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ABSTRACT

Given a set of point-process event times with constant dispersion ratio, we are interested in estimating
the rate function by grouping the event times into count data from equal-width time intervals. We group
in order to smooth the resulting piecewise-constant rate function using one of our two existing methods:
I-SMOOTH and MNO-PQRS. Using the mean integrated squared error (MISE) for piecewise-constant rate
functions, we create two estimators; minimizing the estimated MISE function yields the chosen number
of intervals. The MISE function provides insights into the optimal number of intervals as a function of the
rate-function shape and expected number of events. Across several examples, our two number-of-intervals
estimators perform well and similarly; nevertheless, one dominates in terms of realized MISE value.

1 INTRODUCTION

In modeling dynamic stochastic systems, a fundamental problem is estimating the unknown non-homogeneous
rate function from event times. The events are often arrivals; in this paper we use the latter term. The
arrival times are known either individually or as count data from known time intervals. Therefore, most
relevant research papers consider one of these two contexts. The present paper considers the transition
between the two contexts.

1.1 Problem Statement

Given a known interval of time containing observed arrival times a1,a2, . . . ,an, our problem is to determine
an appropriate number of intervals k so that the associated count data is a good estimate of the unknown
rate function λ ∗ over the known interval of time. The choice of k is often made intuitively by humans. Our
goal is to automate the process. Most humans viewing the automated result should be satisfied; ideally the
automated result is often better than what a human would do.

For convenience, scale the arrival times to the unit interval; that is, 0 < a1,a2, . . . ,an ≤ 1. Here n is
the observed value of N, the random number of arrivals in [0,1].

Assume a known constant dispersion ratio, d; that is, for any time interval, d is the ratio of the variance
and expected value of the number of arrivals. (A non-homogeneous Poisson process (NHPP) has dispersion
ratio d = 1.) Gerhardt and Nelson (2009) discuss estimating the value of d, which requires multiple data
replications; we simply assume that the value of d is known.

The problem is to partition the unit interval into k equal-width intervals. Let Ci(k) denote the count (i.e.,
number of arrivals) in the ith interval, ((i−1)/k, i/k], i = 1,2, . . . ,k. Then N = ∑

k
i=1Ci(k) and each Ci(k)

satisfies var[Ci(k)] = dE[Ci(k)] = d
∫ i/k
(i−1)/k λ ∗(t)dt. Maybe surprisingly, while the variance-mean ratio is

fundamental to our analysis, the independence of Ci(k) and C j(k) (when i 6= j) is not.
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We evaluate the quality of a rate estimator λ̂ using the usual mean integrated squared-error (MISE)
function

E
{∫ 1

0
[λ ∗(t)− λ̂ (t)]2dt

}
. (1)

For a given rate function λ ∗ and estimated rate function λ̂ , the optimal number of intervals is the value
that minimizes the MISE function.

1.2 Solution Approach

In general, the MISE criterion for estimating true rate λ ∗ with estimator λ̂ is as shown in Equation (1).
Because

∫ 1
0 (λ

∗(t))2dt is a constant, we consider only the gMISE criterion

g(k) = E
{∫ 1

0
[λ̂ 2(t)−2λ

∗(t)λ̂ (t)]dt
}
. (2)

The optimal number of intervals is k∗ ≡ argmink=1,2,...g(k).
The heart of our problem is to estimate g(k) for k = 1,2, . . . . For each estimator of g(k), say ĝ(k),

the corresponding estimator of the optimal number of intervals is k̂∗ ≡ argmink=1,2,...ĝ(k). The associated
quality measure of an estimator K̂ of k∗ is E[g(K̂)]. Always, of course, E[g(K̂)]≥ g(k∗).

We choose the estimated rate to be a piecewise-constant function with k intervals:

λ̂0(k; t)≡ kCi(k) (3)

for t ∈ ((i−1)/k, i/k] and i = 1,2, . . . ,k. Then g(k∗) is the optimal value against which estimators compete.

1.3 Motivation

Our interest began during our WSC presentation of Chen and Schmeiser (2015). Christos Alexopoulos
asked whether count data in our example (New York State Department of Transportation, 2015) would be
better used by merging the fifteen-minute time intervals. Intuitively the answer was yes, but we didn’t have
a clean answer. We answer his question in Section 4.5.

