
Proceedings of the 2018 Winter Simulation Conference 
M. Rabe, A.A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds. 
 

COMBINING DATA FARMING AND DATA ENVELOPMENT ANALYSIS FOR MEASURING 

PRODUCTIVE EFFICIENCY IN MANUFACTURING SIMULATIONS 

 

 
Niclas Feldkamp 
Soeren Bergmann 

Steffen Strassburger 

Erik Borsch 
Magnus Richter 
Rainer Souren 

  
Department for Industrial Information Systems Department for Sustainable Production and 

Logistics Management 
Ilmenau University of Technology Ilmenau University of Technology 

P.O. Box 100 565 P.O. Box 100 565 
Ilmenau, 98693, GERMANY Ilmenau, 98693, GERMANY 

  
 

ABSTRACT 

Discrete event simulation is an established methodology for investigating the dynamic behavior of complex 
manufacturing and logistics systems. In addition to traditional simulation studies, the concept of data 
farming and knowledge discovery in simulation data is a current research topic that consist of broad scale 
experimentation and data mining assisted analysis of massive simulation output data. While most of the 
current research aims to investigate key drivers of production performance, in this paper we propose a 

methodology for investigating productive efficiency. We therefore developed a concept of combining our 
existing approach of data farming and visual analytics with data envelopment analysis (DEA), which is 
used to investigate efficiency in operations research and economics. With this combination of concepts, we 
are not only able to determine key factors and interactions that drive productive efficiency in the modeled 
manufacturing system, but also to identify the most productive settings. 

1 INTRODUCTION 

Data farming and knowledge discovery in simulation are ongoing research matters in current simulation 
methodology. The concept of data farming encourages large scale and data intensive simulation 
experiments in order to cover a broad and profound bandwidth of possible system behavior. In order to 
investigate massive amounts of simulation data, algorithmically supported analysis like data-mining-
methods are applicable. Still, the development of new ways for analyzing large amounts of data farming 
output data is an important and current research issue. Therefore, this paper investigates the application of 

data envelopment analysis (DEA) in combination with data farming in order to investigate system behavior 
in terms of productive efficiency. 
 Simulation models have very rarely been used in combination with DEA so far. Publications are either 
using DEA in combination with simulation-based optimization algorithms (Aminuddin and Ismail 2016; 
Fazli et al. 2012; McMullen and Frazier 1998; Weng et al. 2011) or to simulate missing data for existing 
real-world data sets in order to be able to applicate DEA (Mahfouz and Arisha 2015; Min and Park 2008). 

In all of the work mentioned above, DEA method is applied on very few targeted, goal-driven experiments, 
while our approach proposes large-scale experimentation and therefore in-depth analysis of productive 
efficiency and its relations and interactions to the simulation model’s factors. Therefore we are able to 
investigate efficiency and drivers of efficiency of the modeled system in an in-depth manner. In this context, 
the efficiency scores generated with DEA may either be used as an additional performance indicator or, 
depending on the inputs and outputs taken into account, as an overall measure aggregating commonplace 

performance criteria, like, e.g., cycle time or utilization. This approach enables decision makers in the 
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planning phase of a manufacturing system to get a sense of efficient use of resources while maintaining 
system performance or fine-tune existing systems in terms of efficiency.  

The remainder of the paper is structured as follows. In section 2, we introduce the related work 
regarding data farming and knowledge discovery in simulation data, and we give a short introduction to the 
DEA method. In section 3, we present our concept of how to integrate DEA and data farming, followed by 
a demonstration by means of a case study in section 4. In section 5, we give some concluding remarks and 

a discussion of possible future work. 

