interact in a linear way, the system-level measures may also
respond in a linear fashion. Chan (2017) finds that for a particular network configuration, this idea is valid.
To examine this hypothesis more completely, we build upon the previous work by varying model and
simulation elements through experimental design, identifying factors that impact the linearity of system-
level belief, and exploring whether individual observations of system-level linear behavior make good
predictors of steady-state activity.

In this research, we choose to focus only on linear models and behaviors. Linear systems are widely
used in literature and in practice, so we seek to explore their validity as social influence network models.
However, we do not make any claims to the importance of linear systems to this topic, nor wish to imply
that linear systems are more or less valid than non-linear ones.

We identify ten factors that affect the structure and properties of the network, the schedule used for
agent updates, and the settings that control the agent’s initial states. We then build a Nearly Orthogonal
Latin Hypercube design to systematically study the behavior of the system under different factor settings.
The key constant across all trials is the agents’ use of a linear model to update their beliefs. We find that
linear agent interactions in most cases do not generate linear system-level responses. Given the ten
experimental factors in our design, three factors can significantly hinder whether we observe linear
responses, and five factors have little to no effect for the range of levels used. However, no single factor on
its own is observed to absolutely prevent system-level linear responses. Also, we observe that the degree to

941978-1-5386-6572-5/18/$31.00 ©2018 IEEE

Garee, Chan, and Wan

which aggregated belief can be fit by a linear model can vary over time (i.e., linearity is not an absolute
absorbing state in general), so measuring linear behavior for some single time 𝑡 does not make for a perfect
predictor of future performance.

The rest of this paper is organized as follows. We provide a brief review of the literature related to our
topic in Section 2. In Section 3, we develop the model. In Section 4, we describe the experimental design
for the study. We present our analysis methods and results in Section 5, and we provide conclusions and
discuss future work in Section 6.

2 BACKGROUND

2.1 Social Influence and Learning Networks

The terms contagion and social influence are often used interchangeably to describe the process of altering
behavior or belief due to communication and comparison among actors in a social system (Leenders 2002).
Social learning is the process of “learning through observation or interaction with other individuals”
(Rendell et al. 2010). In social network analysis, learning tends to be used when agents in influence
networks seek an optimal behavior or true belief.

Social learning in network analysis is broadly divided into diffusion models and information
aggregation models (Banerjee et al. 2016). Diffusion looks at the spread of information through a
population; information aggregation focuses on convergence of opinions. The Bass model is a
straightforward model that describes binary adoption of a belief or behavior without explicitly using the
network structure (Jackson 2010). DeGroot (1974) developed a simple linear updating model to describe
information aggregation. There, agents begin with initial estimated beliefs, and all agents update
simultaneously, replacing their current level of belief with a weighted average of their neighbors’ belief
levels and their own. Agents will converge to a consensus value if the network structure meets certain
conditions of aperiodicity and communication (DeGroot 1974; Golub and Jackson 2010).

A second way of dividing social learning is into Bayesian models and DeGroot models. Bayesian
models focus on learning by observing the actions of neighbors and the payoffs they receive, while DeGroot
models learn myopically from communicating and processing only the current system state (Acemoglu et
al. 2011). The DeGroot model remains a seminal model of information transmission and social learning
analysis (Golub and Sadler 2016; Banerjee et al. 2016; Chandrasekhar et al. 2015).

2.2 Regression Analysis

Regression analysis is popular in social influence studies. Here, we comment on several recent examples.
Mavrodiev et al. (2013) studied indirect social influence in a sequential decision making experiment with
humans. Participants had access to the mean of all previous decisions, but did not interact directly with
other individuals. The authors found a statistically significant fit for a linear regression model relating the
amount individuals changed their decision over time and the distance between their previous decision and
the current mean. Similarly, Cheng et al. (2015) used logistic regression on opinion data from a Taiwanese
online bulletin board. Their results showed that users are more likely to post comments that match the
sentiment (approval or disapproval) in recent posts, while users are indifferent to the average sentiment of
the entire history of comments. Finally, Chan (2017) modeled a social influence network where agents
interact using linear regression equations. For the particular network configurations used, he found that the
aggregated system-level belief could be well-described using a linear regression model. Those findings are
a key motivation for the present paper.