A more-general motivation arises in regard generalizing the use of our two rate-smoothing algorithms:
I-SMOOTH in Chen and Schmeiser (2013) and MNO-PQRS in Chen and Schmeiser (2017). Given a
piecewise-constant rate function with k equal-width intervals, these algorithms return a smoother version.
(I-SMOOTH creates new piecewise-constant functions, doubling the number of intervals and halving the
width with each iteration. MNO-PQRS creates a piecewise-quadratic function.) Following initial efforts
in Schmeiser et al. (2003), both algorithms are deterministic, taking the k-interval piecewise-constant rate
function as given; their smoothed rate functions are constrained to maintain the expected number of arrivals
for each of the k intervals. (Zheng and Glynn, 2017, refer to this constraint as the Local Equal Area Property
(EAP).) Being deterministic, I-SMOOTH and MNO-PQRS (and, similarly the piecewise-linear algorithms
in Nicol and Leemis 2014a and 2014b) estimate nothing; the given piecewise-constant rate function could
arise from infinitely many possible true rate functions.

A single question needs to be answered to use I-SMOOTH and MNO-PQRS (and Nicol and Leemis’s
algorithms) to estimate a true rate function: How to group given arrival-time data into k equal-width counts?
Zheng and Glynn (2017) compare their maximum-likelihood algorithm to a Local EAP algorithm when
arrival-time data are given, but with the number of intervals being a given algorithm parameter. Using an
estimated optimal number of intervals would allow each algorithm to perform at its best.

Finally, a comment about what is not our motivation. We are not estimating the cumulative rate function
from arrival-time data, which is well solved by Arkin and Leemis (2000) and Leemis (1991 and 2004). We
consider here the piecewise-constant rate estimator, rather than the more complicated rate models as in Kuhl
and Wilson (2000 and 2001). Gerhardt and Nelson (2009), Liu (2013), Oreshkin et al. (2016), and Zhang
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et al. (2014) model more-general point processes, while we have restricted ourself to non-homogeneous
non-Poisson processes with a constant dispersion ratio. (We can hope, however, that our number-or-intervals
applied to more general non-Poisson processes might work well.)

1.4 Literature Review

Shimazaki and Shinomoto (2007) use the MISE criterion to find the optimal interval width for NHPPs.
Their results are the same as ours when the dispersion ratio d = 1; we provide here a simpler and more
general analysis. Shimazaki and Shinomoto (2007) and Henderson (2003) show that the optimal interval
width is proportional to N−1/3 when the rate function is smooth.

Also related is the optimal-bin-size literature for density estimation (e.g., Wasserman 2004, Section
20.2). Conditioned on the number N of arrivals from a NHPP, the N arrival times are independently and
identically distributed with density function proportional to the rate function; estimating the arrival-time
density function and rate function are then equivalent. Our analysis is simpler without needing conditioning
on N.

1.5 Organization

The present paper’s organization is as follows. In Section 2 we discuss examples and implications for the
value of k∗ using gMISE. In Section 3 we derive three estimators for g(k),k = 1,2, ...; the natural estimator
k[N−∑

k
i=1C2

i (k)], the unbiased estimator k[2N−∑
k
i=1C2

i (k)], and the approximately unbiased estimator
k[N−∑

k
i=1C3

i (k)/(1−Ci(k))]. In Section 4 we argue with examples that the natural estimator works badly
and that the unbiased estimator works best (and the approximately unbiased estimator is a close second).
In Section 4.5 we illustrate merging intervals to create better count data. Section 5 is a summary.

2 THE gMISE CRITERION

When specialized to the piecewise-constant estimator {λ̂0(k; t),0 ≤ t ≤ 1)} of Equation (3), the gMISE
criterion becomes a function of the number of intervals, k. Define λ ≡

∫ 1
0 λ ∗(t)dt, the expected number of

arrivals. (Recall that Ci(k) is the number of arrivals in interval i when there are k intervals.)

Result 1 The gMISE criterion for the piecewise-constant estimator λ̂0 is

g(k) = k
k

∑
i=1

{
var[Ci(k)]−E2[(Ci(k)]

}
. (4)

Result 1 yields Corollary 1 because of the constant dispersion ratio. Appendix A contains proofs for
Result 1 and Corollary 1.
Corollary 1 Since the dispersion ratio var[Ci(k)]/E[Ci(k)] equals d for all i = 1, ...,k,

g(k) = k{dλ −
k

∑
i=1

E2[Ci(k)]}. (5)

Corollary 1 implies the following two corollaries that concern using a single interval. Corollary 2
follows because, when there is only one interval, ∑

k
i=1 E2[Ci(k)] = E2[C1(1)] = E2(N) = λ

2
.

