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ABSTRACT 

Consider an agent-based social influence (belief adoption) network where agents share beliefs with 
neighbors using a linear regression model. One relevant question is: can aggregated, system-level belief 
also be fit by a linear regression model? Earlier work demonstrated several scenarios where system-level 
linearity of belief holds. This paper extends that research, varying model and simulation factors through 
experimental design. When linearity does not hold, we isolate the responsible factors. Finally, we 
investigate whether system-level linearity is as an absorbing state, that is, when system-level linearity is 
present at some time t, it continues to hold for all later times. 

1 INTRODUCTION 

Agent-based simulation is a useful tool for building and analyzing social influence networks—systems in 
which agents exchange information with their neighbors and influence each other’s levels of belief over 
time. In this study, agents update their beliefs via a linear model, based on a weighted sum of their 
neighbors’ beliefs and modified by internal bias and white noise. Similar update functions are used 
elsewhere in social network analysis (Jackson 2010) and sensor network consensus modeling (Touri and 
Nedic 2009). We build system-level measures of influence by aggregating values from each agent. One 
reasonable hypothesis is that when agents interact in a linear way, the system-level measures may also 
respond in a linear fashion. Chan (2017) finds that for a particular network configuration, this idea is valid. 
To examine this hypothesis more completely, we build upon the previous work by varying model and 
simulation elements through experimental design, identifying factors that impact the linearity of system-
level belief, and exploring whether individual observations of system-level linear behavior make good 
predictors of steady-state activity. 

In this research, we choose to focus only on linear models and behaviors. Linear systems are widely 
used in literature and in practice, so we seek to explore their validity as social influence network models. 
However, we do not make any claims to the importance of linear systems to this topic, nor wish to imply 
that linear systems are more or less valid than non-linear ones.  

We identify ten factors that affect the structure and properties of the network, the schedule used for 
agent updates, and the settings that control the agent’s initial states. We then build a Nearly Orthogonal 
Latin Hypercube design to systematically study the behavior of the system under different factor settings. 
The key constant across all trials is the agents’ use of a linear model to update their beliefs. We find that 
linear agent interactions in most cases do not generate linear system-level responses. Given the ten 
experimental factors in our design, three factors can significantly hinder whether we observe linear 
responses, and five factors have little to no effect for the range of levels used. However, no single factor on 
its own is observed to absolutely prevent system-level linear responses. Also, we observe that the degree to 
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which aggregated belief can be fit by a linear model can vary over time (i.e., linearity is not an absolute 
absorbing state in general), so measuring linear behavior for some single time 𝑡 does not make for a perfect 
predictor of future performance. 

The rest of this paper is organized as follows. We provide a brief review of the literature related to our 
topic in Section 2. In Section 3, we develop the model. In Section 4, we describe the experimental design 
for the study. We present our analysis methods and results in Section 5, and we provide conclusions and 
discuss future work in Section 6. 

2 BACKGROUND 

2.1 Social Influence and Learning Networks 

The terms contagion and social influence are often used interchangeably to describe the process of altering 
behavior or belief due to communication and comparison among actors in a social system (Leenders 2002). 
Social learning is the process of “learning through observation or interaction with other individuals” 
(Rendell et al. 2010). In social network analysis, learning tends to be used when agents in influence 
networks seek an optimal behavior or true belief. 

Social learning in network analysis is broadly divided into diffusion models and information 
aggregation models (Banerjee et al. 2016). Diffusion looks at the spread of information through a 
population; information aggregation focuses on convergence of opinions. The Bass model is a 
straightforward model that describes binary adoption of a belief or behavior without explicitly using the 
network structure (Jackson 2010). DeGroot (1974) developed a simple linear updating model to describe 
information aggregation. There, agents begin with initial estimated beliefs, and all agents update 
simultaneously, replacing their current level of belief with a weighted average of their neighbors’ belief 
levels and their own. Agents will converge to a consensus value if the network structure meets certain 
conditions of aperiodicity and communication (DeGroot 1974; Golub and Jackson 2010).  

