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ABSTRACT

This tutorial provides an overview of guarantees on the probability of good selection (PGS), i.e., statistical
guarantees on selecting – with high probability – an alternative whose expected performance is within a
given tolerance of the best. We discuss why PGS guarantees are superior to more popular, related guarantees
on the probability of correct selection (PCS) under the indifference-zone formulation. We review existing
procedures that deliver PGS guarantees and assess several direct and indirect methods of proof. We compare
the frequentist and Bayesian interpretations of PGS and highlight the differences in how procedures are
designed to deliver PGS guarantees under the two frameworks.

1 INTRODUCTION

We consider the problem of selecting from among a finite number of alternatives, the performances of
which cannot be evaluated exactly, but instead must be estimated using stochastic simulation. The number
of alternatives under consideration is assumed to be sufficiently small, so that – subject to the available
computational resources – each alternative can be simulated. This class of problems, referred to as ranking
and selection (R&S), arises when the performance of an alternative involves an element of uncertainty.
Much research has dealt with the design of procedures that allocate simulation effort among alternatives
and ultimately select an alternative that is believed to be the best; see Kim and Nelson (2006) and Chen
et al. (2015) and references therein.

A prototypical example of a R&S problem is that of allocating buffer space and service rates in a
multi-station flow line with the objective of maximizing the expected steady-state throughput of the system
(Pichitlamken et al. 2006). For a fixed budget of buffer space and service rates, the number of feasible,
integer-valued allocations (alternatives) is finite. Furthermore, the performance of a given allocation can be
estimated by running a steady-state simulation of the system and recording the throughput. R&S problems
arise in virtually all simulation applications, e.g., inventory management (Koenig and Law 1985) and
network reliability design (Kiekhaefer 2011).

A fundamental consideration for R&S problems is how the decision-maker assesses the quality of a
selection decision. Does he or she insist on selecting the best alternative, or would he or she settle for
an alternative that is, in some sense, close to the best? Requiring that the best alternative is selected
with high probability could entail detecting infinitesimal differences in the performances of alternatives, a
computationally intensive task. For this reason, procedures with guarantees on the probability of selecting
the best alternative for any problem instance are uncommon, a notable exception being the indifference-
zone-free procedure of Fan et al. (2016). We instead focus on the relaxed goal of selecting an alternative
whose performance is deemed “good.”

A natural characterization of a good alternative is that its performance is within a given tolerance, δ > 0,
of that of the best alternative. Another approach, known as ordinal optimization, measures an alternative’s
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goodness based on the ordering of the alternative’s performance in relation to the best (Lau and Ho 1997;
Ho et al. 2000). For example, an alternative might be regarded as good if its performance puts it within
the top m% or top m alternatives. From the perspective of the decision-maker, these cardinal and ordinal
criteria for goodness could differ significantly. We advocate for the cardinal criterion since the optimality
gap has a clear, problem-specific meaning to the decision-maker in terms of the units of the objective
function. Furthermore, this criterion offers better control on the performance of a good alternative.

To formalize these ideas, let k be the number of alternatives under consideration and let θi be the scalar
performance of alternative i, i = 1, . . . ,k. We refer to the vector θ = (θ1,θ2, . . . ,θk) as the configuration or
problem instance and use a subscript [·] when referring to the ordered performances θ[1] ≤ θ[2] ≤ . . .≤ θ[k].
Without loss of generality, we will assume that larger performance values are better, i.e., alternative [k] is
(one of) the best. Let D be the (random) index of the alternative selected by a procedure.

Selection decisions can be described by loss functions in terms of the selected alternative and the
best (Branke et al. 2005). For instance, correct selection and good selection can be modeled by the
loss functions LCS(D ,θ) = 1{θD 6= θ[k]} and LGS,δ (D ,θ) = 1{θD ≤ θ[k]−δ}, respectively, where 1{·}
denotes an indicator function taking values of 0 or 1. The probabilities of correct selection (PCS) and good
selection (PGS) are then one minus the expectations of the loss functions LCS and LGS,δ , respectively.
Here, the expectations are with respect to repeated runs of the procedure on a fixed problem instance, i.e.,
the frequentist interpretation.

Another popular loss function, opportunity cost (also known as linear loss), is defined as the difference
between the performances of the selected alternative and the best, i.e., LOC(D ,θ) = θ[k]−θD (Chick and
Inoue 2001b). The opportunity cost loss function is analogous to simple regret in the pure exploration
problem for multi-armed bandits (Bubeck et al. 2011) and is weakly related to good selection. Expected
opportunity cost can be translated into a bound on PGS via Markov’s inequality (Chick and Wu 2005):

PGS = Pθ (θD > θ[k]−δ ) = 1−Pθ (θ[k]−θD ≥ δ )≥ 1−Eθ [θ[k]−θD ]/δ = 1−Eθ [LOC]/δ ,

where the subscript θ indicates that the probability (or expectation) is for the fixed configuration θ . This
bound, however, is quite loose. To imply PGS ≥ 1−α for some 0 < α ≤ 1−1/k, the expected opportunity
cost must be less than or equal to δ ×α . This is tantamount to selecting the best alternative with probability
1−α and selecting an alternative with knife-edge bad performance θ[k]− δ with probability α . While
expected opportunity cost offers more control than PGS over the performance of the selected alternative,
it is more commonly studied under the Bayesian interpretation of the R&S problem (see Section 4.2), and
so we do not discuss it further.