Corollary 2 g(1) = λ (d−λ ).
Corollary 3 says, regardless of the true rate function, λ ∗, that a single interval is optimal when there

are very few arrival times.

Corollary 3 If 0 < λ ≤ d, then k∗ = 1.
The proof of Corollary 3 is less direct; it also is in Appendix A.
The optimal number of intervals, k∗, can be small despite the expected number of arrivals, λ , being large.

For example, let λ ∗(t) = 0 for 0 < t ≤ 1/2 and λ ∗(t) = 2λ for 1/2 < t ≤ 1. Because the true rate function
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has two intervals with constant rates, k∗ = 2 seems natural. But Corollary 3 says that k∗ = 1 when λ ≤ d;
therefore k∗ is a function of λ . In fact, k∗ = 2 for λ ≥ d. (Proof sketch: If k is even, g(k) = λ (kd−2λ ), so
g(2) = 2λ (d−λ ) is minimal for all even k and all values of λ . If k is odd, g(k) = λ [kd+λ (k−1−2)], which
is minimized if k is (λ/d)1/2 (or an odd positive integer next to it); g((λ/d)1/2) = 2λ [(dλ )1/2−λ ]. For
λ = d, g(1) = g(2) = 0 and hence, k∗ can be 1 or 2. For λ > d, g(2)< g((λ/d)1/2) because (dλ )1/2 > d
and hence, k∗ = 2.)

Result 2 shows that if the rate function is smooth, k∗ increases at order (λ/d)1/3. The cube-root growth
is consistent with the analysis in Henderson (2003) and Shimazaki and Shinomoto (2007) for NHPPs.

Result 2 If the rate function λ ∗(t) is continuous and its first derivative exists with
∫ 1

0 [
∂

∂ t λ ∗(t)]2dt < ∞,
then

E
{∫ 1

0
[λ ∗(t)− λ̂ (t)]2dt

}
≈ λ

{
kd +λ (12k2)−1

∫ 1

0

[ ∂

∂ t λ ∗(t)

λ

]2
dt
}

(6)

and hence,

k∗ ≈
{

λ

6d

∫ 1

0

[ ∂

∂ t λ ∗(t)

λ

]2
dt
}1/3

. (7)

Equation (6) is based on the Taylor’s approximation of λ ∗(t) up to the first order. The proof is similar to
that in Wasserman (2004, Section 20.2). Our numerical results (not reported here) show that the cube-root
growth still holds if λ ∗(t) is only differentiable almost everywhere.

As an illustration, consider the specific true rate function λ ∗(t) = 2λ t for 0 < t ≤ 1. Then

g(k) = λ [kd−λ (4− k−2)/3]. (8)

For large values of λ , minimizing g(k) over k = 1,2, . . . yields

k∗ ≈ [2λ/(3d)]1/3. (9)

To help visualize, consider a NHPP (d = 1) with λ ∗(t) = λ [1+ sin(4πt)] for t ∈ (0,1]; that is, the true
rate function is a sine-wave with two periods in the unit interval. Figure 1 shows the rate function λ ∗ for
λ = 1,100,1000 in the top row. In the bottom row are the corresponding gMISE criteria. The optimal
numbers of intervals are k∗ = 1,11,23, the minimal point of g(k),k = 1,2, . . .. In Section 4.3, we return to
this example (but only with λ = 1000) to visualize estimation.
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Figure 1: Sine rate function and three associated gMISE functions.

In summary, at least for these examples, the behavior of g and k∗ is consistent with expectations for
both small and large values of λ .
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3 ESTIMATING THE gMISE CRITERION

We now discuss estimating g(k), for k = 1,2, . . .. Given an estimator, say ĝ(k), for k = 1,2, . . ., our estimator
k̂∗ of k∗ will be the minimizer of {ĝ(k),k = 1,2, . . .}. Our three estimators of g(k) are developed in Sections
3.1, 3.2, and 3.3.

