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ABSTRACT 

This paper focuses on constructing an abstract baseline model of agents, simulating buyers and sellers of 
health insurance, in the individual health insurance market. Each buyer assesses their expected medical 
expenses, surveys the insurance contracts available on the market, and decides each year whether to buy 
insurance, and which plan they will choose. Each seller, upon seeing the costs to provide medical care to 
its subscriber base, will update the premium price it offers to the market to remain profitable. The aim of 
this paper is two-fold – to produce a self-sustaining representation of the insurance market that qualitatively 
represents the health insurance market without any external policy implementations and to quantitatively 
replicate the large-scale metrics seen in the insurance market, most notably the price elasticity of demand 
for insurance. 

1 INTRODUCTION 

1.1 Empirical Studies of the Health Insurance Market 

The most notable and widely cited study of the health insurance market is the RAND Health Insurance 
Experiment (HIE), consisting of 7,791 individuals over three years and six U.S. cities. At the time of this 
writing (2018), it remains the largest health policy study in U.S. History. The primary aim of the study was 
to determine how much more medical care people will use if it is provided free of charge – RAND 
Corporation (2006). As noted from the focus, the goal of the study was to assess moral hazard, or the 
concern of excessive use of medical care without the controlling factor of price.  

One of the more difficult metrics to determine about the health insurance market is the price elasticity 
of demand – how much the quantity of a good sold on the market will change given a set change in the 
price of that good.  It was noted in Feldstein (1971) and Cutler and Zeckhauser (2000) that, prior to the 
RAND HIE, medical care was assumed to be a need, and that the demand was completely inelastic. The 
RAND study, as well as analyses from Phelps and Newhouse (1972) and Feldstein (1977), determined this 
was not the case. Estimates vary widely on the price elasticity of demand, which is dependent on a wide 
variety of factors, including employment, income, and age. The RAND HIE results estimated an overall 
price elasticity of -0.60. In other words, when the price of insurance increases by 1.0%, the quantity sold is 
expected to decrease by 0.60%. 

Estimates on this measure in the real world vary considerably, from -1.50 in Rosett and Huang (1973) 
to -0.14 in Phelps and Newhouse (1972). This range is only widened when observing the market-wide 
elasticity metric for supplementary health insurance, as assessed in Marquis and Phelps (1987), ranging 
from near 0 to over -2.0. An exhaustive review of price elasticity estimates is summarized in a table in 
Cutler and Zeckhauser (2000). Marquis and Long (1995) discuss the price elasticity of demand of the non-
group market – that is, the market of insurance buyers not purchasing insurance through their employer 
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which they estimate at -0.40, based on a combination of empirical survey data and constructed premium 
prices from companies that develop individual plans. 

1.2 Theoretical Models of the Health Insurance Market 

While the health insurance market is an enormous system, both complex and adaptive, many efforts have 
been published to model certain interactions between large bodies of actors in the system. Cutler and 
Zeckhauser (2000) discuss the health insurance market in broad, abstract terms, as a three-body problem – 
patient, payer, and provider. They then discuss the analysis of plans through a game theoretical model, 
between high and low risk patients, to determine employers’ payment option strategies for their workforce. 
They then examine this system empirically in their case study of Harvard University and Massachusetts 
Group Insurance Commission (GIC). 
 Marquis and Holmer (1986) used much of the data from the RAND HIE to inform a discrete choice 
model for a RAND study. Work prior to Marquis and Holmer focused on simulating rational choice for 
patients in the insurance market. However, this demonstrated a significant sensitivity to price changes 
among the patient population when choosing health insurance plans that was not validated by subsequent 
research by Holmer (1984) and Marquis and Phelps (1987). This model uses non-stochastic terms derived 
from the survey, as well as stochastic error terms, to develop and simulate a computational model 
representing families choosing plans for supplemental health insurance. This model much more closely 
represented the price elasticity of demand witnessed in the market for health insurance, in contrast to 
previous expected utility models. Marquis and Holmer (1996) updated their discrete choice model to 
incorporate more recent models of uncertainty, including Prospect Theory from Tversky and Kahneman 
(1981) which is the precursor to the Cumulative Prospect Theory discussed in Tversky and Kahneman 
(1992) and used later in this paper. 
 More recent models have been developed in the form of microsimulations. Most notable are the Health 
Insurance Reform Simulation Model (HIRSM) in 2003, as discussed in Blumberg et al. (2003), and the 
Health Insurance Policy Simulation Model (HIPSM) in 2011, as discussed in Buettgens (2011). Both 
models focus on all significant insurance markets, including the non-group market, and produce a synthetic 
population of actors (patients, as well as employers) from Current Population Surveys and the National 
Medical Expenditure Surveys. Both models use current law as the baseline model, then assess changes to 
the law on the population and each simulated actor’s behavior. These models have been used to predict 
coverage percentages, multi-year costs, and premiums, as examined by Urban Institute Health Policy Center 
(2014), The models have also been used to assess the impact of removing elements of the Affordable Care 
Act (ACA) – such as the Individual Mandate – as discussed in Blumberg et al. (2013). 