942

Garee, Chan, and Wan

3 MODEL

3.1 Networks and Agents

We use agent-based simulation to model a social influence network with 𝑁 agents (nodes). Each agent is
connected to one or more other agents using directed edges; self-loops are not permitted. The degree of
each agent and the distribution of degree across the network depend on the network structure model family
(e.g. scale-free, random, etc.) for a given trial. We use only static network structures for this study, so the
set of agents and their edges do not change during a run of the simulation (Figure 1a). Particular network
instances are a function of the structure family, network parameters, and randomness, and we use an
assortment of network instances in our experimental design (Section 4).

Agents are indexed 𝑖 = 1, 2, … , 𝑁. Agent 𝑖’s neighbors are the agents that receive out-edges from 𝑖, so
neighbor relationships are not reciprocal. Each agent keeps a list of its neighbor indexes, sorted in ascending
order. The list of neighbors is indexed by 𝑗 = 1, 2, … 𝑑𝑖, where 𝑑𝑖 is the out-degree of agent 𝑖 (Figure 1b).
Agents also track their own current level of belief 𝑦𝑖, internal bias 𝑏𝑖0, and multipliers 𝑏𝑖𝑗 for neighbor 𝑗’s
belief, which can be thought of as weights for the network edges. As a practical example, 𝑦𝑖 may be a
person’s current opinion of a political topic, 𝑏𝑖0 is their intrinsic or baseline opinion that cannot be changed
by others, and 𝑏𝑖𝑗 is the weight the person places on the opinions held by their friends. When we need to
explicitly compare these values between different time steps, we use superscript (𝑡) to index them by time
step 𝑡, as in 𝑦(𝑡).

(a) (b)

Figure 1: (a) Example of directed Erdős-Rényi random graph with 15 nodes. Arrows point from an agent
to an agent’s neighbor. This structure model allows for a different number of neighbors for each agent. (b)
Data structures inside an agent. This example shows the agent with index 𝑖 = 12.

3.2 Simulation Procedure

First we explain how updates are scheduled from the system-level perspective, then we describe interactions
at the agent level, and finally we provide pseudocode for the simulation algorithm. Code for this study is
written in Python 3; noteworthy packages include the agent-based simulation framework Mesa (Masad and
Kazil 2015), the NetworkX package for graph structures and algorithms (Hagberg et al. 2008), and
Statsmodels for regression analysis (Seabold and Perktold 2010). Complete code and other supporting files
for this study are available in our online appendix (Garee 2018).

Our simulation uses a scheduling approach we call batched simultaneous update. We divide the
population into batches of equal size. At each time step, batches are updated one at a time in either a fixed
or random sequence. When a batch is updated, all agents in the batch update simultaneously. Simultaneous
update takes two steps: first, all agents in an updating batch compute their new belief value 𝑦𝑖 but store it

943

Garee, Chan, and Wan

in a temporary variable, then all agents in the batch update their 𝑦𝑖 with the value of their temporary
variable. This two-step approach ensures that the update sequence within a batch does not matter, though
the sequence in which batches are visited may affect the outcome. Once all agents in the population update,
their belief values may be normalized by dividing them by the sum of all 𝑦𝑖 values, if the trial settings call
for normalization of 𝑦𝑖. This batched update mechanism mimics a real-world situation in which people first
exchange ideas within a small group of acquaintances and then extend the idea exchange to other groups.

Agents are assigned to batches 1, 2, … , 𝑛𝑏 uniformly at random, independent of the network structure.
If 𝑛𝑏 = 1, all agents are in the same batch, so the full population updates simultaneously (as in the original
DeGroot model). If 𝑛𝑏 = 𝑁, all agents are in different batches (of size 1), so the full population updates
sequentially.

Some trials create uninformed agents that have zero initial belief. If an agent is uninformed, it updates
its belief value only if it has one or more informed neighbors, at which time it becomes informed
permanently and updates normally. This concept can appear in information diffusion models.

Agents interact only with their neighbors. Agent 𝑖 computes its level of belief 𝑦𝑖 using the linear
regression model

𝑦𝑖
(𝑡)

= 𝑏𝑖0 + ∑ 𝑏𝑖𝑗𝑥𝑖𝑗
(𝑡)

𝑑𝑖

𝑗=1

+ 𝜀i
(𝑡)

, (1)

 where 𝜀𝑖

(𝑡) is a random error term generated each time step and 𝑥𝑖𝑗
(𝑡) is the current belief value for agent

𝑖’s 𝑗th neighbor (i.e. if the 𝑗th neighbor of agent 𝑖 has index 𝑘, then 𝑥𝑖𝑗 = 𝑦𝑘), and the other terms are as
defined previously in Section 3.1. The simulation procedure for a single trial is described in Table 1.