A second way of dividing social learning is into Bayesian models and DeGroot models. Bayesian 
models focus on learning by observing the actions of neighbors and the payoffs they receive, while DeGroot 
models learn myopically from communicating and processing only the current system state (Acemoglu et 
al. 2011). The DeGroot model remains a seminal model of information transmission and social learning 
analysis (Golub and Sadler 2016; Banerjee et al. 2016; Chandrasekhar et al. 2015). 

2.2 Regression Analysis 

Regression analysis is popular in social influence studies. Here, we comment on several recent examples. 
Mavrodiev et al. (2013) studied indirect social influence in a sequential decision making experiment with 
humans. Participants had access to the mean of all previous decisions, but did not interact directly with 
other individuals. The authors found a statistically significant fit for a linear regression model relating the 
amount individuals changed their decision over time and the distance between their previous decision and 
the current mean. Similarly, Cheng et al. (2015) used logistic regression on opinion data from a Taiwanese 
online bulletin board. Their results showed that users are more likely to post comments that match the 
sentiment (approval or disapproval) in recent posts, while users are indifferent to the average sentiment of 
the entire history of comments. Finally, Chan (2017) modeled a social influence network where agents 
interact using linear regression equations. For the particular network configurations used, he found that the 
aggregated system-level belief could be well-described using a linear regression model. Those findings are 
a key motivation for the present paper. 
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3 MODEL 

3.1 Networks and Agents 

We use agent-based simulation to model a social influence network with 𝑁 agents (nodes). Each agent is 
connected to one or more other agents using directed edges; self-loops are not permitted. The degree of 
each agent and the distribution of degree across the network depend on the network structure model family 
(e.g. scale-free, random, etc.) for a given trial. We use only static network structures for this study, so the 
set of agents and their edges do not change during a run of the simulation (Figure 1a). Particular network 
instances are a function of the structure family, network parameters, and randomness, and we use an 
assortment of network instances in our experimental design (Section 4). 

Agents are indexed 𝑖 = 1, 2, … , 𝑁. Agent 𝑖’s neighbors are the agents that receive out-edges from 𝑖, so 
neighbor relationships are not reciprocal. Each agent keeps a list of its neighbor indexes, sorted in ascending 
order. The list of neighbors is indexed by 𝑗 = 1, 2, … 𝑑𝑖, where 𝑑𝑖 is the out-degree of agent 𝑖 (Figure 1b). 
Agents also track their own current level of belief 𝑦𝑖, internal bias 𝑏𝑖0, and multipliers 𝑏𝑖𝑗 for neighbor 𝑗’s 
belief, which can be thought of as weights for the network edges. As a practical example, 𝑦𝑖 may be a 
person’s current opinion of a political topic, 𝑏𝑖0 is their intrinsic or baseline opinion that cannot be changed 
by others, and 𝑏𝑖𝑗 is the weight the person places on the opinions held by their friends. When we need to 
explicitly compare these values between different time steps, we use superscript (𝑡) to index them by time 
step 𝑡, as in 𝑦(𝑡). 

 

       

(a)                                                                            (b) 

Figure 1: (a) Example of directed Erdős-Rényi random graph with 15 nodes. Arrows point from an agent 
to an agent’s neighbor. This structure model allows for a different number of neighbors for each agent. (b) 
Data structures inside an agent. This example shows the agent with index 𝑖 = 12. 

3.2 Simulation Procedure 

First we explain how updates are scheduled from the system-level perspective, then we describe interactions 
at the agent level, and finally we provide pseudocode for the simulation algorithm. Code for this study is 
written in Python 3; noteworthy packages include the agent-based simulation framework Mesa (Masad and 
Kazil 2015), the NetworkX package for graph structures and algorithms (Hagberg et al. 2008), and 
Statsmodels for regression analysis (Seabold and Perktold 2010). Complete code and other supporting files 
for this study are available in our online appendix (Garee 2018). 

