
Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

FLUID-FLOW AND PACKET-LEVEL MODELS OF DATA NETWORKS UNIFIED UNDER A
MODULAR/HIERARCHICAL FRAMEWORK: SPEEDUPS AND SIMPLICITY, COMBINED

Matı́as Bonaventura
Rodrigo Castro

Departamento de Computación
FCEyN, UBA and ICC, CONICET

Ciudad Universitaria, Pabellón 1
Buenos Aires, C1428EGA, ARGENTINA

ABSTRACT

As network technologies undergo an exponential growth in terms of bandwidth and topology complexity,
the gap is worsened between the performance of network simulation techniques and real network scenarios.
Fluid-flow models for network dynamics are a well know option for reducing simulation overhead while
offering useful averaged approximations of network metrics. Yet, the methods and tools established in the
packet-level simulation community are alien to those used in continuous system modeling by means of
differential equations. This hinders the synergy between specialists in both techniques. In this work, we
present a novel modeling methodology and simulation tool to unify the experience of designing network
simulation models both with fluid-level and packet-level techniques under a single modular and hierarchical
formal framework. We verified the efficacy of our approach both in terms of simulation speedups and
modeling simplicity for canonical network simulation scenarios.

1 INTRODUCTION AND MOTIVATION

Packet-level simulation has always represented an important tool to help designing and evaluating new
network topologies and protocols. Yet, it is well known that there exist issues in simulation performance
scalability when the complexity of the network grows (either due to topology complexity, throughput
intensity, or a combination of both). Such issues often impose a limitation in the quality and/or time-
to-delivery of the answers that can be obtained via simulation. Network technologies have witnessed an
exponential growth in terms of the bandwidth (Ethernet Alliance 2015) and topology size (from massive
clusters to the Internet itself). This situation increases the gap between the performance capabilities of
current network simulation techniques and real-world networks.

The network modeling and simulation (M&S) community has dealt with simulation performance in
several different ways (Fernandes 2017), such as simulation parallelization, coarse- vs. fine-grained models,
fluid-flow vs. packet-level abstractions, and hybrid (fluid and packet) simulation approaches (Ngangue Ndih
and Cherkaoui 2015), to name a few. Each strategy imposes its particular limitations and bring about new
problems. For instance, topology splitting and model distribution for parallel simulation can offer gains
only in cases where there is light inter-subnetworks traffic, meanwhile clock synchronization techniques
can also present technical difficulties (Riley et al. 1999).

In this work, we propose novel methods for efficient modeling and simulation for fluid-flow network
approximations. A higher abstraction level represents averaged (fluid) packet data rates, instead of resorting
to a packet-by-packet approach. The behavior of the network is represented by analytical models that can be
much faster to solve numerically and yield results with acceptable accuracy when compared to fine-grained
packet-level simulations. There inevitably exists a trade of accuracy for speed: in fluid approximations only
the first order moment (mean value) is preserved for probabilistic sequences of discrete events (i.e. of packet

3825978-1-5386-6572-5/18/$31.00 ©2018 IEEE

Bonaventura and Castro

arrivals and departures from network nodes). Several fluid-flow approximations have been proposed and
refined incrementally since the early days of packet network modeling (Kleinrock 1969). We are interested
in a more general kind of fluid models, those that can be represented by sets of Ordinary Differential
Equations (ODEs). Such continuous dynamic systems can be captured by the DESS (Differential Equation
System Specification) formalism within Systems Theory (Zeigler et al. 2018). They have been successfully
applied to study complex end-to-end dynamics in TCP data flows, initiated in Padhye et al. (1998) and
Liu et al. (2003) continued in this work.

We identify, though, several limitations in the existing methods and tools for ODE-based fluid-flow
network simulation. At the heart of the fluid approximation approach is the need of verifying results
incrementally and iteratively against packet-level simulations. Unfortunately, existing methods and tools
for network simulation are of a very different nature than those required to solve ODEs. In network M&S
the natural approach is to compose topologies modularly, through the interconnection (links, queues) of
network nodes (hosts, routers, etc.) each one embedding particular behavior (discrete event algorithms) to
deal with streams of packets. In ODE numerical solving, different tools (e.g. Matlab, Octave, SciPy, etc.)
provide algorithms that require the specification of equations in forms that are alien to network descriptions.
The modeler is then left with the task of implementing a packet-level model, inspect the network topology
and discrete behavior of its nodes, come up with a set of approximating ODEs, encode them in a separate
tool (or develop a custom ODE solver), simulate both systems separately, and compare results.