Although PGS guarantees have primarily been studied within the R&S community, they have also
been the subject of research on multi-armed bandits in the pure exploration setting, where they are called
probably approximately correct (PAC) selection guarantees (Even-Dar et al. 2002). The term “probably”
refers to the fixed confidence level 1−α , while the term “approximately correct selection” refers to the
event of selecting an alternative (arm) whose performance is within δ of the best. Much of the recent
research on PAC-selection guarantees for multi-armed bandit algorithms focuses on the necessary sampling
complexity and how it scales with respect to δ , 1−α , and k (Mannor and Tsitsiklis 2004; Karnin et al.
2013; Zhou et al. 2014).

Both the R&S and multi-armed bandit communities make assumptions on the distributions of the
observations taken from the alternatives. Indeed, without some regularity conditions, designing a selection
procedure that delivers a fixed-confidence guarantee appears hopeless. For instance, Bubeck et al. (2011)
point out that binary loss functions such as those for PCS and PGS are not suited for distribution-free analysis.
In the multi-armed bandit community, two common assumptions are that the distributions of observations
(rewards) either have bounded support or are sub-Gaussian. Mannor and Tsitsiklis (2004) conjecture that
the complexity results for PAC-selection guarantees can hold for other special cases of reward distributions,
provided the Kullback-Liebler divergence between the distributions of any two arms is finite. Meanwhile,
in the R&S community, the prevalent assumption is that the observations are normally distributed. While
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unrealistic, this assumption can often be approximately satisfied by batching observations. Other R&S
research has avoided this assumption by studying the problem from a large-deviations perspective (Glynn
and Juneja 2004; Hunter and Pasupathy 2010). In particular, Glynn and Juneja (2015) show that some
regularity conditions are needed to design selection procedures that deliver a PCS guarantee of 1−α with
complexity O(log(1/α)). Broadie et al. (2007) and Blanchet et al. (2008) extend the large-deviations
analysis to design asymptotically optimal allocation policies for heavy-tailed distributions.

The remainder of this tutorial is organized as follows. In Section 2, we draw connections between
PGS guarantees and more popular PCS guarantees under the indifference-zone formulation and argue that
PGS guarantees are preferable. In Section 3, we review past research about the design of procedures that
deliver PGS guarantees and the various proof techniques that have been used. In Section 4, we discuss
PGS guarantees that result from bootstrapping and those that arise under a Bayesian framework. In Section
5, we outline unresolved research questions and possible extensions of PGS guarantees to other stochastic
optimization problems. We direct the reader to the working paper of Eckman and Henderson (2018a) for
detailed proofs and additional discussion.

2 CONNECTIONS TO THE INDIFFERENCE-ZONE FORMULATION

Ever since the earliest research on R&S problems, the emphasis has been on designing selection procedures
that deliver guarantees on PCS. Nevertheless, this insistence on selecting the best alternative with high
probability runs counter to the fact that a simulation model is, unavoidably, an imprecise representation
of reality. Consequently, the best alternative according to a simulation model is not necessarily the best
alternative in the real world. In addition, the decision-maker may have secondary criteria for evaluating an
alternative and some differences in performance may simply be too small to care about. Some leniency in
selecting a high-quality alternative is, therefore, justified.

As previously mentioned, designing a procedure that guarantees to select the best alternative with high
probability is difficult, because detecting a small difference in performance is computationally expensive.
An early approach that circumvents this issue is the indifference-zone (IZ) formulation of Bechhofer (1954).
The IZ formulation uses a scalar parameter δ > 0 to partition the space of configurations into two regions:
the preference zone and the indifference zone. For configurations in the preference zone, the performance
of the best alternative is at least δ better than those of all other alternatives, i.e., θ[k]−θ[k−1] ≥ δ . For these
problem instances, the decision-maker clearly prefers the best alternative to the others. For configurations
in the indifference zone, there is at least one other alternative whose performance is within δ of the best, i.e.,
θ[k]−θ[k−1] < δ . For these problem instances, the decision-maker is believed to be indifferent to selecting
any alternative whose performance is within δ of the best.

Under the indifference-zone formulation, selection procedures are typically designed to deliver PCS
guarantees for configurations in the preference zone, i.e., Pθ (θD = θ[k]) ≥ 1−α for all θ such that
θ[k]−θ[k−1] ≥ δ . In other words, when there is a clear-cut best alternative, it will be selected with high
probability. This IZ-inspired PCS guarantee has remained the primary fixed-confidence guarantee sought
for R&S procedures. Although IZ-inspired PCS guarantees are at times difficult to prove, the IZ formulation
often makes the analysis more tractable. In particular, the lower bound on the difference in performances
between the best and second-best alternatives can frequently be used to develop upper bounds on the sample
sizes needed to detect such differences.