1.3 Cost and Income Parameters 

Many studies involved in estimating the cost of medical care have used a reductionist approach, establishing 
cost as a type of linear aggregation model of a combination of factors – prime example being age, location, 
and pre-existing health conditions. Few studies have attempted to arrive at a non-parametric approach – 
defining health care costs as a random variable with relatively few attributes. One such methodology, 
developed by Feenberg and Skinner (1992) and further explored by Rust and Phelan (1997) and French and 
Jones (2004), establishes both the cross-sectional distribution of health care costs, and the dependence of 
health care costs on previous cycles. Feenberg and Skinner (1992) analyze medical deductions from tax 
returns to establish an autoregressive, or AR, function to estimate the medical costs of an individual. Rust 
and Phelan (1997) and French and Jones (2004) build upon this in developing an autoregressive moving 
average function, or ARMA, incorporating both the AR function developed by Feenberg and Skinner, and 
adding a moving average, or MA, component to form a stationary stochastic process of two polynomials, 
for the AR and MA functions. 
 In addition to revising the process as an ARMA function, Rust and Phelan (1997) and French and Jones 
(2004) assess the heaviness of the right tail in the cross-sectional distribution of health care costs rather 

990



Comer 
 

than a perfect lognormal distribution. This is particularly important in situations of the sickest individuals 
who are most likely to purchase health insurance. This model uses the parameters discussed in French and 
Jones (2004), as it is based on longitudinal medical expenditure surveys, multi-year data from the Health 
and Retirement Survey (HRS) by Juster and Suzman (1995), and the Assets and Health Dynamics of the 
Oldest Old (AHEAD) survey, as in Soldo et al. (1997), rather than expenses only deemed expensive enough 
to declare on tax returns. The downside of this data-set is the higher average age of the survey population, 
as the survey was centered on the costs of people prior to retirement (ages 51-65) and after retirement (65+) 
rather than a true representation of the entire population. 
 In a similar fashion to medical costs, income parameters are determined to similarly exhibit a heavy 
right tail, as depicted by Drăgulescu and Yakovenko (2001) and Clementi and Gallegati (2005). However, 
for the lower 95% of the population, the distribution can be depicted as a reasonably straight-forward 
exponential or lognormal function, depending on whether there exists a cut-off in the dataset, with a finite 
mean and variance. Drăgulescu and Yakovenko (2001) explicitly cite an exponential function with a mean 
of $36.4K for the United States, and the right tail – representing the top 5% of the population – as having a 
power-law distribution, with an α value of 1.7. This data, like the medical care expenditure data presented 
in French and Jones (2004), is based on data from 1998, so the income and spending parameters are in 
similar year dollars. 

2 METHODOLOGY 

This paper is focused on the modeling of a functioning non-group health insurance market, using an agent-
based computational model representing consumers (patients) and suppliers (payers) of health insurance. 
This model, coded in Python, attempts to replicate the interactions of patients and payers in a market using 
a small number of variables and parameters, to determine the fundamental elements of the individual health 
insurance market. 