2 RELATED WORK 

2.1 Data Farming and Knowledge Discovery in Simulation Data 

The concept of data farming refers to a methodology for using a simulation model as a data generator. By 
using efficient experimental design alongside high performance computing, one is able to maximize data 
yield and corresponding information gain (Elmegreen et al. 2014; Horne and Meyer 2005). The farming 

metaphor describes how the data output can be maximized by experimental designs like a farmer that 
cultivates his land to maximize his crop yield (Sanchez 2014). This is in particular made possible by new 
approaches in the design of experiments that are highly efficient and manage a balance between broad scale 
parameter combinations and manageable data volume (Kleijnen et al. 2005). 

Feldkamp et al. (2015a) developed a method for using data farming in manufacturing simulations for 
finding hidden patterns and relations in large quantities of simulation output based on broad scale 

experimentation and visual aided analysis called knowledge discovery in simulation data. The first step 
after the farming of data is to preprocess the simulation output data with data mining algorithms, then 
knowledge can be gained through visualizations of data mining results combined with visual representations 
of the input/output relations in the target data. While visualizations are commonly applied in almost any 
discrete event simulation study in terms of animation, time-plots or graphs of confidence intervals of certain 
performance indicators, this approach presented in previous papers goes beyond commonly applied 

techniques by making visualizations the central anchor point of an iterative and interactively driven 
exploration of simulation data analysis (Feldkamp et al. 2015b). This is based on the research area called 
visual analytics (VA). VA is defined as “an iterative process that involves information gathering, data 
preprocessing, knowledge representation, interaction and decision making” (Keim et al. 2008). By 
combining automated data analysis and interactive visualizations, it also combines the strengths of both 
machine and human capabilities. On the one hand, patterns from large amounts of data can be extracted and 

processed through data mining with statistical and mathematical models. This is commonly referred to as 
knowledge discovery in databases (Fayyad et al. 1996). On the other hand, visualizations of the processed 
data can be explored by making use of the human capabilities to perceive, relate, and recognize visual 
patterns and draw conclusions, encouraged by a high degree of user interaction (Thomas and Cook 2005). 
For the algorithmically supported side of the analysis, we already showed the application of various 
methods onto large amounts of simulation data, e.g., clustering (Feldkamp et al. 2015a), decision trees  or 

Taguchi’s loss function for robustness analysis (Feldkamp et al. 2017). In this paper, we incorporate a first 
approach to use DEA for the analysis of productive efficiency. Therefore, we give a brief review on the 
background of this method in the next section. 

2.2 Data Envelopment Analysis (DEA) 

DEA (Charnes et al. 1978) is an instrument to determine the relative efficiency of decision making units 
(DMUs) using multiple inputs i and outputs j (i = 1, …m; j = m+1, …, m+n; m, n ≥ 2) (Dyson et al. 2001). 

Misleadingly, the term decision making unit not necessarily implies a real decision-making authority of the 
productive units under evaluation. In fact, within DEA, quite different kinds of productive units can serve 
as DMUs, even if they only execute managerial decisions. Consequently, not only companies or facilities 
can be used as DMUs but also working stations, machines or employees. Popular (non-industrial) examples 
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of DMUs used for DEA-based efficiency measurement are universities and hospitals as well as the 
corresponding subunits like, e.g., research projects and medical wards (for a bibliography of applications 
see (Seiford 1997)). 

Though, DEA is mainly used for evaluation of real life production systems and activities it should be 
considered more comprehensively as a general approach for solving all different kinds of multi criteria 
decision making (MCDM) problems. Generally, both inputs and outputs of DMUs can either be seen as 

quantities of objects, like, e.g., amounts of materials being used or units of products being manufactured, 
or they serve as proxy attributes, representing managerial objectives, like, e.g., cycle times or utilization. 
The appropriate specification of DMUs, as well as the selection of inputs and outputs, strongly depends on 
the analysts’ aims and scopes and the specific circumstances of the system under consideration. In the paper 
at hand, simulation runs, representing different settings of a virtual manufacturing systems, are used as 
DMUs. 