Our simulation uses a scheduling approach we call batched simultaneous update. We divide the 
population into batches of equal size. At each time step, batches are updated one at a time in either a fixed 
or random sequence. When a batch is updated, all agents in the batch update simultaneously. Simultaneous 
update takes two steps: first, all agents in an updating batch compute their new belief value 𝑦𝑖 but store it 
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in a temporary variable, then all agents in the batch update their 𝑦𝑖  with the value of their temporary 
variable. This two-step approach ensures that the update sequence within a batch does not matter, though 
the sequence in which batches are visited may affect the outcome. Once all agents in the population update, 
their belief values may be normalized by dividing them by the sum of all 𝑦𝑖 values, if the trial settings call 
for normalization of 𝑦𝑖. This batched update mechanism mimics a real-world situation in which people first 
exchange ideas within a small group of acquaintances and then extend the idea exchange to other groups.  

Agents are assigned to batches 1, 2, … , 𝑛𝑏 uniformly at random, independent of the network structure. 
If 𝑛𝑏 = 1, all agents are in the same batch, so the full population updates simultaneously (as in the original 
DeGroot model). If 𝑛𝑏 = 𝑁, all agents are in different batches (of size 1), so the full population updates 
sequentially. 

Some trials create uninformed agents that have zero initial belief. If an agent is uninformed, it updates 
its belief value only if it has one or more informed neighbors, at which time it becomes informed 
permanently and updates normally. This concept can appear in information diffusion models. 

Agents interact only with their neighbors. Agent 𝑖  computes its level of belief 𝑦𝑖  using the linear 
regression model 

 

𝑦𝑖
(𝑡)

= 𝑏𝑖0 + ∑ 𝑏𝑖𝑗𝑥𝑖𝑗
(𝑡)

𝑑𝑖

𝑗=1

+ 𝜀i
(𝑡)

, (1) 

 
 where 𝜀𝑖

(𝑡) is a random error term generated each time step and 𝑥𝑖𝑗
(𝑡) is the current belief value for agent 

𝑖’s 𝑗th neighbor (i.e. if the 𝑗th neighbor of agent 𝑖 has index 𝑘, then 𝑥𝑖𝑗 = 𝑦𝑘), and the other terms are as 
defined previously in Section 3.1. The simulation procedure for a single trial is described in Table 1. 

Table 1: Simulation procedure for a single trial. 

Trial Initialization:  Construct network from structure model family and parameters 
  

For each replication of trial: 
Replication Initialization: 
 Generate 𝑏𝑖0, 𝑏𝑖𝑗, and 𝜀𝑖

(0) for each agent 
 Set 𝑦𝑖

(0)
= 𝑏𝑖0 + 𝜀𝑖

(0) as initial level of belief 
   
For each time step 𝑡: 
 For each batch: 
  For each agent 𝑖 in batch: 
   Generate 𝜀𝑖

(𝑡) 
   Set temporary variable for new belief using Eq. 1 
 
  For each agent 𝑖 in batch: 
   Set 𝑦𝑖

(𝑡) equal to temporary variable 
 
 Set 𝑌(𝑡) = ∑ 𝑦𝑖

(𝑡)𝑁
𝑖=1  

 If using 𝑦𝑖 normalization, set 𝑦𝑖
(𝑡)

= 𝑦𝑖
(𝑡)

 / 𝑌(𝑡) for each agent 𝑖 
  
 Collect time-step level data 
Collect system-level data  
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3.3 Response Variables 

Our focus in this study is to explore linearity in the system-level belief, achieved with a multiple linear 
regression model of the form 

 
𝑌(𝑡) = 𝐵0

(𝑡)
+ 𝐵1

(𝑡)
X1

(t)
+ 𝐵2

(𝑡)
X2

(t)
+ ⋯ + 𝐵𝑑∗

(𝑡)
𝑋𝑑∗

(𝑡)
+ 𝐸(𝑡) 

 
 where 𝑌(𝑡) is the system-level belief, 𝑋𝑗

(𝑡) represents the aggregated belief of neighbor 𝑗 across the 
network, for 𝑗 = 1, 2, … , 𝑑∗ ; 𝑑∗  is the maximum out-degree over all agents in the network; 𝐵0  is the 
system’s internal bias; 𝐵𝑗 is the multiplier for the aggregation of neighbor 𝑗’s beliefs; and 𝐸(𝑡) is the random 
error term. These values are captured each time step, so they are indexed by time. These interpretations are 
based on (Chan 2017). The aggregated values 𝑌(𝑡) and 𝑋𝑗