Table 1: Simulation procedure for a single trial.

Trial Initialization: Construct network from structure model family and parameters

For each replication of trial:
Replication Initialization:
 Generate 𝑏𝑖0, 𝑏𝑖𝑗, and 𝜀𝑖

(0) for each agent
 Set 𝑦𝑖

(0)
= 𝑏𝑖0 + 𝜀𝑖

(0) as initial level of belief

For each time step 𝑡:
 For each batch:
 For each agent 𝑖 in batch:
 Generate 𝜀𝑖

(𝑡)
 Set temporary variable for new belief using Eq. 1

 For each agent 𝑖 in batch:
 Set 𝑦𝑖

(𝑡) equal to temporary variable

 Set 𝑌(𝑡) = ∑ 𝑦𝑖

(𝑡)𝑁
𝑖=1

 If using 𝑦𝑖 normalization, set 𝑦𝑖
(𝑡)

= 𝑦𝑖
(𝑡)

 / 𝑌(𝑡) for each agent 𝑖

 Collect time-step level data
Collect system-level data

944

Garee, Chan, and Wan

3.3 Response Variables

Our focus in this study is to explore linearity in the system-level belief, achieved with a multiple linear
regression model of the form

𝑌(𝑡) = 𝐵0

(𝑡)
+ 𝐵1

(𝑡)
X1

(t)
+ 𝐵2

(𝑡)
X2

(t)
+ ⋯ + 𝐵𝑑∗

(𝑡)
𝑋𝑑∗

(𝑡)
+ 𝐸(𝑡)

 where 𝑌(𝑡) is the system-level belief, 𝑋𝑗

(𝑡) represents the aggregated belief of neighbor 𝑗 across the
network, for 𝑗 = 1, 2, … , 𝑑∗ ; 𝑑∗ is the maximum out-degree over all agents in the network; 𝐵0 is the
system’s internal bias; 𝐵𝑗 is the multiplier for the aggregation of neighbor 𝑗’s beliefs; and 𝐸(𝑡) is the random
error term. These values are captured each time step, so they are indexed by time. These interpretations are
based on (Chan 2017). The aggregated values 𝑌(𝑡) and 𝑋𝑗

(𝑡) are the dependent and independent terms,
respectively, in our regression model and are our key response variables obtained from the simulation:

𝑌(𝑡) = ∑ 𝑦𝑖
(𝑡)

𝑁

𝑖=1

 and 𝑋𝑗
(𝑡)

= ∑ 𝑥𝑖𝑗
(𝑡)

 [𝑗 ≤ 𝑑𝑖]

𝑁

𝑖=1

.

 (Since 𝑑𝑖 can vary between agents, 𝑥𝑖𝑗

(𝑡) may not be defined for all values of 𝑗 for some agents. The
Iverson bracket [𝑗 ≤ 𝑑𝑖] resolves this.) The set of all 𝑋𝑗

(𝑡) terms for a single time step form the vector 𝐗(𝑡).
Together, 𝑌(𝑡) and 𝐗(𝑡) make up a single observation of system-level responses for the time step.

We validated our simulation framework with two tests. First, we built a DeGroot model (1974) and
observed that the aggregated system-level belief converged as expected. Then, we replicated Chan’s (2017)
model and obtained qualitative agreement with his system-level regression results.

4 EXPERIMENTAL DESIGN

In this paper, a factor is an input variable that may have an impact on the responses, levels are values a
factor may be assigned, a trial is a combination of levels for each experimental factor (one row from the
design matrix, also known as a design point), and a replication is one repetition of a trial using different
initial randomization settings. We run a replication for 500 time steps and replicate each trial 100 times.
The ten experimental factors we use for this study affect network characteristics, update scheduling, and
agent interaction. These factors and their associated levels are:

1. Number of agents 𝑁. 100, 500, or 1000.
2. Network structure instance. For each level of 𝑁, we create 14 structure instances, discussed below.
3. Number of batches 𝑛𝑏. 1, 5, 𝑁/4, or 𝑁. For our chosen levels of 𝑁, we ensure 𝑁 mod 𝑛𝑏 = 0.
4. Update sequence. Batches are updated each time step in either a fixed or random sequence.
5. Distribution of 𝑏ij coefficients. Uniform(0, 1), Uniform(-1, 1), or Normal(0, 1).
6. 𝑏i0 coefficients. Initialize using the distribution for 𝑏ij or set to zero to remove internal agent bias.
7. Normalize 𝑏𝑖0 and 𝑏𝑖𝑗 coefficients. Within each agent, across the population, or do not normalize.
8. Variance of error terms. Error terms 𝜀𝑖 are sampled from the normal distribution with mean zero

and variance 𝜎2 of 0.5, 1.0, or 2.0.
9. Normalize 𝑦𝑖 each time step. Yes or No.
10. Fraction of uninformed agents. 0, 0.05, or 0.25. This fraction of agents have 𝑦𝑖 set to zero and are

flagged as uninformed at the start of the run.