 In contrast to the fundamental economic efficiency concept proposed by (Pareto 1909) and (Koopmans 
1951), DEA is not limited to the dichotomous distinction between “efficient” and “inefficient” activities, 
but additionally provides information on the degrees of inefficiency. This allows distinct evaluations of the 
DMUs under consideration even in cases where multiple performance criteria have to be captured and 
aggregated, respectively, without knowing their relative importance. This might be the case when, e. g., a 
manager pursues different objectives at a time or when prices of inputs or outputs are unknown or 

unavailable to the decision maker. Then, DEA can be a powerful means of compensation for the lack of 
such information. 
 For each single DMU Ω  (Ω = 1, …, O ) DEA calculates a one-dimensional efficiency score ɸΩ using 
an individual set of weights ci (for the inputs i ) and ej (for the outputs j ) that maximizes the ratio between 
weighted output and weighted input (Charnes et al. 1978). 
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In simple terms, the algorithm underlying DEA choses weights for the inputs and outputs of the DMU 
under evaluation (marked as *) individually, presenting the DMU “in the best light” (see for a more detailed 
description of this procedure (Cooper et al. 2006)). Taken together, the terms (1), (2) and (3) illustrate the 
formal structure of the standard DEA model. The weights used for input and output quantities of the DMU 
under consideration may not lead to efficiency scores greater 1 when applied to the corresponding quantities 
of the remaining O–1 DMUs within the reference set (see (2)). The weights can be interpreted as (artificial) 

unit prices of the inputs and outputs, as they reflect the relative importance of the factors and products 
within the efficiency analysis. If all inputs and outputs are classified as goods (desirable objects), the prices 
ci and ej are positive (see (3)). Moreover the DEA model can be modified by introducing weight restrictions 
to capture further characteristics of the real production system under evaluation, such as preferences for 
certain products (e.g. “weight of throughput A > weight of throughput B”). Furthermore, for each DMU 
under evaluation DEA reveals efficient benchmarks (or combinations of such benchmarks), which can be 

used as “role models” for a better performance. 
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3 APPLYING THE DEA METHODOLOGY ON SIMULATION DATA 

While usually simulation studies investigate “good system performance” in terms of throughput, cycle time, 
utilization or robustness, productive efficiency ɸ*, as defined within DEA (see again (1)), is often neglected, 
but equally important. This requires the identification of system configurations where input resources are 
used efficiently, which is not necessarily the case when looking only at other performance indicators. An 
efficient system configuration does not necessarily imply a good system performance et vice versa. On one 

hand, if, e. g., the system’s throughput is unacceptably low, it still might be an efficient solution, and on the 
other hand, a high product throughput may be due to an unreasonably high input of resources. 
Therefore, the investigation of productive efficiency in a massive simulation output database acquired 
through data farming must include several consecutive steps. First, DEA has to be applied on the simulation 
output data after experiments have been fully conducted. Each simulation experiment represents a decision 
making unit for the DEA model. The DEA output is obviously very easily definable as it corresponds to 

the specific values of the output parameters of the simulation model, preferably the throughput of certain 
product types. The DEA input generally corresponds to the input parameters of the simulation model i.e. 
the factors of the experiment design. However, when connecting DEA input to the simulation model’s input, 
one should be cautious since not every simulation input parameter can be considered as a production input 
resource from an business economics point of view. 
 After DEA is applied, it ranks every simulation experiment with an efficiency score, so experiments 

can be sorted or filtered accordingly. In the next step, the investigation of those experiments enables the 
exploration of the performance of experiments and their relation to the efficiency. Furthermore, in complex 
models in the context of production and logistic, performance is multidimensional, which means not only 
throughput is relevant, but also subsequent performance measures like e.g. cycle times or utilizations of 
system elements need to be in a desired range. Since performance measures might possibly be in conflict 
with each other, we propose an interactive visually guided analysis that allows some sort of user-defined 