2.1 Patients 

This model is run with 100,000 patient agents, choosing between ten plans over 20 years. In each simulated 
year, the patient agent assesses its current plan and all other plans being offered in the market. The patient 
agent can choose to keep its plan, move to a new plan, or forsake its plan to go uninsured. Similarly, each 
year, every patient agent earns an income, derived from the work of Drăgulescu and Yakovenko (2001), 
and has a medical expense, derived from the work of French and Jones (2004). Assessing these items, as 
well as the risk of a catastrophic event using a risk valuation assessment as presented in Tversky and 
Kahneman (1992), feeds into how each patient agent determines what to pay for health insurance. 
 The model presented within this paper initializes patient agents with a salary and an initial medical 
expense. As a distinction from many former models discussed in Section 1, this model does not consider 
age, gender, or other demographic information, and only looks at the medical expenditures that are expected 
as functions of the previous year, with the possibility of a catastrophic shock occurring. 
 The patient agents are initialized with a salary, determined by random variable from the probability 
distribution 𝐼𝑛𝑐𝑜𝑚𝑒 ~ 𝐸𝑥𝑝(𝜆) where 𝜆 = 36400 represents the mean income of the lower-95% of the U.S. 
population, as was defined by Drăgulescu and Yakovenko (2001). As noted in Drăgulescu and Yakovenko 
(2001) and Clementi and Gallegati (2005), income distribution in the U.S. and in most developed nations 
has a right heavy tail which does not conform to an exponential function or even a log-normal function, but 
rather a power-law function. Given that the probability density function (PDF) of the exponential function 
provides the 95%-percentile at 109450, this becomes the 𝑥𝑚𝑖𝑛 value for the conjoining power-law 
distribution, with an associated alpha value 𝛼 = 1.7.  
 The patient agents are also initialized with a starting medical expense, from the cross-sectional 
distribution determined by French and Jones (2004): 𝐶𝑎𝑟𝑒 𝐶𝑜𝑠𝑡 ~ 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(6.69,2.11). This is the 
fitted lognormal cross-sectional distribution they determined fit the medical expenditure data they analyzed. 
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However, there is a heavy right tail, representing the most expensive medical care that might occur from a 
catastrophic event. The authors determine that the heavy tail has a Pareto distribution, with 𝑥𝑚𝑖𝑛 = 33800 
(the 99.5-percentile of the distribution) and 𝛼 = 0.291. As 𝛼 < 1, the distribution does not have a well-
defined mean or expected value. It therefore does not make any sense to take an expected value of this 
distribution. Therefore, each patient agent is initialized with a randomly generated “estimated catastrophe” 
value, which is what the patient agent uses to assess the value of health insurance. 
 Each year, every patient agent is activated sequentially and asked to estimate its medical expenses for 
the coming year. They do this using a risk valuation function described in Cumulative Prospect Theory, 
from Tversky and Kahneman (1992), assessing the most likely medical expense as equivalent to the 
previous year. However, there is a small probability of a shock, estimated at 0.50% chance, that the patient 
agent might suffer a catastrophic event, which would cost an amount the patient agent estimated at 
initialization. As described in Cumulative Prospect Theory, the subjective estimation that each patient agent 
makes of the probability of a catastrophic event occurring is: 
 

 
𝑊(𝜌, 𝛿) =

𝜌𝛿

((1 − 𝜌)𝛿 + 𝜌𝛿)1 𝛿⁄
 

(1) 

 
 Where 𝜌 = 0.005, or the objective probability of a catastrophic event occurring, and 𝛿 = 0.69, or the 
discounting factor established in Tversky and Kahneman (1992). Similarly, the estimated costs of the two 
possibilities are calculated as: 
 

 𝑉1(𝑣𝑡−1, 𝜆, 𝛼) = 𝜆𝑣𝑡−1
𝛼  (2) 

 𝑉2(𝜒, 𝜆, 𝛼) = 𝜆𝜒𝛼 (3) 

  
 Where vt-1 is the actual cost from last year, χ is the cost of a predicted catastrophe, and 𝜆 = 2.25 and 
𝛼 = 0.88 are parameters established by Tversky and Kahneman (1992). These three equations are then 
used to determine the estimated expenses in the next year: 
 

 Estimated expenses = (1 −𝑊) × 𝑉1 +𝑊 × 𝑉2 (4) 

  
 After the patient agent has calculated its expected expenses, it assesses the plans that are currently on 
the market, and will purchase the plan that provides the lowest expected expenditure. If the patient already 
has a plan, they will switch if the price of the new plan is less than the current expenditure divided by an 
Inertia parameter, defined by the author as 1.25. This is calculated using the premium price, the coinsurance 
rate, and the out of pocket maximum (OOP_Max) provided by the payer agent, as well as the estimated 
expenses of the patient agent. 
 