Each factor affects one or more high-level features of the simulation that may influence the linearity of
system-level responses. Factors 1 and 2 affect the size and shape of the network, while Factors 3 and 4
control agent update scheduling. Factors 5 to 8 govern the regression terms for the update equation (1)

945

Garee, Chan, and Wan

within each agent. Factor 9 alters the scale of belief values, and Factor 10 lets us see how diffusion of initial
belief affects the results.

A network structure instance is a particular realization of a network model for a given structure family,
input parameters for that family (including network size 𝑁), and a randomization seed, when applicable.
The network structure families we use are scale-free, directed random tree, Erdős-Rényi random graph, and
random k-out. Two to four instances from each family are made using several sets of input parameters and
randomization seeds. We select inputs that produce a satisfactory range of values for the standard network
measures of mean out-degree centrality, assortativity, reciprocity, and efficiency.

A full factorial crossed design for this experiment is written as 23 × 35 × 41 × 141 and requires a
costly 108K trials. Instead, we adopt a data farming view and use a nearly orthogonal Latin Hypercube
(NOLH) design; this choice is motivated by Sanchez and Wan (2015). The NOLH design tool we use
(Sanchez 2011) reduces our experiment to 255 trials. The final experimental design matrix uses all ten
factors and their associated levels defined earlier and is available with our online appendix (Garee 2018).

5 ANALYSIS & RESULTS

5.1 Data Processing

The first stage of analysis is to convert simulation outputs into a suitable analysis database. Figure 2 gives
a schematic overview of our data processing activity. To process a single trial, we group the simulation
outputs (𝑌(𝑡), 𝐗(𝑡)) by time step from across all replications of that trial. Within each time step, data
cleaning removes outliers (e.g. due to floating point error or very extreme values) based on the standard
1.5-IQR (interquartile range) rule and drops observations with null 𝑌 values (e.g. caused by 𝑌 growing to
infinity). Using the remaining observations, we fit a main-effects only linear regression model of the form
described in Section 3.3, record the model’s adjusted R2 (𝑅𝑎𝑑𝑗

2), and assess 𝑅𝑎𝑑𝑗
2 as Significant if the

model’s p-value is below 0.10 or as Not Significant otherwise. This is done for each time step of the trial.
𝑅𝑎𝑑𝑗

2 and the significance rating can move unpredictably between time steps due to randomness, so we
apply to both parameters a smoothing function and the prefix “MA” for moving average. For 𝑅𝑎𝑑𝑗

2 , we use
a five-time step simple moving average on 𝑅𝑎𝑑𝑗

2 (the arithmetic mean of the 𝑅𝑎𝑑𝑗
2 values for the last five

time steps) and call the result MA-𝑅𝑎𝑑𝑗
2 . For the smoothed significance rating, which we call MA-Sig., we

assess the rating at each time step as the rating of the most recent sequence of length three or greater: Over
time, as we observe three Significant time steps in a row (based on 𝑅𝑎𝑑𝑗

2), we begin assigning MA-Sig. as
Significant, until we observe three Not Significant time steps in a row and switch to assigning MA-Sig. as
Not Significant, and so on, switching back and forth as needed.

MA-𝑅𝑎𝑑𝑗
2 and MA-Sig. drive a function that classifies each time step as Linear, Not Linear, or Invalid.