Despite their prevalence in the R&S literature, IZ-inspired PCS guarantees are unsatisfactory. The
most glaring omission of IZ-inspired PCS guarantees is that they say nothing about the performance of a
selection procedure when the configuration is not in the preference zone. Does the procedure guarantee
to select a δ -good alternative with high probability? Does the procedure even guarantee to terminate in
finite time? This deficiency is only exacerbated by the fact that real-world problem instances are unlikely
to belong to the preference zone, especially when the number of alternatives is large. Moreover, when a
simulation-optimization search is used to identify alternatives, one would expect the visited alternatives to
have increasingly similar performance as the search progresses (Eckman and Henderson 2018b).
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IZ-inspired PCS guarantees are further undermined by the inherent uncertainty about the configuration.
Merely verifying that the IZ assumption is satisfied is impractical (Parnes and Srinivasan 1986). If the
decision-maker had a prior belief that the configuration was in the preference zone, he or she might be better
served by using this information within a Bayesian R&S procedure, thereby avoiding the IZ assumption
altogether.

Even if it were possible to assert a lower bound on the difference in the performances between the
best and second-best alternatives, that quantity may be smaller than the decision-maker’s tolerance towards
making a suboptimal decision. To be clear, although the IZ parameter δ is often regarded as the minimum
difference in performance worth detecting, it does not play that role for selection procedures with IZ-
inspired PCS guarantees. Instead, δ demarcates the problem instances on which a selection procedure
can be relied upon to deliver a statistical guarantee. This disconnection between the IZ parameter and
the decision-maker’s tolerance can lead to undesirable consequences. For example, the decision-maker
may choose an IZ parameter much smaller than his or her tolerance in order to make an IZ-inspired PCS
guarantee more reliable, with the cost of this conservativeness being excessive simulation effort.

Because of these shortcomings of IZ-inspired PCS guarantees, PGS guarantees are a superior goal for
which selection procedures should instead be designed. For all their deficiencies as a stand-alone goal,
IZ-inspired PCS guarantees are not without purpose. As we will show in Section 3.2, under certain sufficient
conditions, IZ-inspired PCS guarantees can be lifted to PGS guarantees.

3 METHODS FOR PROVING PGS GUARANTEES

In this section, we review several techniques that have been used to prove PGS guarantees for selection
procedures. We first introduce a notation to describe the problem formulation and selection procedures.

For each alternative i = 1, . . . ,k, let Xi j denote the jth observation. We assume that the vectors of the
jth observations from all alternatives, (X1 j,X2 j, . . . ,Xk j), are independent and identically distributed (i.i.d.)
for j ≥ 1, with each being drawn from a joint distribution F having marginal distributions Fi, i = 1, . . . ,k.
We make no assumption that the observations X1 j,X2 j, . . . ,Xk j are independent, and so allow for the use
of common random numbers across alternatives.

A key assumption we make is that the joint distribution F is fully specified by the configuration θ .
In other words, given a vector of performances θ , one can generate the observations (X1 j,X2 j, . . . ,Xk j) for
j ≥ 1. This assumption enables us to make well-defined statements relating the probabilities of selection
decisions under different configurations. It also aligns with the indifference-zone formulation, in which
problem instances are characterized only by the vector of performances θ , and not by any other distributional
parameters of F . For example, when observations are normally distributed with mean vector θ and covariance
matrix Σ, Σ is assumed to be the same under any two configurations θ and θ̃ .

Given this setup, we define a selection procedure as follows. For each alternative i = 1, . . . ,k, a selection
procedure takes observations Xi1, . . . ,Xini and calculates an estimator Yi for θi based on these observations.
The sample size of alternative i, ni, may depend on the observations of other alternatives and can be random.
We assume that a selection procedure then selects an alternative D ∈ argmaxiYi as the best, though there
exist procedures that use other selection criteria (Peng et al. 2016). In the event of a tie among estimators,
a selection procedure uses a tie-breaking rule to make the final selection. Throughout our discussion, we
assume that the estimators (Y1, . . . ,Yn) have a joint probability density function, so that ties occur with
probability zero. This assumption is made for convenience; all of the results should extend to the case
when the estimators are discrete by using a randomized tie-breaking rule and properly accounting for the
events of ties.

When necessary, we distinguish between selection procedures that use some form of screening – to
eliminate inferior alternatives before the end of the procedure – and those that do not. Many early selection
procedures do not use screening, e.g., those of Bechhofer (1954), Dudewicz and Dalal (1975), and Rinott
(1978), while most contemporary selection procedures use screening to achieve greater sampling efficiency,
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e.g., those of Nelson et al. (2001), Kim and Nelson (2001), Kim and Dieker (2011), Frazier (2014), and
Zhong and Hong (2017).