 Insured Estimate = Premium + {
Coinsurance × Estimated Expenses if Estimated Expenses ≤ Out of Pocket Maximum

Coinsurance ×OOP_Max if Estimated Expenses > Out of Pocket Maximum
 (5) 

  
 After choosing a plan, the patient agent can drop its insurance plan, if the estimated costs of the plan 
are higher than the patient agent anticipates its medical expenses to be. The patient agent may also drop the 
plan if the costs of the plan are higher than the patient agent’s salary. 
 After the estimations have been performed, the patient agent’s actual medical expenditure is calculated, 
using an autoregressive moving average function, ARMA(1, 1) adapted from French and Jones (2004): 
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 𝑋𝑡 = 𝑋𝑡−1 + 𝜖𝑡 + 𝜃𝜖𝑡−1 (6) 

 Care Cost = 𝑒𝑋𝑡 (7) 

  
 Where Xt-1 is the natural log of the previous year’s medical expenditure, 휀𝑡 is a normally distributed 
error function 휀𝑡  ~ 𝑁(0, 0.039), εt-1 is the previous year’s error term, and 𝜃 = 0.104.  
 There is a 0.50% (𝜌 = 0.005) chance of a catastrophic event occurring, where the cost of care instead 
becomes a random variable with a Pareto distribution, "𝐶𝑎𝑟𝑒 𝐶𝑜𝑠𝑡 ~ 𝑃𝑎𝑟𝑒𝑡𝑜(33800, 0.291)". While this 
is a similar function to the one used to initialize each patient agent’s estimation of a catastrophic event, 
there is no relation between the estimated cost and the actual cost of such an event. 
 Finally, the patient agent gets care. If the patient agent is not insured, then the care is paid for out of its 
wealth. If the patient agent has a plan to which it is a subscriber, then it pays the premium plus the care cost 
times the coinsurance rate, and the payer agent pays for the rest. If the care cost is greater than the Out of 
Pocket Maximum of the payer agent, than the patient agent simply pays the Out of Pocket Maximum times 
the coinsurance rate, plus the premium, as discussed in Cutler and Zeckhauser (2000). 

2.2 Payers 

This model is run with 10 payer agents over 20 years. Each simulated year, the payer agent chooses to 
accept or reject applicants to plans, and can drop subscribers who are too expensive to cover. It will pay for 
medical care for its subscribers and will then adjust its premium price to cover care for its subscriber base. 
 Each payer agent is initialized with a budget equal to the Out of Pocket Maximum of the plan, times 
the total number of patient agents in the model (set to 100K). Given that the baseline number of Out of 
Pocket Maximum (labeled OOP_Max in the simulation model) for all payer agents is 25,000 or 25K, this 
amount is set to $250M for all payer agents. The premium price is initialized as a random variable with a 
Gaussian distribution: 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 ~ 𝑁(1000,200). The coinsurance rate is a discrete choice between 0.10, 
0.25, and 0.50, each with equal probability, following the pattern laid out by Marquis and Holmer (1986). 
Lifetime Maximum (labeled Lifetime_Max in the model) is set to 100K. Elasticity is initially set to 0.  
 Each year, payer agents have limited actions they can perform while the patient agents decide between 
plans. When each patient agent decides to apply for a plan provided by a payer agent, the payer agent then 
performs medical underwriting. If the three (3) previous medical expenses have all been greater than a given 
value, calculated as "𝑂𝑂𝑃_𝑀𝑎𝑥 × 𝐶𝑜𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒", then the payer agent will reject the patient agent’s 
application. Otherwise, the patient agent will be accepted and will be a subscriber for that year. Similarly, 
if a subscriber has a medical expense in any given year that is greater than the lifetime maximum established 
by the plan, then the payer agent can drop that patient agent as a subscriber. 
 After each patient agent has been activated, and their actual medical expenditures have been calculated 
and paid for, the payer agents are then activated sequentially to determine by how much they should raise 
their premium prices. First, the budget is updated, subtracting the total costs of all subscribers and adding 
the premium price multiplied by the number of subscribers currently on the books, as well as an 
administrative cost factor, defined at 1.15 by the author. 
 Next, the payer agent calculates the costs of the past five (5) years and the revenue generated by the 
past five (5) years, producing a simple autoregressive function of the five previous turns, AR(5) or 
ARMA(5,0) as there is no moving average component. 
 