(𝑡)  are the dependent and independent terms, 
respectively, in our regression model and are our key response variables obtained from the simulation: 

 

𝑌(𝑡) = ∑ 𝑦𝑖
(𝑡)

𝑁

𝑖=1

            and             𝑋𝑗
(𝑡)

= ∑ 𝑥𝑖𝑗
(𝑡)

 [𝑗 ≤ 𝑑𝑖]

𝑁

𝑖=1

. 

 
 (Since 𝑑𝑖 can vary between agents, 𝑥𝑖𝑗

(𝑡) may not be defined for all values of 𝑗 for some agents. The 
Iverson bracket [𝑗 ≤ 𝑑𝑖] resolves this.) The set of all 𝑋𝑗

(𝑡) terms for a single time step form the vector 𝐗(𝑡). 
Together, 𝑌(𝑡) and 𝐗(𝑡) make up a single observation of system-level responses for the time step. 

We validated our simulation framework with two tests. First, we built a DeGroot model (1974) and 
observed that the aggregated system-level belief converged as expected. Then, we replicated Chan’s (2017) 
model and obtained qualitative agreement with his system-level regression results. 

4 EXPERIMENTAL DESIGN 

In this paper, a factor is an input variable that may have an impact on the responses, levels are values a 
factor may be assigned, a trial is a combination of levels for each experimental factor (one row from the 
design matrix, also known as a design point), and a replication is one repetition of a trial using different 
initial randomization settings. We run a replication for 500 time steps and replicate each trial 100 times. 
The ten experimental factors we use for this study affect network characteristics, update scheduling, and 
agent interaction. These factors and their associated levels are: 

 
1. Number of agents 𝑁. 100, 500, or 1000. 
2. Network structure instance. For each level of 𝑁, we create 14 structure instances, discussed below. 
3. Number of batches 𝑛𝑏. 1, 5, 𝑁/4, or 𝑁. For our chosen levels of 𝑁, we ensure 𝑁 mod 𝑛𝑏 = 0. 
4. Update sequence. Batches are updated each time step in either a fixed or random sequence. 
5. Distribution of 𝑏ij coefficients. Uniform(0, 1), Uniform(-1, 1), or Normal(0, 1). 
6. 𝑏i0 coefficients. Initialize using the distribution for 𝑏ij or set to zero to remove internal agent bias. 
7. Normalize 𝑏𝑖0 and 𝑏𝑖𝑗 coefficients. Within each agent, across the population, or do not normalize. 
8. Variance of error terms. Error terms 𝜀𝑖 are sampled from the normal distribution with mean zero 

and variance 𝜎2 of 0.5, 1.0, or 2.0. 
9. Normalize 𝑦𝑖 each time step. Yes or No. 
10. Fraction of uninformed agents. 0, 0.05, or 0.25. This fraction of agents have 𝑦𝑖 set to zero and are 

flagged as uninformed at the start of the run. 
 

Each factor affects one or more high-level features of the simulation that may influence the linearity of 
system-level responses. Factors 1 and 2 affect the size and shape of the network, while Factors 3 and 4 
control agent update scheduling. Factors 5 to 8 govern the regression terms for the update equation (1) 
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within each agent. Factor 9 alters the scale of belief values, and Factor 10 lets us see how diffusion of initial 
belief affects the results. 

A network structure instance is a particular realization of a network model for a given structure family, 
input parameters for that family (including network size 𝑁), and a randomization seed, when applicable. 
The network structure families we use are scale-free, directed random tree, Erdős-Rényi random graph, and 
random k-out. Two to four instances from each family are made using several sets of input parameters and 
randomization seeds. We select inputs that produce a satisfactory range of values for the standard network 
measures of mean out-degree centrality, assortativity, reciprocity, and efficiency. 