We claim that this approach is heavyweight, error prone, and hinders true synergy between specialists
at the discrete and continuous domains of network M&S. The network modeler needs to be well acquainted
with ODEs, numerical solving methods and their correct implementation. These are well studied topics but
are generally not part of the knowledge of network experts and designers. Also developing and maintaining
customized code is time-consuming and error-prone for ODE experts. In this paper, we present a modular
and scalable integrated approach to combine the modeling and numerical solving of fluid network models
along with their packet-level counterparts under a unified and consistent mathematical description and
practical tool. Modularity provides the modeler with the ability to graphically interconnect self contained
models of network elements that can embed either a packet-level algorithm or its fluid-flow approximation,
depending on the task at hand. In the case of fluid models, the overall set of ODEs gets automatically
defined and ready to solve under a discrete event-based framework. Basic network nodes can then be reused
to create arbitrary, possibly complex topologies, without the need to manually redefine a new set of ODEs
for each new simulation scenario. We shall rely on the Discrete EVent Systems Specification (DEVS)
(Zeigler et al. 2018) as the underlying M&S formalism, capable of representing discrete event, discrete
time and continuous dynamics combined in a mathematically sound way. DEVS models are block-based
units of self-contained behavior, that can be interconnected through input/output ports to create modular
and hierarchical topologies of blocks, matching very closely the topology-oriented paradigm of real data
networks. Within the DEVS realm, ODEs are solved using Quantized-State Systems (QSS) methods
(Kofman and Junco 2001).

This paper is organized as follows. Section 2 presents the formal frameworks, methods and tools.
Section 3 introduces the proposed fluid equations and modular blocks to represent fluid network topologies.
Section 4 uses three case studies to asses the modeling advantages of the proposed approach, and verifies
the accuracy trade off and performance gains. Section 5 presents conclusions and future lines of research.

2 BACKGROUND AND RELATED WORK

2.1 Packet-Level Network Simulation

Various commercial and academic simulators model in great detail several aspects of data networks (Wehrle
et al. 2010). Modeled network entities rely on different algorithms to advance simulation in a discrete-event
fashion and exchange messages between models. In general, they take a packet-by-packet approach where
messages are sent from one model to another whenever a real data packet would be sent thought the different

3826

Bonaventura and Castro

network layers. Models implement control logic and protocols very closely to the algorithms implemented
in real software and hardware, yielding results comparable to real data networks. Few packet-level network
simulators are supported by formal simulation methods that guarantee correctitude.

In this work, we use PowerDEVS (Bergero and Kofman 2011), a discrete event simulator that implements
the DEVS mathematical formalism (Zeigler et al. 2018). PowerDEVS offers a data network library
providing different blocks (atomic and coupled DEVS models) and has been extensively used for packet-
level simulation (Castro and Kofman 2015). PowerDEVS was extended recently (Laurito et al. 2017)
to generate automatically large topologies based on network descriptions (e.g. those provided by SDN
controllers) and used to simulate high-speed networks at CERN (Bonaventura et al. 2016).

2.2 Fluid-Flow Network Simulation

Packet-level simulation provides fine-grained details at the cost of high execution times, making them
unsuitable for large high-speed networks. Higher abstraction level models trade speedups for coarser-
grained accuracy: several fluid-flow models have been proposed to describe averaged network dynamics
through a set of ODEs. The performance of numerically solving fluid models grows only linearly with the
number of nodes and is independent of link speeds.

Misra, Gong, and Towsley proposed a set of ODEs (Misra et al. 2000), which we refer to as the MGT
reference model, to describe the behavior of TCP over a network of routers implementing Random Early
Detection (RED). MGT was later extended with NewReno and SACK versions of TCP (Liu et al. 2003),
short-lived TCP sessions (Marsan et al. 2005), explicit congestion notification (Kunniyur and Srikant 2003),
and parallelization techniques using GPUs (Liu et al. 2014).

Even when fluid-flow models are a feasible solution to simulate accurately and efficiently large data
networks, they are still far from being adopted by network experts. The particular set of ODEs that represent
a network is defined by the topology and the characteristics of each node. These equations should be written
in specific formats for numerical packages or, for more flexibility and performance, classical ODE solving
methods are coded. The relationship between a given set of ODEs and a network topology might not
be clear, forcing network experts to understand and learn to specify differential equations. Moreover, for
experts in ODEs and numerical methods the effort to develop and test new network models is twofold. On
the one hand, to solve ODEs they need to code and maintain software to translate topologies into equations,
possibly implement ODE-solvers for particular challenges as Delay Differential Equations (DDE), and in
some cases custom simulations cycles are developed (Liu et al. 2003). On the other hand, to verify new
models they still need to develop packet-level models in a completely different software.