The Invalid classification is applied if either MA-𝑅𝑎𝑑𝑗
2 or MA-Sig. is undefined, which seems to occur

when 𝑌 or elements of 𝐗 grow too large or have infinite variance, or when the residual degrees of freedom
for the model is too low. (The maximum degree of the network structure governs the number of elements
in 𝐗 and number of factors in the regression model, so trials with large networks and highly-connected
agents require more replications to potentially be valid.) We also classify cases where MA-𝑅𝑎𝑑𝑗

2 is exactly
equal to unity as Invalid; rather than indicating a perfect fit for the regression model on the simulation
output, this occurs for some trials with very extreme 𝑌 values, many outliers, or otherwise problematic data.
A valid time step is Linear if MA-𝑅𝑎𝑑𝑗

2 ≥ 0.50 and MA-Sig. is Significant. Otherwise, it is classified as
Not Linear. (Note: Linear and Not Linear are defined only with respect to our goal of fitting time step data
with a model having the same functional form as the update equation used by the agents. We acknowledge
that there may exist linear models that strongly fit data that we classify as Not Linear, but they must contain
explanatory factors outside the current scope.) The values for MA-𝑅𝑎𝑑𝑗

2 , MA-Sig., and Classification for
each time step, and for each trial, populate the analysis database, which we use in concert with the
experimental design matrix for all subsequent analysis.

946

Garee, Chan, and Wan

Figure 2: Schematic for data processing and analysis. Each independent replication of a trial yields one
observation of the system (𝑌(𝑡), 𝐗(𝑡)) for every time step 𝑡. For each time step, the set of observations are
cleaned and put into a linear regression model of the form defined in Section 3.3 to produce an 𝑅𝑎𝑑𝑗

2 value
and Significance rating based on the p-value. Due to randomness, these values can move erratically between
time steps, so we apply a smoothing function and the prefix “MA” for moving average. The smoothed data
classifies each time step as Linear, Not Linear, or Invalid, ending data processing and creating the Analysis
Database. This processed data is sliced per trial for time series studies, or per time step to support regression
analysis on our experimental design and finding classification rates for each factor-level in the design
matrix.

5.2 Analysis

Our first two analysis products, factor-level classification and experimental design regression, consider the
system at a single time step (𝑡 = 500), while the third is a time series study. First, for each factor-level in

 Trial 1 Trial 2
⋯

𝑡 MA-𝑅𝑎𝑑𝑗
2 /MA-Sig./Class. MA-𝑅𝑎𝑑𝑗

2 /MA-Sig./Class.

1 ~/~/~ ~/~/~

2 ~/~/~ ~/~/~ ⋯

⋮ ⋮ ⋮

Analysis Database

Simulation Output Database Regression on Simulation Output
100 observations for Trial 1, =1

+ Data cleaning
+ Linear regression model

1 𝑅𝑎𝑑𝑗
2 , n an pair

500 𝑅𝑎𝑑𝑗
2 , n an pairs

Moving Average / Smoothing

Classifier

500 (MA- 𝑅𝑎𝑑𝑗
2 , MA-Significance,

Classification) tuples for Trial 1

Analysis Database

Repeat for

each time 𝑡

Repeat for

each trial

Time Series/State
Change Study

Factor-Level
Classification

Regression on
Experimental Design

Trial 1 Replication 1 𝑡 = 1: 𝑌(1), 𝐗(1)
 𝑡 = 2: 𝑌(2), 𝐗(2)
 ⋮
 Replication 2 𝑡 = 1: 𝑌(1), 𝐗(1)
 ⋮
 ⋮ ⋮
 Replication 100 𝑡 = 1: 𝑌(1), 𝐗(1)
 ⋮
Trial 2

⋮

947

Garee, Chan, and Wan

the experimental design, we filter the analysis database by trials containing that factor-level and calculate
the fraction of trials with each of the three classifications (Linear, Not Linear, and Invalid). This provides
an intuitive way of making qualitative assessments of how the factors affect system-level linearity. A dot
plot of this data (Figure 3) lets us to make several observations:

• Updating the population in a single batch is significantly worse for linearity; 𝑁 batches are best.
• Randomizing the update sequence of batches has little effect on linearity.
• Generating 𝑏𝑖𝑗 values from the Uniform(0, 1) distribution produces linear results significantly more

often than when we use Uniform(-1, 1) or Normal(0, 1), which both have mean of zero.
• Normalizing all 𝑏𝑖0 and 𝑏𝑖𝑗 values per agent yields the most linear trials.
• Normalizing 𝑦𝑖 may be beneficial because it reduces the chance of a trial being classified as invalid.