sensitivity, what we already demonstrated in our recent work (Feldkamp et al. 2015a, 2015b). This also 
includes the investigation of corresponding input parameters (experiment factors) in terms of what input 
parameter values account for good and efficient system performance, and what distinguishes efficient from 
inefficient experiments. 
 Furthermore, note that we propose the use of crossed experiment designs. This arises from the 
assumption that not all of the factors that are controllable in the simulation model, are in fact controllable 

in the corresponding real world model (Sanchez 2000). For example, this is typically the case in the 
automotive industry, where productions are highly customizable and fluctuations in customer demand can 
lead to variation in the mixture of jobs that need to be dispatched in the system. For this purpose, a 
separation of factors into two categories called decision and noise is useful. When crossing independent 
experimental designs for both of those categories, we are able to investigate how each system configuration 
holds up against variations in the noise factors. 

4 AN EXPLORATORY CASE STUDY 

4.1 Model Description and Design of Experiments 

For a first proof of concept, we developed a discrete event simulation model of a typical assembly line. 
This model was implemented in Siemens Plant Simulation, as shown in Figure 1. In this model, five 
different part types are loaded onto carriers that are transported on a conveyor. Parts are both automatically 
processed on assembly stations and manually treated on up to five workplaces. Before getting unloaded 

from the carrier, parts go through a manual quality assurance (QA). If they pass, they can leave the system 
or are otherwise returned to the manual workplaces. 
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Figure 1: 2D view of the assembly line model. 

The mixture of parts can vary, but arriving parts are kept in a buffer until they are cleared to get mounted 
on a free carrier. Some stochastic effects are implemented regarding machine reliability and a small 
proportion of parts that fail the quality assurance. For the experimental design of the decision factors, we 

used a nearly orthogonal latin hypercube (NOLH), which is commonly used in data farming and is much 
more efficient than a full factorial nk-design (Vieira et al. 2011). Table 1 shows the decision factors in the 
simulation model. Note that the process times for workplaces and quality assurance station are stochastic and 
are normally distributed. We choose to only alter the variance of the distribution in a small range over the 
experiments because changing the distribution possibly would have impacted the results in such a strong 
way that it might superimpose any other interesting effects in our case study model and therefore would 

lower its exemplary purpose. 

Table 1: Decision factors for the simulation experiments. 

Factor name Scale Description Margins 

LoadingTime Continuous Duration for mounting parts 10-60s 
UnloadingTime Continuous Duration for unmounting parts 10-60s 
InterArrivalTime Continuous Interarrival time of jobs 100-300s 

SortingStrategy Categorical 
Sorting strategy for jobs  
{fifo, lot size of: 5/10/unlimited} 

1-4 

NumberOfWorkplaces Discrete Number of manual assembly work places 1-5 
NumberOfCarriers Discrete Number of carriers 1-100 
MainSorterCap Discrete Capacity for main sorting buffer 1-100 
WP_ProcTimeVar Continuous Allowed tolerance for workplace process time 100-300s 
QA_ProcTimeVar Continuous Allowed tolerance for QA process time 100-300s 
ConveyorSpeed Continuous Transportation speed of the conveyor 1-5 m/s 

 
The resulting design has 512 design points, which were then crossed with 40 randomly distributed 

configurations for the product mixture resulting in 20.480 simulation runs. The final experiment design has 

been split into multiple files in order to be distributed onto ten machines. Result data was written into flat 
CSV-files and collected and aggregated through a dedicated database. After the experimentation was 
conducted and all result data was collected, we performed the DEA. The first step here is to choose suitable 
inputs from the list of experimental factors. As mentioned in Section 3, not all factors automatically qualify 
for usage as DEA input, because they have to represent some sort of production resource. For this purpose, 
we choose the two discrete factors NumberOfWorkplaces, NumberOfCarriers as they are integers that are 