2.3 DEVS and QSS for Network Simulation

DEVS is capable of representing any type of discrete system and approximating continuous systems with
controlled accuracy, providing a suitable formal framework for representing both packet-level and fluid-flow
data models. DEVS atomic and coupled models encapsulate behavior and allow systems to be built in
a modular and hierarchical way. PowerDEVS also implements a family of QSS methods to solve ODEs
whose behavior can be exactly represented by a DEVS model (Kofman and Junco 2001). In contrast
to classical methods that discretize time, QSS discretizes the state variables, resulting in a discrete-event
approximation of a continuous system (instead of the classic discrete-time approximation). In particular, for
solving network fluid models it is relevant the development of QSS Delay Differential Equations (DDEs)
(Castro et al. 2011) which allows dynamically changing delay (such as the one experienced by network
traffic) to be applied by reusing an already implemented DEVS atomic model. A salient property for
network fluid models is the asynchronous nature of QSS. With classical discrete time methods equations
describing uncongested links or inactive hosts take as much computing time to solve as congested links
or active hosts. While special preprocessing techniques were suggested to remove inactive nodes (Liu

3827

Bonaventura and Castro

et al. 2003), alternating busy periods cannot be handled. Instead, QSS will balance dynamically computing
efforts in network nodes only when needed.

In this work, a subset of the MGT fluid-flow equations is simulated within a unified mathematical
formalism and tool (DEVS/QSS and PowerDEVS respectively) used also for the packet-level simulation.
The focus is on the M&S techniques, and not on the accuracy of the MGT model (discussed in the above
mentioned references). Yet, few modifications are proposed for MGT to better represent discontinuities
(easily handled by QSS) and experimental results are shown to validate our approach.

In Castro and Kofman (2015), an early version of the MGT model was implemented using QSS, where
a single flow class is considered and equations describe the dynamic of a single queue. Here, we extend
this work allowing for complete topologies to be modeled for multiple flows, and providing graphical
modular blocks to encapsulate the dynamics of different network elements. We leverage the modularity
of QSS/DEVS to encapsulate the ODE numerical solving complexities, providing new fluid-flow network
models that resemble closely the packet-level models.

3 MODULAR APPROACH FOR FLUID-FLOW NETWORK MODELING

This section introduces a new library of fluid-flow models, shown in Figure 1, that provides the building
blocks to compose fluid network topologies. Each block contains the implementation of a subset of the
ODEs governing the dynamic behavior of the complete system. Similarly to the packet-level approach,
where DEVS models encapsulate the behavior of network entities, our fluid-flow approach uses DEVS
models to encapsulate subsets of ODEs (representing queues, links, hosts, etc.). The final full set of ODEs
describing the fluid network gets automatically expressed by the interconnection of pre-defined building
blocks (in the same way packet-level topologies get fully defined by interconnecting packet-oriented blocks).

The proposed approach decouples three domains of knowledge required to produce fluid simulations:
a) description of the network (network modeling), b) implementation of ODEs (ODE modeling) and c)
ODE numerical solvers (ODE simulation). Each domain requires specific knowledge and should be ideally
performed by different experts. In traditional approaches these aspects are tightly coupled requiring network
experts to acquire knowledge in continuous dynamic systems, while ODE experts need to code topologies
and solvers. Conversely, with the technology presented in this work, network experts can graphically
specify fluid network topologies without knowledge on ODEs, using blocks from a pre-defined fluid library.
Continuous dynamic equations are defined using block-oriented PowerDEVS diagrams, which can be tested
independently and easily interchanged with other equivalent network elements. ODE experts can focus on
better expressing network dynamics, without concerning on other issues such as topological information,
simulation techniques or numerical solvers. The ODEs numerical solving is handled by the QSS simulator
engine which can switch between available solvers without changing the equation’s block diagrams.

(a) Tail-drop queue. (b) RED queue. (c) Link.

(d) Basic host. (e) TCP sender. (f) TCP receiver.

Figure 1: Library of graphical blocks for fluid-flow network entities encapsulating ODE dynamics.