We do not include the network structure in this part of the analysis, because each structure instance is

a direct function of 𝑁 and also has a very low sample size (10–20).
Next, we build regression models at 𝑡 = 500 on the experimental design using MA-𝑅𝑎𝑑𝑗

2 as the
dependent variable and omitting any Invalid data points. (The 𝑅𝑎𝑑𝑗

2 of these models is only indirectly related
to the 𝑅𝑎𝑑𝑗

2 from the raw simulation output that underpins MA-𝑅𝑎𝑑𝑗
2 .) The initial main effects model with

the ten original design factors performs adequately (𝑅𝑎𝑑𝑗
2 = 0.513). We slightly improve on this baseline

model by proxying the network structure factor, a categorical variable, with the maximum degree 𝑑𝑖 of the
network, a discrete variable. Surprisingly, if we replace the categorical levels 1, 5, 𝑁/4, and 𝑁 for number
of batches with the discrete number of batches 𝑛𝑏, we find a significantly worse model fit. The model we
select as best contains only five factors: the categorical batch quantity level, the distribution function for
𝑏𝑖𝑗 , whether we normalize 𝑦𝑖 , the way we normalize 𝑏𝑖0 and 𝑏𝑖𝑗 , and the maximum degree 𝑑𝑖 of the
network (a proxy factor for network structure instance). This model’s 𝑅𝑎𝑑𝑗

2 is 0.532 and is statistically
significant. All factors are significant and have low variance inflation factors. Table 2 summarizes the
model evolution process, and Figure 4 contains diagnostic plots of the best regression model. Full model
results are available in the online appendix, but we provide a brief interpretation here:

• Increasing the number of batches causes MA-𝑅𝑎𝑑𝑗

2 to monotonically increase, but the rate of
increase falls off rapidly above 𝑛𝑏 = 5.

• Selecting Uniform(0, 1) for the 𝑏𝑖0 and 𝑏𝑖𝑗 distribution is associated with higher values of MA-
𝑅𝑎𝑑𝑗

2 .
• Normalizing 𝑏𝑖0 and 𝑏𝑖𝑗 values per agent instead of population-wide or not at all is linked to higher

MA-𝑅𝑎𝑑𝑗
2 .

• Normalizing 𝑦𝑖 and the maximum network degree are statistically significant but have very minor
coefficients. Removing these factors from the model lowers 𝑅𝑎𝑑𝑗

2 to 0.507, so we instead retain
them.

These observations agree strongly with our earlier comments on factor-level classification percentages.

We finish our regression analysis by constructing a model with main effects and two-way interaction terms.
One of the highest-quality interaction models we found uses a slightly different set of design factors, created
from the main effects model by removing maximum degree 𝑑𝑖 and adding whether the update sequence is
randomized, the variance of the error distribution, and whether 𝑏𝑖0 is set equal to zero. Backward
elimination is used to selectively remove low p-value interaction terms, yielding a statistically significant
model with 𝑅𝑎𝑑𝑗

2 = 0.754. Diagnostic plots of this model are similar to Figure 4 but with tighter
distributions.

948

Garee, Chan, and Wan

Figure 3: Dot plot of fraction of trials with each classification per level for each factor at 𝑡 = 500. Some
observations from this include: the update sequence setting has little effect on linearity, but moderate effect
on trial validity; using only one batch is detrimental to linearity; and normalizing 𝑦𝑖 leads to more valid—
but not linear—trials. The network structure factor is omitted from this plot.

Figure 4: Diagnostic plots of main effects only model of experimental design regressed on MA-𝑅𝑎𝑑𝑗

2 . This
model uses five of the ten experimental factors and achieves 𝑅𝑎𝑑𝑗

2 = 0.532.

949

Garee, Chan, and Wan

Table 2: Summary of regression models fit to experimental design with dependent variable MA-𝑅𝑎𝑑𝑗
2 at

time step 𝑡 = 500. All results in the table are statistically significant (p-value < 0.001).

Regression Model on Experimental Design (𝒕 = 𝟓𝟎𝟎) 𝑹𝒂𝒅𝒋
𝟐

 Main Effects Only

Baseline: All 10 original factors 0.513
Proxy network structure (categorical) with max 𝑑𝑖 (discrete) 0.533
Proxy batch quantity level (categorical) with batch quantity (discrete) 0.388
Best fit: baseline, omit 𝑁 and randomize update sequence, use max 𝑑𝑖 (8 factors) 0.538
Best model: batch quantity level, 𝑏𝑖𝑗 dist., normalize 𝑏𝑖0 & 𝑏𝑖𝑗, normalize 𝑦𝑖, max 𝑑𝑖 (5 factors) 0.532
 Main Effects and Two-Way Interactions
Baseline: All 10 original factors & all interactions – input rank exceeds observation count n/a
All 10 factors, proxy network structure (categorical) with max 𝑑𝑖 (discrete) 0.739
Best fit with all interactions: baseline, omit 𝑁 and uninformed rate, proxy network structure 0.761
Best model: 7 factors, proxy network structure, backward eliminate interaction terms 0.793