 
𝐶𝑜𝑠𝑡𝑡 = 𝐴𝑑𝑚𝑖𝑡𝐶𝑜𝑠𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ×∑(1 − 𝑐𝑜𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒) × 𝐶𝑎𝑟𝑒𝐶𝑜𝑠𝑡𝑗

𝑛

𝑗=1

 
(8) 
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𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡 =∑𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑡

𝑛

𝑗=0

 
(9) 

 
Profit = ∑(𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡−𝑖 − 𝐶𝑜𝑠𝑡𝑡−𝑖)

4

𝑖=0

 
(10) 

  
 Where 𝑛 is the number of subscribers currently listed under the payer agent at year 𝑡, and 𝐶𝑎𝑟𝑒𝐶𝑜𝑠𝑡𝑗 
is the medical expenditure of subscribed patient agent 𝑗. 
 If the revenue is greater than the costs, the payer agent does nothing. If the costs are greater than the 
revenue, the payer agent then divides the difference by the number of subscribers, and adds this to the 
premium. If the difference is greater than the Premium Buffer times the current Premium value, then the 
payer agent increases the premium by the current premium times the premium buffer. 
 

 𝐼𝑓 Profit ≥ 0, 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑡 = 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑡−1 (11) 

 
𝐸𝑙𝑠𝑒, 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑡 = 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑡−1

−

{
 

 
𝑃𝑟𝑜𝑓𝑖𝑡

𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠𝑡−1
 𝑖𝑓 |𝑃𝑟𝑜𝑓𝑖𝑡| < (𝑃𝑟𝑒𝑚𝑖𝑢𝑚 𝐵𝑢𝑓𝑓𝑒𝑟 × 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑡−1) 

𝑃𝑟𝑒𝑚𝑖𝑢𝑚 𝐵𝑢𝑓𝑓𝑒𝑟 × 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑡−1

𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠𝑡−1
 𝑖𝑓 |𝑃𝑟𝑜𝑓𝑖𝑡| > (𝑃𝑟𝑒𝑚𝑖𝑢𝑚 𝐵𝑢𝑓𝑓𝑒𝑟 × 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑡−1)

 

(12) 

  
If a plan has zero subscribers, the payer agent proceeds to try to make the plan more attractive to possible 
subscribers. The payer agent will decrease the premium by the premium buffer. If a payer agent ends up 
with a budget that is negative, then the payer agent will leave the market. All current subscribers will be 
dumped, and their insurance plan will be set to None. The payer agent will no longer be able to change their 
premium price, nor accept new patient agents. 
 Throughout this process of revising and changing their premium price offered to the market, the payer 
agents are learning and adapting to the circumstances of the market. If the price is too high, patient agents 
will not buy the payer agent’s plan, and the payer agent will need to lower the premium to capture market 
share. If the price is too low, the payer agent risks losing money if the medical costs of their subscriber base 
is above the revenue collected. Rather than objectively determining the optimum price in the market, like 
what is performed in the neo-classical economic field, this model depicts a payer agent “groping” for a 
feasible solution through experimentation and feedback, in a process Herbert A. Simon termed “satisficing” 
(1956), as a form of learning and adaptation. 

3 METRICS 

3.1 Price Elasticity of Demand 

The most fundamental output metric of this computational model, in terms of testing for the validity of the 
model, is the price elasticity of demand of the market. As premium prices increase, it is expected that the 
number of subscribers of any given plan will decrease. For every payer agent, this can be calculated each 
year of a simulation: 

  
Elasticity = 

Premium

Subscribers
×
∆Subscribers

∆Premium
 

(13) 

994



Comer 
 

where the subscribers and the premium are the number of subscribers and the premium price in a given year 
respectively, and the delta in subscribers is the number of subscribers that were gained or lost in the previous 
year, and the delta in the premium is the amount that the premium price changed in a given year. This 
becomes complicated when a premium does not change in a year (which is possible when the payer agent 
is operating at a net positive), so this value is calculated when the premium changes in a given year, rather 
than for every year of a simulation. 