countable and straightforwardly interpretable as resources. The capacity of the main sorter buffer is also 
taken into account since a buffer requires more spatial resources the bigger it is. Finally loading and 
unloading times for mounting parts on the carriers are taken into account because by increasing resources 
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in terms of a countable workforce, we are able to quicker load and release the parts on and off the carriers. 
However, other interpretations of the model’s factors are possible. Therefore, what factors qualify for DEA 
input is up to debate and depends highly on the simulation model and additional domain knowledge of the 
corresponding real world system is needed. Furthermore, we choose that in our model the DEA output 
corresponds to the throughput of each experiment. In fact, we modeled the throughput of each individual 
part type as an independent DEA output, since DEA allows the modelling of multidimensional input/output-

relations. Theoretically, DEA allows for a big number of inputs (m) and outputs (n) as long as the equation 
O ≥ 2 ∙ m ∙ n is fulfilled (Dyson et al. 2001). The final DEA model is shown in Figure 2. 

 

Figure 2: Input/output sets of the DEA model. 

Each parameter setting represents a specific combination of input/output quantities and therefore serves 
as a distinct DMU (= unit of comparison). Due to the fact that different parameter settings (= combinations 
of input quantities) lead to different throughputs for each product type, the question arises which DMUs 

are overall efficient. The identification of an overall (or unambiguously) best DMU is particularly 
demanding, the more inputs and outputs are taken into account. If, e. g., setting X generates more 
Throughput of Type 1, 2, 3 and 4 than setting Y, but – at the same time – has a lower Throughput of Type 5 
than setting Y, setting X cannot clearly be declared as “favourable”, “dominant” or “better”. To prevent a 
certain DMU from being declared as efficient due to only a single superior object quantity, weight 
restrictions for inputs and outputs can be applied. For reasons of simplicity this was skipped here. 

Nonetheless, for DEA applications on real data, weight restrictions can be a powerful means of matching 
the DEA model to the real world and, thus, to obtain more appropriate results. Particularly when conducted 
for supporting real life managerial decision making blind faith in quantitative DEA results without 
reflecting the underlying set of weights can be fatal, the more so as multiple feasible solutions might co-
exist, each of which representing a different corporate target system. 

4.2 Discussion and Results 

The calculations of the input oriented efficiency scores of the 512 DMUs Ω (system configurations) in 40 
different settings k (product mixes) were carried out with the software “MaxDEA”. The calculation time of 
approximately seven seconds per setting is negligibly small. Because we are using a crossed design, we can 
calculate efficiency scores for every combination of decision factors with each of the product mixes. This 
investigation aims at examining the robustness of the efficiency of different system configurations against 
variation in the product mixture. Therefore, we calculated the mean Φ̅ and standard deviation sΩ of the 

efficiency values Φk
Ω (one observation for each of the 40 product mixes), which serves as a measure for the 

robustness in the following meaning: the lower sΩ, the less sensitive the system configuration reacts to 
changes in the product mixture and the more robust it is. Φk

Ω represents per se a measure for the performance 
of a system configuration. For that reason, the average efficiency Φ̅

Ω
 of a DMU Ω throughout all 40 settings 

might be regarded as an additional performance criterion when assessing a system configuration. This is 
shown in Figure 3. An average efficiency of 69,91 %, a range of efficiency values of  

[Φ̅
Ω, max

, Φ̅
Ω, min] = [100%, 26,22%] and the fact that less than 5 % of the system configurations are fully 

efficient according to DEA, demonstrate that the model is capable to discriminate clearly between the 
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DMUs. Altogether 24 system configurations are efficient according to the chosen model and simultaneously 
exhibit sΩ = 0. These system configurations are considered robust against variations of the product mixture 
and moreover efficient in terms of input and output factors (e.g. Ω = 14, 23, 26).  

 

Figure 3: Mean and SD of efficiency of system configurations against different product mixtures. 