A full factorial crossed design for this experiment is written as 23 × 35 × 41 × 141 and requires a 
costly 108K trials. Instead, we adopt a data farming view and use a nearly orthogonal Latin Hypercube 
(NOLH) design; this choice is motivated by Sanchez and Wan (2015). The NOLH design tool we use 
(Sanchez 2011) reduces our experiment to 255 trials. The final experimental design matrix uses all ten 
factors and their associated levels defined earlier and is available with our online appendix (Garee 2018). 

5 ANALYSIS & RESULTS 

5.1 Data Processing 

The first stage of analysis is to convert simulation outputs into a suitable analysis database. Figure 2 gives 
a schematic overview of our data processing activity. To process a single trial, we group the simulation 
outputs (𝑌(𝑡), 𝐗(𝑡)) by time step from across all replications of that trial. Within each time step, data 
cleaning removes outliers (e.g. due to floating point error or very extreme values) based on the standard 
1.5-IQR (interquartile range) rule and drops observations with null 𝑌 values (e.g. caused by 𝑌 growing to 
infinity). Using the remaining observations, we fit a main-effects only linear regression model of the form 
described in Section 3.3, record the model’s adjusted R2 (𝑅𝑎𝑑𝑗

2 ), and assess 𝑅𝑎𝑑𝑗
2  as Significant if the 

model’s p-value is below 0.10 or as Not Significant otherwise. This is done for each time step of the trial. 
𝑅𝑎𝑑𝑗

2  and the significance rating can move unpredictably between time steps due to randomness, so we 
apply to both parameters a smoothing function and the prefix “MA” for moving average. For 𝑅𝑎𝑑𝑗

2 , we use 
a five-time step simple moving average on 𝑅𝑎𝑑𝑗

2  (the arithmetic mean of the 𝑅𝑎𝑑𝑗
2  values for the last five 

time steps) and call the result MA-𝑅𝑎𝑑𝑗
2 . For the smoothed significance rating, which we call MA-Sig., we 

assess the rating at each time step as the rating of the most recent sequence of length three or greater:  Over 
time, as we observe three Significant time steps in a row (based on 𝑅𝑎𝑑𝑗

2 ), we begin assigning MA-Sig. as 
Significant, until we observe three Not Significant time steps in a row and switch to assigning MA-Sig. as 
Not Significant, and so on, switching back and forth as needed. 

MA-𝑅𝑎𝑑𝑗
2  and MA-Sig. drive a function that classifies each time step as Linear, Not Linear, or Invalid. 

The Invalid classification is applied if either MA-𝑅𝑎𝑑𝑗
2  or MA-Sig. is undefined, which seems to occur 

when 𝑌 or elements of 𝐗 grow too large or have infinite variance, or when the residual degrees of freedom 
for the model is too low. (The maximum degree of the network structure governs the number of elements 
in 𝐗 and number of factors in the regression model, so trials with large networks and highly-connected 
agents require more replications to potentially be valid.) We also classify cases where MA-𝑅𝑎𝑑𝑗

2  is exactly 
equal to unity as Invalid; rather than indicating a perfect fit for the regression model on the simulation 
output, this occurs for some trials with very extreme 𝑌 values, many outliers, or otherwise problematic data. 
A valid time step is Linear if MA-𝑅𝑎𝑑𝑗

2  ≥ 0.50 and MA-Sig. is Significant. Otherwise, it is classified as 
Not Linear. (Note: Linear and Not Linear are defined only with respect to our goal of fitting time step data 
with a model having the same functional form as the update equation used by the agents. We acknowledge 
that there may exist linear models that strongly fit data that we classify as Not Linear, but they must contain 
explanatory factors outside the current scope.) The values for MA-𝑅𝑎𝑑𝑗

2 , MA-Sig., and Classification for 
each time step, and for each trial, populate the analysis database, which we use in concert with the 
experimental design matrix for all subsequent analysis. 
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Figure 2: Schematic for data processing and analysis. Each independent replication of a trial yields one 
observation of the system (𝑌(𝑡), 𝐗(𝑡)) for every time step 𝑡. For each time step, the set of observations are 
cleaned and put into a linear regression model of the form defined in Section 3.3 to produce an 𝑅𝑎𝑑𝑗