3.1 Concentration Inequalities

As mentioned earlier, in the multi-armed bandit literature, it is commonly assumed that the marginal
distributions Fi have bounded support or are sub-Gaussian with known scale (bound on the variance). These
regularity conditions allow the use of concentration inequalities to prove PGS guarantees for multi-armed
bandit algorithms. The general approach is two-staged: First, bound the probability of a bad alternative
having a higher estimator than the best alternative using a concentration inequality. Second, use Bonferroni’s
inequality to sum over all pairwise comparisons with the best alternative. As an illustration, suppose that
each marginal distribution has a support of [0,1] and that θi = E[Xi1]. Consider the “Naive” algorithm of
Even-Dar et al. (2006) that takes n = (2/δ 2) ln(2k/α) observations independently from each alternative
and selects the alternative with the highest sample mean, Yi = n−1

∑
n
j=1 Xi j.

If a given bad alternative is selected, then its estimator may have exceeded its performance by δ/2
or the estimator of the best alternative may have been less than δ/2 below its performance. If neither of
these events happened, then the bad alternative would not have been selected since the best alternative’s
estimator would have been higher. Thus, for a fixed bad alternative i 6= [k],

Pθ (Yi > Y[k])≤ Pθ (Yi > θi +δ/2 or Y[k] < θ[k]−δ/2)

≤ Pθ (Yi > θi +δ/2)+Pθ (Y[k] < θ[k]−δ/2)

≤ 2exp(−2(δ/2)2n),

where the last inequality follows from applying Hoeffding’s inequality twice. From the choice of n, it
follows that Pθ (Yi > Y[k])≤ α/k.

If a bad alternative is selected, then it must be the case that the estimator for that alternative is greater
than that of Alternative [k]. As a worst case, assume that all alternatives other than Alternative [k] are bad.
By Bonferroni’s inequality and the above inequality,

Pθ (Bad Selection)≤ Pθ

(
∪i6=[k]{Yi > Y[k]}

)
≤ ∑

i6=[k]
Pθ (Yi > Y[k])≤ (k−1)(α/k)< α.

Therefore, the Naive algorithm has a PGS guarantee.
In summary, the key step is using Hoeffding’s inequality to bound the probability that an alternative’s

estimator differs from the alternative’s performance by at least δ/2 in a particular direction. If the marginal
distributions do not have bounded supports, but are instead sub-Gaussian with known scale, then other
concentration inequalities such as Chernoff’s bound can be used for the same purpose. For some multi-
armed bandit algorithms that eliminate alternatives in stages, e.g., the Successive Elimination and Median
Elimination algorithms of Even-Dar et al. (2002) and Even-Dar et al. (2006), concentration inequalities
have been used similarly to prove PGS guarantees.

In contrast, the R&S literature typically assumes that observations are normally distributed, i.e.,
Xi1 ∼N (θi,σ

2
i ). While the aforementioned concentration inequalities are convenient for proving PGS

guarantees under the standard multi-armed bandit assumptions, they cannot be applied in this setting without
knowing the variances, or at least an upper bound on the variances. Instead, the idea of constructing
confidence bands around each alternative’s estimator has been used to prove a PGS guarantee for the fully
sequential envelope procedure (EP) of Ma and Henderson (2017). Unlike procedures that use screening,
EP keeps all alternatives in contention until the procedure terminates, but still offers flexibility in how
observations are allocated across alternatives. The procedure constructs lower and upper confidence limits
for the performances of each alternative and updates these limits as more observations are taken. The
confidence limits are designed to guarantee that with a probability of at least 1−α , the upper confidence
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limit of the best alternative stays above its true performance while the lower confidence limits of the other
alternatives stay below their true performances throughout the entire procedure. When these bounds hold,
a good selection is implied by terminating when the lower confidence limit of the estimated best alternative
exceeds the highest upper confidence limit of the other alternatives minus δ (Ma and Henderson 2017).

3.2 Lifting IZ-Inspired PCS Guarantees

Another approach to proving PGS guarantees is to first prove that a selection procedure has an IZ-inspired
PCS guarantee and then show that this implies a PGS guarantee. In terms of the two guarantees, a PGS
guarantee implies an IZ-inspired PCS guarantee because for configurations in the preference zone, the only
good alternative is the best. One might naturally wonder whether the converse holds: does an IZ-inspired
PCS guarantee imply a PGS guarantee over the entire space of configurations? Intuitively, one might expect
this to be the case since for problem instances with more than one good alternative, it should be more likely
that one of them is selected. Put differently, if a procedure can select the best alternative when all other
alternatives have δ -worse performance, why would it do any worse when there are more good alternatives?

Unfortunately, the answer to the posed question is negative. In terms of a counter-example, it is possible
to contrive a selection procedure with an IZ-inspired PCS guarantee but without a PGS guarantee (Eckman
and Henderson 2018a). Specifically, when the estimators of the two best-looking alternatives are similar in
value, the procedure paradoxically selects one of the other alternatives. Thus when there is a single δ -best
alternative, the PCS is high, but when there are multiple good alternatives, the PGS can suffer.

Although the converse implication does not universally hold, many R&S procedures with IZ-inspired
PCS guarantees have been shown to have PGS guarantees (Matejcik and Nelson 1995), and many others
may very well have (yet unproven) PGS guarantees, simply by not behaving bizarrely.