As discussed in the previous section, estimates on this measure in the real world vary wildly, from -
1.50 in Rosett and Huang (1973) to -0.14 in Phelps and Newhouse (1972). An exhaustive review of price 
elasticity estimates in the literature is summarized in a table in Cutler and Zeckhauser (2000). The most 
notable, and often most cited, estimate of price elasticity of demand for health insurance comes from the 
previously cited RAND Health Insurance Experiment, as well as replicated by Marquis and Phelps (1987), 
which estimates an elasticity metric of -0.60. This will be the goal of the computational model, in terms of 
validation. 

3.2 Number of Subscribers 

The number of patient agents subscribed to a payer agent will be a secondary measure of performance for 
the computational model. In this model, the system should operate with a sizable portion of the population 
being insured, but with a significant portion of the population being uninsured. They can be uninsured for 
a variety of reasons, which will be captured by the model: 

• Rejected: the patient agent’s cost of care is too expensive for any insurers to insure against 
• Cheap: the patient agent’s salary is not enough to pay for the insurance it chooses 
• Volunteer: the patient agent can afford to pay for a plan, but chose not to do so, because its 

estimated expenses are less than what it expected to pay for insurance 
• Dumped: the patient agent’s plan dumps it, either by leaving the market or not being able to pay 

for the patient agent’s care. 

4 ANALYSIS 

4.1 Price Elasticity of Demand 

The price elasticities of demand were calculated from those plans that had a change in both premium prices 
and subscribers. To be precise, this metric is a dataset of price point elasticities, rather than a global 
elasticity of demand. The graph in Figure 1 depicts all observations of elasticity – 794 observations in total 
– as a cumulative distribution function, depicting percentage of observations less than or equal to the price 
elasticity value observed. 
 

 
Figure 1: Cumulative Distribution Function of observations of Price Elasticity of Demand over 25 Runs. 
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 The statistical measurements of the observations are misleading because there are some significant 
outliers, six values that are greater than 10, and one value less than -10. After removing these seven outliers, 
the metrics become much more descriptive, with mean (-0.68) and median (-0.65) values close to the price 
elasticity value determined by the RAND Study from empirical evidence (-0.60). Table 1 shows the 
statistics of both the raw dataset, and with the outliers removed.  
 

Table 1: Descriptive Statistics for Price-Point Elasticity Values Dataset. 
 

Statistic Original Dataset Outliers Removed 
Mean 2.8871 -0.6783 
Median -0.6359 -0.6451 
Variance 8696.57 1.2107 
Standard Deviation 93.2554 1.1003 
Skewness 27.9268 1.4906 

 
 One element of note is that the skewness is positive, rather than negative, which is at odds with what is 
seen in Figure 1 or the rest of the statistical data. It is important to note that skewness does not differentiate 
between fatness and length of the tail, and while only 15.4% of the observations are positive, they are much 
more uniform in their distribution, rather than concentrated. As a positive price elasticity value is odd 
enough in the real world, this may indicate the effects of a force other than the premium price being at play. 
Most notably, this could occur with the dropping of a patient agent by one plan and being picked up by 
another, regardless of the price of the premium, as what has happened in recent years with the Health 
Insurance Marketplace as discussed in Holahan et al.  (2014). 
 While it can be shown graphically that the entire distribution is most likely not normally distributed, 
more quantitative measurements were calculated to confirm this. A Kolmogorov-Smirnov test versus a 
random variable distribution of equal size (𝑁 = 795), population mean and standard deviation computed a 
p-value of 2.2 × 10−16 (𝐷 = 0.4817), well below any reasonable value of α, leading to a rejection of the 
null hypothesis that this is a normally distributed population. Similarly, a Shapiro-Wilk test for normalcy 
also arrived at the same value for p as the Kolmogorov-Smirnov test, with a W-statistic of 0.0212. 
 The price point elasticity values that are positive, 15.4% of the observations (𝑛 = 131), can be shown 
to come from a different distribution than those that are negative (𝑛 = 666), using the Mann-Whitney U 
Test, also known as a Wilcoxon rank-sum test, on the change in premium price over the previous year. A 
normal distribution cannot be assumed for this population, as many of the values of premium increases are 
tied at the PremiumBuffer global value (baseline value = 0.20). With 95% confidence level, the null 
hypothesis (𝑈1 = 𝑈2) can be rejected (𝑝 = 7.27 × 10−11), as changes in premium price resulting in 
negative elasticity are greater (one-sided test, 𝑝 = 3.64 × 10−11) than those resulting in positive elasticity.  
 The statistics of the two points are assessed separately, using KS statistics from the Kolmogorov-
Smirnov tests, and A-statistic from Anderson-Darling tests.  The absolute values of the negative values of 
elasticity rejected every null hypothesis presented with regards to Kolmogorov-Smirnov Tests (prone to 
Type II errors, insensitive to larger values) and Anderson-Darling Tests (prone to Type I errors) – results 
are shown in Table 2. 