2  value 
and Significance rating based on the p-value. Due to randomness, these values can move erratically between 
time steps, so we apply a smoothing function and the prefix “MA” for moving average. The smoothed data 
classifies each time step as Linear, Not Linear, or Invalid, ending data processing and creating the Analysis 
Database. This processed data is sliced per trial for time series studies, or per time step to support regression 
analysis on our experimental design and finding classification rates for each factor-level in the design 
matrix. 

5.2 Analysis 

Our first two analysis products, factor-level classification and experimental design regression, consider the 
system at a single time step (𝑡 = 500), while the third is a time series study. First, for each factor-level in 

 Trial 1 Trial 2 
⋯ 

𝑡 MA-𝑅𝑎𝑑𝑗
2 /MA-Sig./Class. MA-𝑅𝑎𝑑𝑗

2 /MA-Sig./Class. 

1 ~/~/~ ~/~/~  

2 ~/~/~ ~/~/~ ⋯ 

⋮ ⋮ ⋮  

 

Analysis Database

Simulation Output Database Regression on Simulation Output
100 observations for Trial 1,  =1

+ Data cleaning
+ Linear regression model 

1 𝑅𝑎𝑑𝑗
2 ,    n    an  pair

500 𝑅𝑎𝑑𝑗
2 ,    n    an  pairs

Moving Average / Smoothing

Classifier

500 (MA- 𝑅𝑎𝑑𝑗
2 , MA-Significance, 

Classification) tuples for Trial 1

Analysis Database

Repeat for 

each time 𝑡

Repeat for 

each trial

Time Series/State
Change Study

Factor-Level
Classification

Regression on
Experimental Design

Trial 1 Replication 1 𝑡 = 1:  𝑌(1), 𝐗(1)  
  𝑡 = 2:  𝑌(2), 𝐗(2)  
     ⋮ 
 Replication 2 𝑡 = 1:  𝑌(1), 𝐗(1)  
     ⋮ 
 ⋮    ⋮  
 Replication 100 𝑡 = 1:  𝑌(1), 𝐗(1)  
      ⋮ 
Trial 2   

⋮   
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the experimental design, we filter the analysis database by trials containing that factor-level and calculate 
the fraction of trials with each of the three classifications (Linear, Not Linear, and Invalid). This provides 
an intuitive way of making qualitative assessments of how the factors affect system-level linearity. A dot 
plot of this data (Figure 3) lets us to make several observations: 

 
• Updating the population in a single batch is significantly worse for linearity; 𝑁 batches are best. 
• Randomizing the update sequence of batches has little effect on linearity. 
• Generating 𝑏𝑖𝑗 values from the Uniform(0, 1) distribution produces linear results significantly more 

often than when we use Uniform(-1, 1) or Normal(0, 1), which both have mean of zero. 
• Normalizing all 𝑏𝑖0 and 𝑏𝑖𝑗 values per agent yields the most linear trials. 
• Normalizing 𝑦𝑖 may be beneficial because it reduces the chance of a trial being classified as invalid. 

 
We do not include the network structure in this part of the analysis, because each structure instance is 

a direct function of 𝑁 and also has a very low sample size (10–20). 
Next, we build regression models at 𝑡  = 500 on the experimental design using MA-𝑅𝑎𝑑𝑗

2  as the 
dependent variable and omitting any Invalid data points. (The 𝑅𝑎𝑑𝑗

2  of these models is only indirectly related 
to the 𝑅𝑎𝑑𝑗

2  from the raw simulation output that underpins MA-𝑅𝑎𝑑𝑗
2 .) The initial main effects model with 

the ten original design factors performs adequately (𝑅𝑎𝑑𝑗
2  = 0.513). We slightly improve on this baseline 

model by proxying the network structure factor, a categorical variable, with the maximum degree 𝑑𝑖 of the 
network, a discrete variable. Surprisingly, if we replace the categorical levels 1, 5, 𝑁/4, and 𝑁 for number 
of batches with the discrete number of batches 𝑛𝑏, we find a significantly worse model fit. The model we 
select as best contains only five factors: the categorical batch quantity level, the distribution function for 
𝑏𝑖𝑗 , whether we normalize 𝑦𝑖 , the way we normalize 𝑏𝑖0  and 𝑏𝑖𝑗 , and the maximum degree 𝑑𝑖  of the 
network (a proxy factor for network structure instance). This model’s 𝑅𝑎𝑑𝑗