A logical approach to proving the converse is to show that for any configuration in the indifference
zone, there is a corresponding configuration in the preference zone with a lower PGS, which is equivalent
to the PCS. In particular, we consider pairing an arbitrary configuration θ in the indifference zone with
another configuration θ ∗ for which all of the good – but not the best – alternatives of θ are shifted to
become bad alternatives; thus θ ∗ is in the preference zone. To be precise, for all i ∈ {1, . . . ,k− 1} for
which θ[i] > θ[k]−δ , we set θ ∗[i] = θ[k]−δ , and for all other i, including k, we take θ ∗[i] = θ[i]. The critical
question is then: What are sufficient conditions under which for any configuration θ in the indifference
zone, the PGS in θ is higher than the PGS in its paired configuration θ ∗?

Research into sufficient conditions dates back to the work of Fabian (1962) and has led to various
results, many of them involving overly restrictive assumptions on the selection procedures. For example,
Chiu (1974a) and Chiu (1974b) assume that the probability that the best alternative has a higher estimator
than any bad alternative is monotone with respect to the differences between performances of consecutively
ordered alternatives. Similarly, Feigin and Weissman (1981) and Chen (1982) assume that the estimators of
the alternatives’ performances are mutually independent and come from the same family of stochastically
increasing distributions having different location parameters. Furthermore, Nelson and Matejcik (1995)
effectively assume that the estimators of the alternatives’ performances are shift-invariant with respect to
the vector of performances. These assumptions can all be generalized into the following condition:
Condition 1 (Guiard 1996) For any subset A⊂{1, . . . ,k}, the joint distribution of the estimators {Yi : i∈ A}
does not depend on θ j, for all j /∈ A.

Condition 1 states that changing the performance of an alternative or subset of alternatives does not
change the joint distribution of the estimators of the other alternatives. Condition 1 thus allows one to
compare events involving the estimators of a subset of alternatives between two configurations in which
the performances of alternatives in that subset are the same.

A short proof that Condition 1, when combined with an IZ-inspired PCS guarantee, implies a PGS
guarantee is as follows. Let Pθ and Pθ ∗ denote the probability measures under configurations θ and θ ∗,
respectively, and for a given alternative, i, let Yi and Y ∗i be the estimators of Alternative i under configurations
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θ and θ ∗. One way for a good selection to occur under configuration θ is for Alternative [k] to have a higher
estimator than every bad alternative. Condition 1 can then be applied, taking A = {[k]}∪{i : θi ≤ θ[k]−δ}:

Pθ (Good Selection)≥ Pθ (Y[k] > Yi for all i such that θi ≤ θ[k]−δ )

= Pθ ∗(Y ∗[k] > Y ∗i for all i such that θi ≤ θ[k]−δ )

≥ Pθ ∗(Y ∗[k] > Y ∗i for all i 6= [k])

= Pθ ∗(Correct Selection)≥ 1−α.

An important special case that implies Condition 1 is when the estimators of the performance of each
alternative are mutually independent, as is the case for many selection procedures in which alternatives
are sampled independently and no screening is used, e.g., those of Bechhofer (1954), Rinott (1978) and
Dudewicz and Dalal (1975). For this reason, Condition 1 can even be used for problems in which the
vector of performances is not a location parameter of the joint distribution F . For example, it can be used
to show that the procedure of Sobel and Huyett (1957) for selecting the best Bernoulli population delivers
a PGS guarantee. Condition 1 can also be satisfied for some procedures that use common random numbers
across alternatives, such as those of Clark and Yang (1986) and Nelson and Matejcik (1995).

Another special case of Condition 1 is when the joint distribution of the estimators is shift-invariant
with respect to the configuration, i.e., for any configurations θ and θ̃ ,

(Y1−θ1, . . . ,Yk−θk)
d
= (Ỹ1− θ̃1, . . . ,Ỹk− θ̃k),

where d
= denotes equivalence in distribution. In this case, a shift in the vector of performances θ produces

an equivalent shift in the joint distribution of the estimators Y1, . . . ,Yk. This situation is slightly stronger
than the condition in Theorem 1 of Nelson and Matejcik (1995). In order for this special case to be satisfied,
θ would likely need to be a location parameter of the joint distribution of the observations F . This would
be the case, for example, if Xi1 ∼N (θi,σ

2
i ) and alternatives were sampled independently. In this setting,

θi could also represent some other location parameter of Fi, such as the median or q-quantile.
A major shortcoming of Condition 1 is that it is unlikely to hold for modern procedures that use screening

to eliminate inferior alternatives. This is because changing the performance of a given alternative can either
change the set of alternatives that survive the screening stage, or affect the sequencing of alternatives that
are eliminated (Nelson et al. 2001; Kim and Nelson 2001). We now discuss another condition that lifts
an IZ-inspired PCS guarantee to a PGS guarantee and seems more likely to hold for procedures that use
screening.
Condition 2 (Hayter 1994): For all alternatives i = 1, . . . ,k, Pθ (Select Alternative i) is non-increasing in
θ j for every j 6= i.

Condition 2 states that increasing the performance of an alternative will not improve the likelihood
that any other alternative is selected. And since

Pθ (Select Alternative j) = 1−∑
i6= j

Pθ (Select Alternative i),

Condition 2 also implies that increasing the performance of an alternative does not decrease the probability
of selecting that alternative.