Table 2: Test Statistics for Negative Elasticity Values. 
 

Estimated Parameter 1 Estimated Parameter 2 KS-Test Statistic AD-test Statistic 
Lognormal 𝜇 = −0.1463 𝜎 = 0.8299 0.1154 (𝑝 = 0.0) 
Exponential 𝜆 = 1.0989 N/A 0.0868 (𝑝 = 0.0) 
Power Law 𝛼 = 4.6988  𝑥𝑚𝑖𝑛 = 1.5502 0.5107 (𝑝 = 0.0) 
Gamma 𝑘 = 0.0088 𝜃 = 1.5663 0.9508 (𝑝 = 0.0) 
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 The distribution of the positive values of elasticity rejected every null hypothesis except for the 
lognormal distribution (via the Kolmogorov-Smirnov Test, given a confidence level of 𝛼 =0.050), as 
demonstrated in Table 3. 

Table 3: Test Statistics for Positive Elasticity Values. 
 

Estimated Parameter 1 Estimated Parameter 2 KS-Test Statistic AD-test Statistic 
Lognormal 𝜇 = −0.0002 𝜎 = 0.3507 0.1061 (𝑝 = 0.1044) 
Exponential 𝜆 = 28.3347 N/A 0.8009 (𝑝 = 0.0) 
Power Law 𝛼 = 1.7887 𝑥𝑚𝑖𝑛 = 0.5076 0.4335 (𝑝 = 0.0) 
Gamma 𝑘 = 0.0508 𝜃 = 1570.95 0.5214 (𝑝 = 0.0) 

 

4.2 Number of Subscribers 

Shown in Figure 2 are the maximum, average, and minimum values of patient agent participation in the 
insurance market across the 25 runs of the model. What is interesting to note is the sinusoidal pattern of 
participation in the market, with a period of roughly ten years. This pattern remains consistent across all of 
the runs, which indicates an artifact of the system, and the patient agents responding to the changes in 
premiums, which respond in a delayed fashion to level of subscription across the patient agent population. 

 
Figure 2: The maximum, average, and minimum values for proportion of total patient agents insured over 
25 runs, by year.  

 With those that choose not to purchase insurance, there are a few reasons that patient agents may not 
be insured – being refused, having too little income to afford it, being dumped after having insurance, or 
choosing to forgo insurance because they do not believe it will benefit them. As can be shown in Figure 3, 
while the number of rejected and dumped stay reasonably constant throughout each run, the number of 
those who choose not to buy insurance, either not being able to afford it or making the rational decision to 
forgo insurance, rises slowly, which is consistent with the rising of premium prices through the simulation 
run. 

 
Figure 3: Average Unsubscribed Population by Rationale and Year Across 25 Runs of the Baseline Model. 
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5 DISCUSSION 