3.1 Natural Estimator

Our first estimator is the natural estimator of g(k) = k{dλ −∑
k
i=1 E2[Ci(k)]}, obtained by substituting

natural estimators for the unknowns λ ,E[C1(k)],E[C2(k)], . . . ,E[Ck(k)]. The natural estimator is then

ĝ0(k)≡ k
[
dN−

k

∑
i=1

C2
i (k)

]
. (10)

Estimating λ with N causes no bias, but estimating E2[Ci(k)] with C2
i (k) is concerning, since E[C2

i (k)] =
var[Ci(k)]+E2[Ci(k)]. Taking the expected value of ĝ0(k) yields

E[ĝ0(k)] = k
[
0−

k

∑
i=1

E2[Ci(k)
]
. (11)

The bias is E[ĝ0(k)]−g(k) =−kdλ . In Section 4, this natural estimator performs so badly as to be useless.

3.2 Unbiased Estimator

Our second estimator subtracts −kdN, an estimator of the bias in ĝ0(k). Therefore, define the unbiased
estimator

ĝ1(k)≡ k
[
2dN−

k

∑
i=1

C2
i (k)

]
. (12)

In Section 4.4, this estimator performs best. Appendix B contains a Fortran implementation kuhat, where
this unbiased estimator is called simply khat. For d = 1, the estimator ĝ1(k) is the same as that in
Shimazaki and Shinomoto (2007) and similar to the cross-validation bin-width estimator for optimizing
histograms (Wasserman 2004, p. 310).

3.3 Approximately Unbiased Estimator

Our third estimator also adjusts ĝ0 to reduce bias. Recall that E[C2
i (k)] = var[Ci(k)]+E2[Ci(k)]. Then

E2[Ci(k)]
E[C2

i (k)]
=

E2[Ci(k)]
var[Ci(k)]+E2[Ci(k)]

=
E2[Ci(k)]

dE[Ci(k)]+E2[Ci(k)]
=

E[Ci(k)]
d +E[Ci(k)]

. (13)

The natural estimator of this fraction is Ci(k)/[d +Ci(k)], so our third estimator is

ĝ2(k)≡ k
{

dN−
k

∑
i=1

C3
i (k)/[d +Ci(k)]

}
. (14)

In Section 4.4, ĝ2(k) works well, but not as well as the unbiased estimator ĝ1(k).

3.4 Other Estimators

Although we compare to no other estimators, here we mention alternatives.
Whatever the estimator of g(k), the search for the minimizer k̂∗ is affected by the randomness of ĝ(k).

The random variables ĝ(1), ĝ(2), . . . are computed from the same data set, so they are positively correlated,
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making the search more reliable. Nevertheless, occasionally a particularly large value of k is selected.
Therefore, alternatives to choosing the global minimum might be useful. In the analogous situation of
minimizing the MSER statistics for the initial-transient problem, Pasupathy and Schmeiser (2010) discuss
considering local minima.

We (the authors, between ourselves) have discussed, but not implemented, computationally intensive
estimators, such as jackknifing. Although ĝ1(k) is an unbiased estimator of g(k), the estimated gMISE
optimal number of intervals, k̂∗1, is a biased estimator of k∗.

4 PERFORMANCE

Using Monte Carlo experiments of the common NHPPs (d = 1), we now compare and evaluate the
performance of our three estimators(from Section 3) for k∗, the MISE-optimal number of intervals, for a
given true rate function λ ∗ and expected number of arrivals, λ .

4.1 Performance Measures

Performance of the estimators of k∗ is not directly about the distribution of the k̂∗s, at least not via
the usual measures such as means, standard deviations, and probability that k̂∗ = k∗. Consider an ex-
ample where the true rate function is a step function, with three steps and k∗ = 3. For λ = 1000, The
corresponding (estimated via Monte Carlo) values of g(k),k = 1,2, . . . ,15 are −985809.9,−1422752.0,
−1642366.2,−1531895.3,−1552870.2,−1642027.7,−1577776.7,−1584700.7,−1638908.5,
−1593894.4,−1597008.0,−1636926.1,−1602005.5,−1602739.3, and −1633231.3. The g function is
minimized at g(3) =−1642366.2, so k∗ = 3. But g(6) =−1642027.7 is a close second best, followed by
g(9) =−1638908.5, g(12) =−1636926.1, and g(15) =−1633231.3. How did k̂∗1 perform? Here are the
histogram counts: 0,0,763,0,0,79,0,1,53,1,0,32,0,0,21,0,3,10,1,0,14,0,1,10,3,1,2,1,0,4. For this
example, the usual properties of k̂∗1 are much less relevant than the property that k̂∗1 frequents multiples of
three. For smoother rate functions λ ∗, of course, g is also smoother and k̂∗ being close to k∗ is meaningful.