2  is 0.532 and is statistically 
significant. All factors are significant and have low variance inflation factors. Table 2 summarizes the 
model evolution process, and Figure 4 contains diagnostic plots of the best regression model. Full model 
results are available in the online appendix, but we provide a brief interpretation here: 

 
• Increasing the number of batches causes MA-𝑅𝑎𝑑𝑗

2  to monotonically increase, but the rate of 
increase falls off rapidly above 𝑛𝑏 = 5. 

• Selecting Uniform(0, 1) for the 𝑏𝑖0 and 𝑏𝑖𝑗 distribution is associated with higher values of MA-
𝑅𝑎𝑑𝑗

2 . 
• Normalizing 𝑏𝑖0 and 𝑏𝑖𝑗 values per agent instead of population-wide or not at all is linked to higher 

MA-𝑅𝑎𝑑𝑗
2 . 

• Normalizing 𝑦𝑖 and the maximum network degree are statistically significant but have very minor 
coefficients. Removing these factors from the model lowers 𝑅𝑎𝑑𝑗

2  to 0.507, so we instead retain 
them. 

 
These observations agree strongly with our earlier comments on factor-level classification percentages. 

We finish our regression analysis by constructing a model with main effects and two-way interaction terms. 
One of the highest-quality interaction models we found uses a slightly different set of design factors, created 
from the main effects model by removing maximum degree 𝑑𝑖 and adding whether the update sequence is 
randomized, the variance of the error distribution, and whether 𝑏𝑖0  is set equal to zero. Backward 
elimination is used to selectively remove low p-value interaction terms, yielding a statistically significant 
model with 𝑅𝑎𝑑𝑗

2  = 0.754. Diagnostic plots of this model are similar to Figure 4 but with tighter 
distributions. 
 

 

948



Garee, Chan, and Wan 
 

 
Figure 3: Dot plot of fraction of trials with each classification per level for each factor at 𝑡 = 500. Some 
observations from this include: the update sequence setting has little effect on linearity, but moderate effect 
on trial validity; using only one batch is detrimental to linearity; and normalizing 𝑦𝑖 leads to more valid—
but not linear—trials. The network structure factor is omitted from this plot. 

 
Figure 4: Diagnostic plots of main effects only model of experimental design regressed on MA-𝑅𝑎𝑑𝑗

2 . This 
model uses five of the ten experimental factors and achieves 𝑅𝑎𝑑𝑗

2 = 0.532. 
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Table 2: Summary of regression models fit to experimental design with dependent variable MA-𝑅𝑎𝑑𝑗
2  at 

time step 𝑡 = 500. All results in the table are statistically significant (p-value < 0.001). 

Regression Model on Experimental Design (𝒕 = 𝟓𝟎𝟎)   𝑹𝒂𝒅𝒋
𝟐  

 Main Effects Only 

Baseline: All 10 original factors  0.513 
Proxy network structure (categorical) with max 𝑑𝑖 (discrete) 0.533 
Proxy batch quantity level (categorical) with batch quantity (discrete) 0.388 
Best fit: baseline, omit 𝑁 and randomize update sequence, use max 𝑑𝑖 (8 factors) 0.538 
Best model: batch quantity level, 𝑏𝑖𝑗 dist., normalize 𝑏𝑖0 & 𝑏𝑖𝑗, normalize 𝑦𝑖, max 𝑑𝑖 (5 factors) 0.532 
 Main Effects and Two-Way Interactions  
Baseline: All 10 original factors & all interactions – input rank exceeds observation count n/a 
All 10 factors, proxy network structure (categorical) with max 𝑑𝑖 (discrete) 0.739 
Best fit with all interactions: baseline, omit 𝑁 and uninformed rate, proxy network structure 0.761 
Best model: 7 factors, proxy network structure, backward eliminate interaction terms 0.793 