The proof that an IZ-inspired PCS guarantee implies a PGS guarantee for selection procedures satisfying
Condition 2 makes use of the following consequence: increasing the performance of a bad alternative until
it is good will not increase the probability that any other bad alternative is selected, and, thus, the probability
of making a good selection will not decrease. Running this argument in reverse says that decreasing the
performance of a good alternative will not increase the PGS. Hence, for an arbitrary configuration θ in the
indifference zone, iteratively reducing the performances of all good (but not best) alternatives until they
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are at θ[k]−δ will not increase the PGS. The PGS in configuration θ will, therefore, be no less than the
PGS of configuration θ ∗, which is at least 1−α .

Unlike Condition 1, Condition 2 is difficult to verify since deriving an expression for the probability
that a given alternative is selected is often complicated, if not futile. Indeed, Hayter (1994) remarks
that even formulating stronger conditions that imply Condition 2 is challenging. Despite the difficulty of
verifying Condition 2, one might expect it to hold for reasonable selection procedures, even those that use
screening. All else being equal, increasing the performance of an alternative should increase the probability
of that alternative being selected, at the expense of every other alternative. In other words, there is no
apparent reason that another alternative would benefit from having a stronger competitor. Unfortunately,
screening procedures involve complicated dependencies among elimination decisions that can undermine
this intuition. That is, changing the performance of an alternative can change the times of elimination
decisions involving that alternative, and in turn affect future elimination decisions.

Hayter (1994) provides a counter-example of a selection procedure with screening that does not satisfy
Condition 2. Suppose there are three alternatives with performances θ1 < θ2 < θ3, i.e., Alternative 3 is the
best, and consider the following simple procedure that takes observations independently across alternatives:

1. Take n0 observations from each alternative.
2. Eliminate all but the two alternatives with the highest estimated performances.
3. Take n1 additional observations from the two surviving alternatives.
4. Select the alternative with the higher overall estimated performance.

We will explain how for this procedure, increasing θ1 may – for some parameter settings – increase
the probability that Alternative 2 is selected, thereby violating Condition 2.

Fix the initial sample size n0 ≥ 1 and consider the extreme cases where n1 = 0 and n1 = ∞. When
n1 = 0, the procedure selects the alternative with the highest estimated first-stage performance, since there
is no second stage. Therefore, increasing θ1 will increase the probability that Alternative 1 is selected
while decreasing the probabilities that Alternatives 2 and 3 are selected.

When n1 = ∞, the procedure exhaustively simulates the two alternatives that receive second-stage
sampling and so always selects the better of the two. Although an infinite simulation budget is impractical,
this case is intended to reflect extensive sampling of alternatives that survive screening. In this case,
the probability of selecting Alternative 1 is zero since it will lose any pairwise comparison if it survives
screening. In contrast, Alternative 3 is always selected when it survives screening, meaning that the
probability of selecting Alternative 3 is exactly the probability that it survives screening. This probability
decreases as θ1 is increased, but not past θ2. From these two relationships, it follows that the probability
of selecting Alternative 2 must increase as θ1 is increased. It is possible to find a large, finite value of n1
for which this selection procedure violates Condition 2.

This counter-example demonstrates how using screening in a selection procedure leads to complicated
dependencies between alternatives that may result in non-monotone changes in the probabilities of selecting
alternatives. Fairweather (1968) is an example of a selection procedure with a PCS guarantee over the
preference zone that might violate Condition 2. Likewise, the NSGS procedure of Nelson et al. (2001)
could possibly violate Condition 2 if a high value of α0 is used in the screening stage and then a small
(conservative) value of α1 is used in the selection stage.

Some researchers have attempted to directly prove PGS guarantees for procedures that use screening
and deliver IZ-inspired PCS guarantees, with mixed results. For example, Osogami (2009) uses Anderson’s
probability bound (Anderson 1960) to show that a PGS guarantee holds for some parameter settings of his
sequential procedure. In addition, Fan et al. (2016) show that one of their indifference-zone-free procedures
has an asymptotic PGS guarantee. On the other hand, the purported proofs of PGS guarantees in Kim
and Nelson (2001) and Pichitlamken et al. (2006) are incorrect. Another approach is to adapt sequential
selection procedures with IZ-inspired PCS guarantees by pushing out the boundaries of the continuation

358



Eckman and Henderson

regions, effectively weakening the elimination rule (Kao and Lai 1980; Jennison et al. 1982). However,
these modifications result in overly conservative procedures.

3.3 Multiple Comparisons

Another classical approach to proving PGS guarantees comes from multiple comparisons, a field of statistics
concerned with constructing simultaneous confidence statements about the performances of alternatives.
In the multiple comparisons literature, three events related to good selection are

A = {Y[i]−Y[ j]− (θ[i]−θ[ j])< δ , ∀i 6= j},
B = {Y[i]−Y[k]− (θ[i]−θ[k])< δ , ∀i 6= k}, and

C = {Y[i]−Y[k]− (θ[i]−θ[k])< max(δ ,θ[k]−θ[i]), ∀i 6= k}.