Some system configurations show a high average efficiency indeed, but a relatively heavy fluctuation 
of the efficiency values as well. Thus these DMUs are less robust (e.g. Φ̅

316 ≈ 91%, s316 ≈ 7%; Φ̅
89 ≈ 89%, 

s89 ≈ 9%). The efficiency value of system configuration 91 (Φ̅
91

≈ 82%) reacts the most sensitively to 

variations of the product mixture with a standard deviation of s91 ≈ 10,2%. As already mentioned, 24 DMUs 
are efficient and also expose no deviance in efficiency against variation in the product mix (top left corner 
in Figure 3). These DMUs represent 960 (24 x 40) experiments, since every DMU/product mix combination 
has to be conducted as one single simulation run. Now knowing which experiments are efficient in terms 
of input and output criteria (used within the DEA model), we can start a visual analysis of the experiments 
regarding their relation to subsequent performance measures. Figure 4 shows a matrix of scatterplots 

showing selected simulation result parameters, in which efficient runs are highlighted in blue.  

 

Figure 4: Matrix scatterplot of selected output performance measures. 
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Investigating corresponding factors to analyze what factor values lead to efficient runs over the 
complete dataset would not be feasible since the efficient runs are distributed over a large scale of system 
performance. Therefore, we first have to further reduce the area of investigation. If we take a look at the 
distribution of the efficient runs regarding the throughput, it is noticeable that there are different blocks of 
different levels of throughput. The first one is at ca. 500, the next between ca. 1000 – 1300, and the last one 
at ca. 2000 – 2600. The latter is one chosen for further analysis and is highlighted by a green strip. Efficient 

simulation runs in this subset also yield a low cycle time and a high utilization of carriers. Average 
workplace utilization for the most part is between 40% and 80%, so surprisingly for runs with high 
throughput, efficiency seems not being correlated with high utilization of the workplaces. 

 Because the NOLH design method that we used to create our experiments guarantees desirable features 
like orthogonality and balanced parameter values, we are able to analyze filtered subsets without any biased 
effects. To investigate corresponding input parameters of the subset highlighted in Figure 4 and the 

difference between efficient and not efficient experiments, we visually discriminated the subset into both 
categories, which is shown in Figure 5. Here, we selected all factors from the DEA and also included some 
other factors that are assumed to be most influential (which can be found through preceding analysis like 
for example visual correlation analysis). The so called radarplots in this figure mark the median and 
quartiles for each parameter. In between the quartiles are 50% of all observations (simulation experiments). 
So if quartiles lay close together, the corresponding parameter value is significant in the subset, which in 

turn represents good system performance in terms of our prior selected subset (Figure 4, highlighted green 
strip). More specifically, if a parameter value is equally significant in both left and right side of Figure 5, 
we can assume that this parameter value is most likely a necessary prerequisite to reach the output 
performance of the selected subset in the first place. On the other hand, if quartiles are very broad so that a 
factor value is rather equally distributed, the effects of this factor to the selected subset is presumed to be 
small. Note that both plots show subsets with good system performance but differ in efficiency. Therefore, 

we have to find differences in the left and right plot in order to conclude which system configurations or 
input parameter value combinations, respectively, lead to good and efficient system performance. 

 

Figure 5: Radarplots of selected factors for efficient (left side) and not efficient (right side) experiments. 

For example, both plots show a similar shape for the factor QA_ProcTime, which is the variance of the 
processing time for quality assurance station. Since the shape is the same for both plots and the parameter 

value is very significant, one might conclude that this factor is influential to the outcome of the system 
performance in the selected subset. For factors that have a significant shape but a very different for the left 
and right plot, we can conclude that they are important for efficiency. This is for example the case for factor 
NumberofCarriers, that is rather equally distributed for the non-efficient plot, but form a more distinct 
characteristic for efficient experiments. 
 Now that we have a first impression of how relevant input factors distribute, we want to further 

investigate the exact parameter values and possible factor value combinations that lead to efficient system 
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behavior. For this purpose, we trained a binary decision tree on the data subset in order to build a model 
that can map the relation between input factors and efficiency in detail. The nodes of the tree represent a 
specific input factor value, the leafs or classes of the tree represent an outcome classification in terms of 
efficient or not efficient. Hence, each tree branch represents an if-then-rule that describes how to reach 
efficiency. A visualization of the tree is shown in Figure 6 (top frame). Note that the higher a split decision 
occurs in the tree, the more important the corresponding parameter is for the discrimination between 