Because gMISE is appropriate for all applications, we use it as our primary and only criterion. For
presentation we use SE-gMISE, the scaled excess gMISE; specifically, {E[g(k̂∗)]−g(k∗)}/λ

2
. Subtracting

g(k∗) guarantees that the SE-gMISE is nonnegative; dividing by λ
2

makes SE-gMISE unitless. SE-gMISE
is still a function of λ (and the entire true rate function λ ∗); in particular, k∗ = argmink=1,2,...g(k) depends
upon λ .

A scenario is defined by a true rate function, λ ∗. From it, the associated expected number of arrivals,
λ , is implied. Also implied is the SE-gMISE function and its minimizer k∗, the MISE-optimal number
of intervals. Given a sequence of scenarios created by scaling by λ , the optimal number of intervals k∗

becomes as function of λ . Comparison to the cube-root growth in Result 2 is then possible.

4.2 The Experiment

Fix a scenario. For each of the three estimators, we estimate the distribution of k̂∗ over {1,2, . . .}. We then
can estimate the value of the SE-gMISE using

Ê[g(k̂∗)]−g(k∗)

λ
2 =

[∑∞
k=1 g(k)P̂(k̂∗ = k)]−g(k∗)

λ
2 . (15)

Specifically, our Monte Carlo experiment replicates nreps practitioners. For each replication, NHPP
arrival times a1,a2, . . . ,an are generated. For each estimator i, i = 1,2,3, ĝi(k) is computed for k = 1,2, . . .
and the associated minimizer k̂∗i is found and stored in histogram i.

To allow arbitrary true rate functions λ ∗, we estimate g(k),k = 1,2, . . . using the unbiased estimator
ĝ1(k) for each of the nreps replications. After the experiment is completed, for each of the estimators,
Equation (15) is used to estimate the SE-gMISE, treating the estimated g as the true function.

1568



Chen and Schmeiser

(a) True gMISE (b) Nature estimator (c) Unbiased estimator (d) Approximately 
unbiased estimator

k

g2(k)

-1.5

-1.4

-1.3

-1.2

-1.1

50 1000

106

-1.5

-1.4

-1.3

-1.2

-1.1

50 1000

106

k

g1(k)

50 1000
-1.5

-1.4

-1.3

-1.2

-1.1
g(k)

50 1000
k

106 106

-1.5

-1.4

-1.3

-1.2

-1.1

k

g0(k)

Figure 2: The function g and its three estimators of Example 1.

Details. Monte Carlo results are correct to within one unit of the least significant digit shown, as
discussed in Song and Schmeiser (2009). We use an implementation of the random-number generator in
L’Ecuyer (1999).

4.3 Example 1: The Natural Estimator Works Badly

We show, with a single example, that the natural estimator ĝ0 performs badly; so badly, that after this
section we no longer consider ĝ0.

Consider again (from Section 2) the sine-wave λ ∗(t) = λ [1+sin(4πt)] for t ∈ [0,1]. Figure 2 (a) shows
the associated gMISE, which is minimized at k∗ = 23. From a single replication with λ = 1000, Parts (b),
(c), and (d) show the gMISE estimates using ĝ0, ĝ1, and ĝ2. The associated estimates of k∗ are k̂∗0 = 71,
k̂∗1 = 22, and k̂∗2 = 22.

Why is the natural estimator so bad? Part (b) shows that, without a bias correction, the natural estimators
ĝ0(k) are almost flat after an initial descent for small values of k. The minimizer of ĝ could lie almost
anywhere from k = 20 and higher. The bias corrections used to create ĝ1 and ĝ2 have a first-order effect,
giving them a well-defined area of minimal values in Parts (c) and (d).

A second point to be observed is that, for this realization, all three ĝ estimates are noticeably higher than
the true g function. For another realization, the estimated values could be lower. What allows minimization
of ĝ to work well is that the estimated function values are positively correlated, not that any particular ĝi
has a small variance.