Event A is called multiple comparisons all pairwise and states that the differences in performances between
all pairs of alternatives have all been estimated within δ of their true values. Similarly, event B is called
multiple comparisons with the best and states that the differences in performances between each alternative
and the best are within δ of their true values. Event C is a slight relaxation of event B, and it can be seen
that A ⊆B ⊆ C .

Each of the three events independently implies good selection, with proofs given by Hsu (1996) and
Nelson and Banerjee (2001) and reproduced in Lee and Nelson (2017). As an example, event C implies
good selection since for any bad alternative [i], i.e., θ[i] ≤ θ[k]− δ , event C implies that Y[i] < Y[k], and,
therefore, Alternative [i] will not be selected. If a selection procedure can guarantee that any of the events
A , B, or C occurs with a probability greater than or equal to 1−α , then the procedure has a PGS guarantee
with the same confidence level. For example, Event B is used by Nelson and Matejcik (1995) to show that
some procedures with IZ-inspired PCS guarantees also deliver PGS guarantees. It is also used to prove
the PGS guarantee for procedure GSP’ of Ni et al. (2017). Meanwhile, event C is used by Nelson and
Banerjee (2001) to produce lower confidence bounds on the PGS for a given selection procedure. The three
events are also used in the asymptotic PGS guarantees of the bootstrapping procedures of Lee and Nelson
(2017), discussed later in Section 4.1. We direct the interested reader to Hsu (1996) for other examples of
classical procedures that incorporate these ideas.

4 RELATED PGS GUARANTEES

In this section, we discuss variants of the frequentist PGS guarantee studied in Sections 2 and 3, namely
the asymptotic PGS guarantee that arises from bootstrapping and the posterior PGS guarantee under a
Bayesian framework.

4.1 Bootstrapping

Recently, selection procedures have been designed that leverage bootstrapping. Lee and Nelson (2016) and
Lee and Nelson (2017) introduce a family of procedures that make no distributional assumptions about the
observations from the alternatives and allow for the use of common random numbers. The procedures take
an equal number of observations, n, from each alternative and use bootstrapping to estimate the probability
of events A , B, and C discussed in Section 3.3. Depending on whether common random numbers are
used, the bootstrap samples are drawn from either the marginal or joint empirical distributions. Since all
three events imply good selection, the procedures terminate when the bootstrap probability of an event
exceeds 1−α and select the alternative with the best estimated performance. This selection rule is used
because the procedures are determining a common sample size for which the bootstrap probability that the
alternative with the best estimated performance is a good alternative exceeds 1−α .

These bootstrapping procedures estimate the frequentist probabilities that events A , B, or C occur,
given the observed data. In other words, bootstrapping treats the empirical distributions as the true
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distributions of the observations from the alternatives and estimates the probability that a given event occurs
if n observations were taken from each alternative. In contrast, as we will see in Section 4.2, Bayesian
R&S procedures calculate the posterior probability of an event, given the collected observations and a prior
distribution.

A limitation of such bootstrapping procedures is that only asymptotic PGS guarantees can be proved
due to two consequences of finite sample sizes. First, the empirical distributions will not match the true
distributions. Second, in the bootstrapping setting, the definitions of events B and C rely on an estimate
of the identity of the best alternative and its performance. Thus, for finite sample sizes, the estimated best
alternative may not be the true best alternative. The procedures estimating the probabilities of events A
and B deliver asymptotic PGS guarantees as δ ↓ 0, whereas the procedure estimating the probability of
event C involves an additional limit requiring that the relative spacing of the performances is maintained
as the configuration contracts.

Another drawback of these bootstrapping procedures is that they must take an equal number of
observations from all alternatives to maintain their asymptotic validity. This means that alternatives that
appear to be clearly inferior cannot be eliminated early. Therefore, when the number of alternatives is
large, these procedures can be inefficient.

4.2 Bayesian PGS

The frequentist R&S problem discussed in Sections 2 and 3 can also be examined from a Bayesian
perspective (Berger and Deely 1988; Gupta and Miescke 1996). Under the Bayesian interpretation, the
problem instance is treated as a random variable, and expectations are taken over a posterior distribution,
after incorporating observed evidence and a prior distribution. Accordingly, the parameters of the joint
distribution F are viewed as random variables drawn from distributions with known families but unknown
parameters. For example, in the Bayesian R&S literature, it is commonly assumed that the vector of
observations (X1 j, . . . ,Xk j) comes from a multivariate normal distribution. When alternatives are simulated
independently, the observations from Alternative i are distributed as Xi j ∼N (Wi,σ

2
i ) where the mean

Wi and variance σ2
i are random and for computational convenience, the normal-gamma conjugate pair on

(Wi,1/σ2
i ) is often used (Chick and Inoue 2001b). On the other hand, when alternatives are simulated

using common random numbers, the normal-Wishart conjugate pair can be used for the mean vector and
precision matrix (Chick and Inoue 2001a). In either case, the configuration is represented by the random
mean vector W = (W1, . . . ,Wk), in contrast to the frequentist view of the problem instance as being unknown
but fixed.