3828

Bonaventura and Castro

3.1 Fluid-Flow Equations for a Tail-Drop Queue

The queue block implements a FIFO (First In First Out) tail-drop queue, providing an external interface
via its input/output ports and a set of parameters as described in Table 1. Figure 1a shows the queue block
implemented in PowerDEVS, with 2 input flows. The outgoing signals are those governed by the set of
ODEs (1)-(3) explained below. Buffer size will grow/shrink according to the difference between the input
and output rates. As in MGT, the evolution of the queue size uses a differential version of Lindley equation:

dqSize(t)
dt

= ∑
i

inputRatei(t)−C (Qmin ≤ qSize(t)≤ Qmax). (1)

We highlight the boundary conditions Qmin ≤ qSize(t)≤ Qmax which impose sharp discontinuities on the
evolution of the differential equation. In MGT no upper bound is considered so tail-drop behavior can
not be property captured, and the lower bound is guaranteed by a special −1q(t) function which is solved
numerically using an iterative backward calculation (Mao and Petzold 2002). A novel QSS bounded
integrator was developed, shown in Figure 2a, where the detection of discontinuities is simple and efficient
due to the inherent discrete-event nature of QSS methods (Bergero and Kofman 2011).

Table 1: Block interface for the RED and tail-drop queue models.

Name Signal/Parameter Description
Input Ports Input Rate inputRatei(t) N ports with the input rate of each incoming flow

denoted by the subindex i ∈ {1, ...,N}.

Output Ports

Queue Size qSize(t) Evolution of the queue size as described by (1)
Wait Time waitTime(t) Time a packet arriving at time t remains enqueued

waiting to be served. Calculated as qSize(t)/C
Departure
Rate

departureRatei(t) N outports with the departure rate for each i−th
incoming flow. Calculated as in (3)

Discard
Rate

discardRatei(t) N outports with the discard rate for each i−th in-
coming flow. Calculated as in (2)

Configuration
Parameters

Buffer Size
Limits

Qmax,Qmin Upper and lower limits for qSize(t). Qmin < Qmax

where typically Qmin = 0,Qmax ∈ R> 0
Capacity C Service capacity of the outgoing link of the queue
Drop Prob.
Function

tmin, tmax, pmax

(only RED)
In RED queues, definition for the drop probability
function in as defined in (5)

Queue Size
Estimate

α ∈ [0,1],
δ ∈ R
(only RED)

In RED queues, weight and sampling rate for the ex-
ponentially weighted moving average (4). δ can be
statically set to 1/C or dynamical to 1/inputRate(t)

Equation (2) models packets dropped for each i-th input flow. Packet discards occur only when the
buffer is full (qSize = Qmax) and its rate equals the difference between the service capacity C and the sum
of all input rates. The total discard rate is shared among all flows proportionally to their current input rate:

discardRatei(t) =

{
0 qSize(t)< Qmax

inputRatei(t)
∑ j inputRate j(t)

(∑ j inputRate j(t)−C) qSize(t) = Qmax
. (2)

Equation (3) models packets served by a router for each input flow. When the buffer is empty there is
no queuing wait time so the departure rate will equal the arrival rate. When the buffer is not empty, the
router sends at full capacity sharing the bandwidth among incoming flows proportional to their input rates:

3829

Bonaventura and Castro

capacity(C)

inRate1(t)

inRate2(t)

A1+A2-C Bounded
Integrator

q(t)/C

q'(t) q(t)

qDelay(t)

queueSize(t)

(a) Queue Size Equation (1).

queueSize(t)

inRate(t)

capacity(C)

totalInput(t)

Qmax

total-C

q(t)<Qmax

mult

ratio

if(u0)?
0:u2

0

discard
Rate(t)

(b) Discards Equation (2).

inRate(t)

total
Input(t) ratio

C

q(t)>0

departure
Rate(t)

waitTime(t)=w

d(t+w)=
ratio(t)

xC

q(t)

(c) Departure Equation (3).

Figure 2: Block-oriented representation of queue equations as implemented in PowerDEVS.

departureRatei(t +waitTime(t)) =

{
inputRatei(t) qSize(t) = 0

inputRatei(t)
∑ j inputRate j(t)

C qSize(t)> 0 . (3)

It is important to note the delay nature of equation (3) and the aspects for its numerical approximation.
Incoming packets at time t will be served forward in time after a dynamically changing queuing waitTime(t),
as depicted in the left hand-side of the equation. This transforms the equation into a DDE, imposing particular
requirements to the numerical solvers. In other studies this delay is not considered (Misra et al. 2000). In
our work, DDEs are solved straightforwardly with a modular QSS-DDE block (Castro et al. 2011) (see
Figure 2c).