4.4 Example 2: The Unbiased Estimator is Best

We now perform a Monte Carlo experiment to compare the unbiased estimator, ĝ1, and the approximately
unbiased estimator, ĝ2. This example is consistent with every other example that we have tried. The two
estimators are highly correlated with similar performance measures, but the unbiased estimator performs
slightly better and is a bit easier to compute. Therefore, after this section, we consider only the unbiased
estimator, ĝ1.

Let λ ∗(t) be piecewise constant with rates 1000,2000,1500,3000,2500 for the five intervals of length
0.2. Then λ = 2000 and k∗ = 5. We estimated performance with 10,000 replications. The distributions of
k̂∗1 and k̂∗2 are quite similar: the means are 6.8 and 6.9; the standard deviations are 5.1 and 5.2; the maximums
are both 42; the probabilities of returning k̂∗ = k∗ are 0.83 and 0.83. In addition, their histograms are quite
similar, with values falling on multiples of five. All of these measures slightly favor ĝ1, but as discussed
in Section 4.1, we trust the SE-gMISE criterion, where ̂SE-gMISE1 = 0.0012 and ̂SE-gMISE2 = 0.0012
but we observed no exception where the former is larger.
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Figure 3: Nine options for merging the traffic-count data of Example 3. The time unit is one day.

4.5 Example 3: Merging Intervals

We revisit our (Chen and Schmeiser, 2015) example of New York traffic counts (New York State Department
of Transportation, 2015) to answer Christos’s question about merging intervals. The website provides
counts for 96 fifteen-minute intervals over twenty-four hours. There are twelve possible mergers, with
k ∈ {96,48,32,24,16,12,8,6,4,3,2,1}. Figure 3 illustrates the piecewise-constant estimated rates for the
first nine of the possible mergers. Most humans, we think, gravitate toward k ∈ {32,24,16}.

The estimated gMISE criterion values, assuming d = 1, are shown. (The value of SE-gMISE is not
shown, since for real-world data we know neither the value of g(k∗) nor the value of λ . We assume that
d = 1 because d can not be estimated from only one data realization.) The gMISE criterion selects k = 32
as best, with k = 16 a close second best, and k = 24 a close third best. To answer Christos’s question, the
original k = 96 is not best. If our purpose in 2015 had been to estimate the true rate function (rather than
smoothing the rate function while maintaining the Local EAPs), merging intervals would have been wise.

Aside. Conveniently, k = 96 has many factors; what should be done when the original number of
intervals has fewer factors (or, in the extreme, is prime). Another thought: For cyclic contexts, where the
ending rate is known to equal the beginning rate, some type of overlapping analysis, analogous to that for
batch means in Meketon and Schmeiser (1984), might be considered.

4.6 Example 3: Comparing MNO-PQRS Smoothing

Returning to our motivation, we continue with the New York traffic data of Example 3. We use MNO-PQRS
to smooth the original k = 96 counts and compare the MNO-PQRS smoothing of the merged intervals.
Figure 4 shows the MNO-PQRS fits for the original k = 96 and for three mergings that are close to being
gMISE optimal: k = 32,24, and 16.

As with the piecewise-constant fits in Section 4.5, these merged-interval piecewise-quadratic fits appear
(to the authors) to be an improvement compared to the fit using the original intervals.
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Figure 4: MNO-PQRS fits from the original 96, and from 32, 24, and 16 merged intervals of Example 3.

5 SUMMARY

The underlying problem is to estimate, from given arrival times, the true rate function with a piecewise-
constant rate function. The problem is to choose a good number of equal-width intervals. We choose to
minimize the mean integrated squared-error (MISE) criterion under the fixed-dispersion-ratio assumption.
From that choice, we develop three estimators, concluding that the unbiased estimator is preferable. We
provide a Fortran implementation of the subroutine kuhat, which takes arrival-time data and returns an
estimated optimal number of intervals. We illustrate how to merge count data when the original arrival
times are not available.
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A PROOFS

The proof of Result 1 is as follows.

g(k) = E
{∫ 1

0
[λ̂ 2

0 (k; t)−2λ
∗(t)λ̂0(k; t)]dt

}
=
∫ 1

0

{
E[λ̂ 2

0 (k; t)]−2λ
∗(t)E[λ̂0(k; t)]

}
dt

=
k

∑
i=1

∫ i/k

(i−1)/k

{
E[k2C2

i (k)]−2λ
∗(t)E[kCi(k)]