efficient and non-efficient experiments. Therefore, LoadingTime can be leveraged in order to make the 
system performance (according to the dimensions of output parameters shown in Figure 4) efficient. 
Interestingly, QA_ProcTime does also have a big influence on whether or not an experiment is efficient, 
despite Figure 5 showed a similar shape for efficient and non-efficient runs for this factor and we therefore 
assumed that a low value for QA_ProcTime is most likely a necessary prerequisite to even reach the output 
performance of the selected subset. Looking at the tree, we can conclude that even values for QA_ProcTime 

above the threshold of 117s can lead to efficiency, if it occurs in combination with InterArrivalTime being 
<32s. Those interactions of factors, not all of which might be apparent from a comparison of radarplots alone, 
can be detected by tree visualization. Some of the factors in Figure 5 that appeared to be important are not 
present in the tree. This is for example the case for NumberOfWorkplaces. This occurs due to the fact that 
those factors are subsumed by other factors with which they are correlating in this specific data subset. 

 

Figure 6: Decision tree (top frame) and decision boundaries visualization (bottom frame). 

Furthermore, we color-coded the tree branches that lead to efficient classification and implemented a 

filter to corresponding if-then-rules and highlighted the related data in a scatter plot matrix (Figure 6 bottom 
frame). This method allows to visualize the decision boundaries of the tree, which represent the boundaries 
of factor values required to say within in order to reach efficiency. This enables a simpler exploration of 
factors and value boundaries that are affected by a tree branch, especially for factors that appear in the tree 
more than once, which is the case for LoadingTime. For example, the blue branch only affects two factors 
(LoadingTime and NumberOfCarriers), whereas the orange branch requires a combination of three factors 

(LoadingTime, InterArrivalTime, and QA_ProcTime). Subsequent analysis, for example on other prior 
selected subsets could be carried out to further investigate the models’ behavior regarding the relation 
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between performance and efficiency. We successfully derived knowledge about the system by means of 
interactive and visual analysis. Of course, derived hypothesizes can be additionally validated through 
additional experiments. 

5 CONCLUSION, LIMITATIONS AND FUTURE WORK 

In this paper, we demonstrated how DEA, a methodology for multi-criteria efficiency measurement, can be 
applied on large quantities of simulation output generated through data farming. We combined DEA with 

our existing visual analytics based knowledge discovery process for manufacturing simulation. For this 
purpose, artificially generated input and output data was exemplarily used for measuring the efficiency of 
a virtual manufacturing system. This allows for distinct efficiency evaluations of specific systems settings, 
which finally indicate most productive configurations. Since DEA is very rarely used in combination with 
simulation based applications, our approach brings an additional viewpoint for simulation data analysis in 
terms of investigating not only performance, e. g. in terms of cycle times and utilization, but also the 

productive efficiency of each experiment conducted. Furthermore, our approach might be more appealing 
to people who are not “simulation experts”, since an interactively designed and visually aided analysis 
process is more user-friendly. For future work, we want to apply this methodology on even more complex, 
real-world-models using empirical data. In that context it will be of major importance to discuss more 
intensively the different types of DEA models, particularly the choice between CCR- (constant returns to 
scale) and BCC models (variable returns to scale) (Banker et al. 1984) and hybrid returns to scale 

(Podinovski et al. 2014), respectively, as well as the incorporation of weight restrictions to refine value 
judgements between certain inputs and/or outputs (Roll et al. 1991). Furthermore, when using DEA to 
improve decision making in real life production systems, it is necessary to derive the input and output set 
more comprehensively from the decision makers’ objectives (Afsharian et al. 2013) and, thus, embed DEA 
within decision theory (Dyckhoff 2017).  
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