 
Finally, we consider how trial classification (Linear, Not Linear, or Invalid) changes over time, and 

whether linearity continues in the future once it appears. Some trials have identical classification patterns 
and can be merged, reducing the data from 255 trials to 94 patterns. This data reveals that the classifications 
of a small number of time steps do not help predict long-run activity (Figure 5). A single Linear time step 
can be part of a trial where the future is always Linear, where the system moves between classifications 
frequently, or as a random Linear time step as part of a mostly Not Linear trial. 

 
Figure 5: Trials are classified Linear, Not Linear, or Invalid at each time step based on MA-𝑅𝑎𝑑𝑗

2  and MA-
Sig., and trials with identical classification patterns are merged. This figure shows the 94 distinct 
classification patterns (rows), sorted left to right by time step (columns). The solid green bar at the bottom 
of the figure represents trials that are Linear for every time step (40 trials). Single time step observations 
do not predict future performance. 
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6 CONCLUSIONS AND FUTURE WORK 

In this paper, we use experimental design to build a collection of agent-based social influence networks 
populated by agents that exchange belief via a linear regression model. We then investigate the behavior of 
the aggregated, system-level belief using state transition probabilities, regression analysis, and a custom 
classifier of trial linearity. The hypothesis is that linear agent-level interactions would lead to linear system-
level responses, but we identify several model features that challenge this assumption.  

Features that negatively affect system-level linearity include updating the full agent population 
simultaneously as a single batch, generating agent’s 𝑏𝑖𝑗  coefficients from a zero-mean probability 
distributions, and choosing not to normalize 𝑏𝑖0 and 𝑏𝑖𝑗 values per agent. In real-world influence networks, 
people generally exchange ideas within small groups of acquaintances over time, so multiple update batches 
are more similar to reality. Also, the trust that real people have in their acquaintances (i.e. 𝑏𝑖𝑗) is unlikely 
to be zero, so a zero-mean distribution may be inappropriate—if people trust their neighbors, the whole 
system may be more well-behaved. Therefore, our experimental results suggest that actual influence 
networks may tend more toward linearity.We observe no factor-level that completely prevents linearity on 
its own. Half of our experimental factors have no real effect on classification for the range of levels we 
selected, namely the population size, randomizing the batch update sequence, fixing (or not) agents’ internal 
bias 𝑏𝑖0 to zero, error variance, and the initial uninformed rate of agents. Testing these factors over a greater 
range of levels could justify omitting them from later experiments. Normalizing 𝑦𝑖  each time step is 
valuable not for affecting linearity but rather for reducing trial invalidation. These findings may help 
analysts design more effective simulations in the future. Lastly, if we wish to predict long-run behavior 
with respect to classifying a system as linear, evaluating single time steps is inadequate. Further study is 
required to understand how long-run behavior relates to the experimental design factors.  

Many rich research areas remain that can build upon this work through small changes to the existing 
model, as the structure of our simulation allows us to easily test more intricate scenarios. We assess system-
level linearity based strictly on regression models of the same functional form as the agent’s interaction 
equation, but relaxing this definition and bringing new model features into the analysis may reveal new 
insights. Allowing self-loops in the network structure would see agents factoring their current belief value 
into the update process; applying an autoregressive-type model may be interesting. It could be worthwhile 
to explore the effect that linearity has on model behavior metrics such as speed of belief adoption. Instead 
of updating the full population each time step, agents could update stochastically or subject to conditions 
about their neighbors (e.g. homophily/thresholding, where agents ignore opinions too different from their 
own). A more substantial change to our simulation would be to have dynamic network structures, creating 
and destroying links over time. Finally, additional network metrics in the experimental design regression 
analysis could shed light on the influence of network structure on system-level linearity of belief. 
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