5.1 Discussion of Findings 

The price elasticities and subscribers have been shown to exhibit qualities like those witnessed in the real-
world market, such as primarily negative elasticity values centered around -0.60, as discussed in RAND 
Corporation (2006), and several insured individuals that remains constant throughout the results of the 
simulations. Several observations of price elasticity were shown to be positive, which is contrary to the 
behavior of most consumer goods. However, at points when patient agents moved to a plan despite the 
premium price increase, the patient agent was often leaving a plan that had an even greater proportionate 
price increase. As the availability of substitute goods increase, such as the case of multiple available 
insurance plans, so too would the price elasticity. It should be noted that, while the positive values of price 
elasticity followed a lognormal distribution, the negative values followed no such distribution. This 
indicates that the underlying behavior of the distributions may be caused by different phenomena. 
 It is an important finding that, even in the absence of any policy or significant exogenous effects, the 
subscriber base or number of insured persons remains stable and shows a similar cyclical pattern across all 
runs. This indicates a negative feedback in the model that is not explicitly coded into either the payer agent 
or patient agent behavior. 
 Many of the parameter values of the model, such as Inertia, Administrative Cost Factor, and Premium 
Buffer, were defined by the author. Performing sensitivity analysis using a Mann-Whitney U test on 
changing these values and their impact on the values of elasticity, there is a statistically significant 
difference in the price elasticity given 10% increase or decrease in these values, using a two-sides 
alternative hypothesis (H1: U1 ≠ U2). Further research would need to be done to identify what the empirical 
values of these parameter are in the real market, before this can be used for experimentation. 

5.2 Discussion of Broader Implications 

This model is a significant departure from many previous models on health insurance in several ways. 
While the model is driven by certain distributions based on empirical data, such as income and cost of 
medical care, the number of parameters needed to drive the model is rather small compared to many other 
microsimulation models of the subject matter, as in Blumberg et al. (2003) and Buettgens (2011). Even 
still, the model produces a result that is, to a reasonable degree, like what is observed in the real world, with 
regards to price elasticity of demand, number of insured, and premium prices. 
 A more notable departure from previous models of health insurance is the addition of heavy tails to the 
cost parameters, as in French and Jones (2004) and income parameters, as in Drăgulescu and Yakovenko 
(2001) and Clementi and Gallegati (2005). Both medical costs and household income have been shown to 
exhibit power law distributions at the highest values. For medical costs at least, this becomes enormously 
important to understanding the true costs of the system to the payers.  
 Finally, this model was run at true scale, representing one-for-one the non-group population one may 
observe in an average U.S. state. In 2013, the median number of non-group individuals per state was 169K, 
and 15 states had non-group populations of less than 100K, from Kaiser Family Foundation (2015). The 
scale of the model can impact the volatility and dynamics of the results, and so it was important to come as 
close to true scale as was feasible, given computing restraints. 

5.3 Further Research 

While this model clearly demonstrates the ability to replicate the qualitative patterns witnessed in the real-
world health insurance market, further refinement of the global variables defining the model would be 
required to more thoroughly dock this quantitatively with other aspects of the health insurance market. Most 
notably, this would pertain to replicating the empirical data observed across the market for health insurance 
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premium prices. If this baseline could replicate the distribution of insurance premiums pre-ACA, the output 
for any policy implementations of this model would have a much higher degree of quantitative fidelity. 

This model uses 1998 data for both income and medical expenditures, so that spending patterns and the 
spending capacity of individuals remains chronologically consistent. A more comprehensive data set is 
available in the National Medical Expenditure Panel Survey (MEPS), which breaks out average medical 
expenditures across the population by a wide variety of subdivisions, based on age, sex, insured status, 
income, etc. However, one of the main reasons why these data were not used was the lack of granularity of 
the data available from survey queries, only calculating metrics for subsets of populations rather than data 
points of individual patients and households. 

6 SUMMARY 

This model and the subsequent results represent a considerable addition to the recent literature on modeling 
the health insurance market. While the current literature on computational modeling for the health insurance 
market is packed with discrete choice models and microsimulations using large data sets to formulate 
projected rates and population dynamics, this model has arrived at valid values of emergent properties of 
the health insurance market with only a handful of empirical parameter distributions, namely income and 
medical expenditure. The results of the simulations of the model can be shown to replicate the same price-
point elasticity of demand that is seen in the health insurance market, given the findings of the RAND 
Health Insurance Experiment (2006), as well as the percentage of insured individuals across the simulation 
runs. This can be performed at a scale of one-to-one with current non-group markets for U.S. states, which 
is fundamental to understanding the volatility of the insurance market and prices. While admittedly abstract, 
this computational model can provide significant insight into the behavior of markets given certain elements 
of legislation affecting the purchase of health insurance in the individual market. 
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