}
dt

=
k

∑
i=1

∫ i/k

(i−1)/k

{
k2[var[Ci(k)]+E2[Ci(k)]

]
−2λ

∗(t)kE[Ci(k)]
}

dt

=
k

∑
i=1

{
k var[Ci(k)]+ kE2[(Ci(k)]−2kE[Ci(k)]

∫ i/k

(i−1)/k
λ
∗(t)dt

}
= k

k

∑
i=1

{
var[Ci(k)]−E2[(Ci(k)]

}
.�
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The proof of Corollary 1 uses the property that var[Ci(k)] = dE[Ci(k)] = d
∫ i/k
(i−1)/k λ ∗(t)dt. Since

∑
k
i=1
∫ i/k
(i−1)/k λ ∗(t)dt = λ , we have g(k) = k

{
dλ −∑

k
i=1 E2[(Ci(k)]

}
.

To prove Corollary 3, assume that 0 < λ ≤ d. For i = 1,2, . . . define pi(k)≡ E[Ci(k)]/λ , the fraction
of expected arrivals in interval i. Then ∑

k
i=1 p2

i (k)≤ ∑
k
i=1 pi(k) = 1. Rewrite g(k) to obtain

g(k) = kλ

[
d−λ

k

∑
i=1

p2
i (k)

]
; (16)

then g(k)≥ kλ (d−λ )≥ g(1)≥ 0. Both nonnegative factors in Equation (16) are minimized by k = 1; the
first factor is immediate and the second follows from λ ≤ d implying that 0≤ d−λ ≤ d−λ ∑

k
i=1 p2

i (k). �

B COMPUTER CODE

The Fortran subroutine kuhat is the logic needed to compute the unbiased estimator k̂∗1 from n arrival
times, as discussed in Section 3.2. Here k̂∗ becomes the variable khat. Unlike the analysis discussion,
where the arrival-time data are assumed to lie in the unit interval, in kuhat the arrival times can lie in
any interval, from tbegin to tend.

Other than the time intervals and the dispersion ratio d, there are no user-specified parameters. The
variable kmax, however, requires discussion. As coded, kmax = 2 * (n/d)**(0.4) is the largest
possible value of khat; that is, the enumeration over the number of intervals k is from one to 2(n/d)0.4.
By design, kmax grows faster than the asymptotic optimal (n/d)1/3 rate. Larger values of kmax could be
used, with corresponding additional computation time.

To think of Fortran as pseudocode, some facts are needed. An exclamation point begins a comment.
Variables beginning with i, j, k, l, m, and n are integers; all other variables are doubles. 1d100 is 10100

expressed as a double. Exponentiation is expressed with **. do loops are analogous to for loops. The
line dimension atime(1:n) defines atime to be a one-dimensional array indexed one to n; the size
n could be any value, since memory for atime is assigned by the calling program. All variables are local,
with no reliance upon earlier calls to kuhat.

subroutine kuhat( tbegin, tend, n, atime, d, khat )
! Huifen Chen and Bruce Schmeiser. February 10, 2018.
! Practitioner version, for real-world use and publication.
! Purpose: Estimate the gMISE-optimal number of intervals for
! using a piecewise-constant rate function to estimate the
! rate function from which the arrival times are sampled.
! Reference: 2018 Winter Simulation Conference Proceedings
! Input: tbegin = start time of data collection
! tend = end time of data collection
! n = number of arrival times
! atime = contains n arrival times in [tbegin, tend]
! d = dispersion ratio, V[C_i(k)] / E[C_i(k)]
! Output: khat = estimated optimal number of intervals
implicit double precision (a-h,o-z)
implicit integer (i-n)
dimension atime(1:n)
khat = 1
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if (n .gt. 1) then
tspread = tend - tbegin
gmin = 1d100
kmax = 2 * (n/d)**(0.4)
do k=1,kmax ! Unbiased gMISE estimation for k intervals

sum2 = 0
width = tspread / k
nevent = 1
do i=1,k

count = 0
dowhile (nevent.le.n .and. atime(nevent).le.i*width)

count = count + 1
nevent = nevent + 1

enddo
sum2 = sum2 + count**2

enddo
ghat = k * (2*d*n - sum2)
if (ghat .lt. gmin) then ! If new smallest ghat, update

gmin = ghat
khat = k

endif
enddo

endif
return
end
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