Finally, we consider how trial classification (Linear, Not Linear, or Invalid) changes over time, and

whether linearity continues in the future once it appears. Some trials have identical classification patterns
and can be merged, reducing the data from 255 trials to 94 patterns. This data reveals that the classifications
of a small number of time steps do not help predict long-run activity (Figure 5). A single Linear time step
can be part of a trial where the future is always Linear, where the system moves between classifications
frequently, or as a random Linear time step as part of a mostly Not Linear trial.

Figure 5: Trials are classified Linear, Not Linear, or Invalid at each time step based on MA-𝑅𝑎𝑑𝑗

2 and MA-
Sig., and trials with identical classification patterns are merged. This figure shows the 94 distinct
classification patterns (rows), sorted left to right by time step (columns). The solid green bar at the bottom
of the figure represents trials that are Linear for every time step (40 trials). Single time step observations
do not predict future performance.

950

Garee, Chan, and Wan

6 CONCLUSIONS AND FUTURE WORK

In this paper, we use experimental design to build a collection of agent-based social influence networks
populated by agents that exchange belief via a linear regression model. We then investigate the behavior of
the aggregated, system-level belief using state transition probabilities, regression analysis, and a custom
classifier of trial linearity. The hypothesis is that linear agent-level interactions would lead to linear system-
level responses, but we identify several model features that challenge this assumption.

Features that negatively affect system-level linearity include updating the full agent population
simultaneously as a single batch, generating agent’s 𝑏𝑖𝑗 coefficients from a zero-mean probability
distributions, and choosing not to normalize 𝑏𝑖0 and 𝑏𝑖𝑗 values per agent. In real-world influence networks,
people generally exchange ideas within small groups of acquaintances over time, so multiple update batches
are more similar to reality. Also, the trust that real people have in their acquaintances (i.e. 𝑏𝑖𝑗) is unlikely
to be zero, so a zero-mean distribution may be inappropriate—if people trust their neighbors, the whole
system may be more well-behaved. Therefore, our experimental results suggest that actual influence
networks may tend more toward linearity.We observe no factor-level that completely prevents linearity on
its own. Half of our experimental factors have no real effect on classification for the range of levels we
selected, namely the population size, randomizing the batch update sequence, fixing (or not) agents’ internal
bias 𝑏𝑖0 to zero, error variance, and the initial uninformed rate of agents. Testing these factors over a greater
range of levels could justify omitting them from later experiments. Normalizing 𝑦𝑖 each time step is
valuable not for affecting linearity but rather for reducing trial invalidation. These findings may help
analysts design more effective simulations in the future. Lastly, if we wish to predict long-run behavior
with respect to classifying a system as linear, evaluating single time steps is inadequate. Further study is
required to understand how long-run behavior relates to the experimental design factors.

Many rich research areas remain that can build upon this work through small changes to the existing
model, as the structure of our simulation allows us to easily test more intricate scenarios. We assess system-
level linearity based strictly on regression models of the same functional form as the agent’s interaction
equation, but relaxing this definition and bringing new model features into the analysis may reveal new
insights. Allowing self-loops in the network structure would see agents factoring their current belief value
into the update process; applying an autoregressive-type model may be interesting. It could be worthwhile
to explore the effect that linearity has on model behavior metrics such as speed of belief adoption. Instead
of updating the full population each time step, agents could update stochastically or subject to conditions
about their neighbors (e.g. homophily/thresholding, where agents ignore opinions too different from their
own). A more substantial change to our simulation would be to have dynamic network structures, creating
and destroying links over time. Finally, additional network metrics in the experimental design regression
analysis could shed light on the influence of network structure on system-level linearity of belief.

REFERENCES

Acemoglu, D., M. A. Dahleh, I. Lobel, and A. Ozdaglar. 2011. “Bayesian Learning in Social Networks”.
The Review of Economic Studies 78(4):1201-1236.

Banerjee, A., E. Breza, A. G. Chandrasekhar, and M. Mobius. 2016. “Naïve Learning with Uninformed
Agents”. Working paper.

Chan, W. K. V. 2017. “Agent-Based and Regression Models of Social Influence”. In Proceedings of the
2017 Winter Simulation Conference 1395-1406, edited by W.K.V.Chan et al., Piscataway, New Jersey:
IEEE.