To use a Bayesian selection procedure, a decision-maker begins with prior distributions on the unknown
parameters of F . After taking observations from the alternatives, the standard Bayesian machinery is used
to update the hyperparameters of the posterior distributions. The posterior distributions on the parameters of
F encapsulate the decision-maker’s beliefs on the unknown problem instance, given the observed evidence.
For instance, when observations are normally distributed as described above, the posterior distribution of W
(often a multivariate t-distribution) can be used to calculate the posterior probability of an event involving
the alternatives’ performances. Specifically, the posterior PGS for a given alternative, i, is defined as

PGSBayes
i = P(Wi >Wj−δ ∀ j 6= i),

where the probability is taken with respect to the posterior distribution of W , given the observed evidence.
The posterior PGS for a given alternative amounts to an integral of the posterior distribution of the mean

vector over a polyhedron defined by k−1 inequalities of the form Wi−Wj >−δ for all j 6= i. This polyhedron
corresponds to the event that the performance of Alternative i is no worse than δ below the maximum of
the others. When the number of alternatives is small, this integral might be computed numerically, and
when the number of alternatives is large, it can be estimated using Monte Carlo methods, although the
latter introduces a frequentist error estimate that deserves consideration. Alternatively, Slepian’s inequality
(Slepian 1962) can be used to obtain a lower bound on the posterior PGS of a given alternative that can
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be easily computed (Branke et al. 2005). This lower bound can be used as a stopping rule for expected
value of information (VIP) and optimal computing budget allocation (OCBA) procedures (Chick and Inoue
2001b; Chen et al. 2000). A similar approach is taken to bound the PCS in the enhanced two-stage selection
(ETSS) procedure (Chen and Kelton 2005).

The posterior PGS for a given alternative can be interpreted as the probability that the problem instance
is one for which that alternative is good. If Alternative i were selected by a procedure with a Bayesian
posterior PGS guarantee, then based on the evidence, with probability exceeding 1−α , the random problem
instance is one for which the fixed Alternative i has a mean within δ of the best. In contrast, for a selection
procedure with a frequentist PGS guarantee, with probability exceeding 1−α , the random alternative
selected by the procedure has a mean within δ of the best for this fixed problem instance. In other words,
if the selection procedure were run many times on the same problem instance, on at least (1−α)×100%
of those runs, the procedure would select a good alternative. A potential drawback of this interpretation
is that in practice, the decision-maker is likely to run the procedure only once.

Compared to its frequentist counterpart, the Bayesian concept of posterior PGS has several advantages.
Foremost among these is that it can be recalculated as more observations are collected without affecting a
procedure’s validity, while avoiding issues with repeatedly looking at the data that arise in the frequentist
framework. As a consequence, Bayesian selection procedures can use the posterior PGS for the alternatives
as a stopping condition, terminating when the posterior PGS of an alternative exceeds 1−α and selecting
that alternative (Branke et al. 2005; Russo 2016).

Another appealing aspect of posterior PGS is that Bayesian selection procedures typically use only
the desired confidence level, 1−α , in setting a stopping condition. Thus, allocation rules that control
how many observations are taken from each alternative can be designed without regard for 1−α , and are,
therefore, free of any need to consider a least favorable configuration. For frequentist selection procedures,
1−α must be specified in advance and the procedures are then designed to deliver a PGS guarantee for any
configuration, making them inherently conservative. Unsurprisingly, empirical comparisons have shown
that selection procedures designed to deliver Bayesian fixed-confidence guarantees are often more efficient
than ones with frequentist guarantees (Branke et al. 2007).

5 CONCLUSIONS

We reviewed PGS guarantees as they appear in the R&S and multi-armed bandit literature and surveyed
several proof techniques, including concentration inequalities and multiple comparisons. We also argued
that PGS guarantees are superior to the popular IZ-inspired PCS guarantees and demonstrated how – under
certain conditions – the latter can imply the former. In our discussion, we illustrated how the analysis of
selection procedures that use screening is complicated by the dependencies among alternatives and their
estimators. It remains an open question whether such selection procedures that deliver IZ-inspired PCS
guarantees, e.g., the fully sequential procedures of Paulson (1964) and Kim and Nelson (2001), also deliver
PGS guarantees. Verifying Condition 2 for these procedures may be a promising approach. Lastly, we
examined some of the relative advantages and disadvantages of PGS guarantees for bootstrapping and
Bayesian selection procedures.

The idea of delivering a fixed-confidence guarantee for selecting a δ -optimal alternative can also be
applied to problems for which the number of alternatives is infinite. As an example, an intriguing area for
future research would be stochastic optimization problems with continuous domains. In this setting, one
might explore how to design algorithms that guarantee with high probability to return a solution whose
objective function value is within δ of a local optimum. Aside from regularity conditions on the error
associated with estimating the objective function, some structural assumptions about the objective function
would be essential.

Rather than having a single alternative be selected for them, decision-makers may prefer to obtain a
small subset of alternatives from which they can make a final decision based on some additional criteria.
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For this reason, more research is needed on subset-selection procedures with fixed-confidence guarantees
on the quality of the selected alternatives.
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