Chandrasekhar, A. G., H. Larreguy, and J. P. Xandri. 2015. “Testing Models of Social Learning on
Networks: Evidence from a Lab Experiment in the Field”. Working Paper 21468, National Bureau of
Economic Research.

Cheng, S.L., W.H. Lin, F. K. H. Phoa, J.S. Hwang, and W.C. Liu. 2015. “Analysing the Unequal Effects
of Positive and Negative Information on the Behaviour of Users of a Taiwanese On-Line Bulletin
Board”. PLoS ONE 10(9):e0137842.

951

Garee, Chan, and Wan

DeGroot, M. H. 1974. “Reaching a Consensus”. Journal of the American Statistical Association 69(345):
118-21.

Garee, M. 2018. “Online Appendix, Garee WSC 2018”. Available via https://github.com/mgaree/wsc2018.
Golub, B. and M. O. Jackson. 2010. “Naïve Learning in Social Networks and the Wisdom of Crowds”.

American Economic Journal: Microeconomics 2(1):112-149.
Golub, B. and E. Sadler. 2016. “Learning in Social Networks”. In The Oxford Handbook of the Economics

of Networks. Oxford University Press.
Hagberg A. A., D. A. Schult, and P. J. Swart. 2008. “Exploring network structure, dynamics, and function

using NetworkX”. In Proceedings of the 7th Python in Science Conference (SciPy2008) 11-15.
Pasadena, CA.

Jackson, M. O. 2010. Social and Economic Networks. Princeton, NJ: Princeton University Press.
Leenders, R. T. A. J. 2002. “Modeling Social Influence through Network Autocorrelation: Constructing the

Weight Matrix”. Social Networks 24(1):21-47.
Masad, D. and J. Kazil. 2015. “Mesa: An Agent-Based Modeling Framework”. In Proceedings of the 14th

Python in Science Conference (SciPy 2015) 53-60. Austin, TX.
Mavrodiev, P., C. J. Tessone, and F. Schweitzer. 2013. “Quantifying the Effects of Social Influence”.

Scientific Reports 3(2013):1360.
Rendell, L., R. Boyd, D. Cownden, M. Enquist, K. Eriksson, M. W. Feldman, L. Fogarty, S. Ghirlanda, T.

Lillicrap, and K. N. Laland. 2010. “Why Copy Others? Insights from the Social Learning Strategies
Tournament”. Science 09 Apr 2010:208-213.

Sanchez, S. M. 2011. “NOLHdesigns spreadsheet”. Accessed 17.04.2018. Available online via
http://harvest.nps.edu/.

Sanchez, S. and H. Wan. 2015. “Work Smarter, Not Harder: A Tutorial on Designing and Conducting
Simulation Experiments”. In Proceedings of the 2015 Winter Simulation Conference 1795-1809,
L.Yilmaz et al., Piscataway, New Jersey: IEEE.

Seabold, S. and J. Perktold. 2010. “Statsmodels: Econometric and Statistical Modeling with Python”. In
Proceedings of the 9th Python in Science Conference (SciPy 2010) 57-61. Austin, TX.

Touri, B. and A. Nedic. 2009. “Distributed Consensus over Network with Noisy Links”. In Proceedings of
the 12th International Conference on Information Fusion 146-154. Seattle, WA.

AUTHOR BIOGRAPHIES

MICHAEL J. GAREE is a Ph.D. student in the School of Industrial Engineering at Purdue University. He
holds a M.S. in Operations Research from the Air Force Institute of Technology and a B.S. in Physics and
Mathematics from Ohio Northern University. His research interests include agent-based simulation, social
network simulation, and software engineering. He has been an Air Force officer since 2010. His email
address is mgaree@purdue.edu.

WAI KIN (VICTOR) CHAN is Professor of the Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua
University, China. He holds a Ph.D. in industrial engineering and operations research from University of
California, Berkeley. His research interests include discrete-event simulation, agent-based simulation, and
their applications in social networks, service systems, transportation, energy markets, and manufacturing.
His e-mail address is chanw@sz.tsinghua.edu.cn.

HONG WAN is Associate Professor in the School of Industrial Engineering at Purdue University. Her
research interests include design and analysis of simulation experiments, blockchain simulation and
mechanism design, applied statistics, quality management, and healthcare engineering. She is a member of
INFORMS and ASA. Her web page is http://web.ics.purdue.edu/hwan and her email address is
hwan@purdue.edu.

952