3.2 Modular Addition of AQM Schemes to the Tail-Drop Queues

Modern routers implement AQM schemes to control the buffer size by dropping packets before tail-drops
occur. Different AQM schemes have been modeled as fluid equations, e.g. RED and PI controller (Castro
and Kofman 2015; Liu et al. 2003). The RED queue block shown in Figure 1b provides the same
input/output ports as the tail-drop queue (refer to Table 1). RED behavior is defined in Equations (4)-(8)
and modeled as a separated block, reusing parts of the tail-drop queue behavior, allowing the modeler to
switch easily between different AQM policies and enabling topologies with heterogeneous queues (not
possible in MGT).

dq̂Size(t)
dt

=
loge(1−α)

δ
q̂Size(t)− loge(1−α)

δ
qSize(t), (4)

discardProbRED(t) =

0 0≤ q̂Size(t)≤ tmin

q̂Size(t)−tmin
tmax−tmin

pmax tmin ≤ q̂Size(t)≤ tmin

1 tmax ≤ q̂Size(t)

, (5)

RED.qSize(t) = queue.qSize(t), (6)

queue.inputRatei(t) = inputRatei(t)∗ (1−RED.discardProbRED(t), (7)

queue.discardRatei(t) = queue.discardRatei(t)+ inputRatei(t)∗RED.discardProbRED(t). (8)

The discard probability is calculated based on 2 functions as specified in RFC2309. The differential
equation (4) models the exponentially weighted moving average q̂Size. Equation (5) models the classic
RED discard probability function discardProbRED. Packets discarded by RED do not contribute to the
buffer size (6) and increase the total discard rate (8). In MGT, RED discards are not taken into account in
the buffer size calculation. Liu et al. (2014) considers either tail-drops or RED discards, but not both.

3830

Bonaventura and Castro

3.3 Fluid-Flow Basic Hosts

Hosts are data flow sources that provide input to the queues. In basic sources, shown in Figure 1d, the
throughput does not depend on external signals. Basic sources might be useful in early stages of network
design when traffic pattern specifications are vague. Hosts’ traffic can be represented with simple continuous
functions, such as step-wise constant rates (to represent UDP hosts), oscillatory or trapezoidal (for regular
data rates), or other customly shaped functions of time. Later, they can be easily replaced by more complex
blocks. Some examples are given in Section 4. This type of traffic is not considered in MGT.

3.4 Modular Construction of Fluid-Flow Topologies

The link block, Figure 1c, represents the physical cable that interconnect hosts and queues, and imposes
bandwidth and propagation delays. Bandwidth delay is modeled by the queue capacity and the host send
rate. Propagation delay is modeled in (9) adding a fixed propDelay delay to the input signal. Host, link
and queue blocks are connected to build network topologies as specified in the following equations:

link.departureRate(t) = link.inputRate(t− propDelay), (9)

link1.inputRate(t) = host.throughput(t), (10)

queue j.inputRatei(t) = link j.out putRate(t), (11)

link j.inputRate(t) = queue j−1.departureRatei(t). (12)

where L = (link1, ..., linkn) and Q = (queue1, ...,queuen−1) are, respectively, the ordered sets of links
and queues which the flow traverses along the network. 1 ≤ j ≤ n is the hop index along the path and
i ∈N>0 is the index at which the flow enters each of the queues queue j ∈Q. The host thoughput output is
connected to the first link which then connects to the first queue in the flow path. Then, the departureRate
output of each queue is connected with the input of the next queue with an intermediary link. Graphical
topology examples showing the interconnection of blocks are depicted in Figure 3.

3.5 Fluid Equations for Hosts with Congestion Control

We consider hosts with throughput controlled by the TCP Reno protocol where dynamics of the data sending
rate depend on the network state. The TCP host block interface is described in Table 2 and shown in Figure
1e. We model a bulk transfer TCP scenario with unlimited data to send based on the MGT equations:

throughput(t) =W (t)∗N/RT T (t), (13)
dW (t)

dt
=

1
RT T (t)

−W (t)
2

discardRate(t−RT T (t)) (1≤W (t)≤Wmax).

The throughput is calculated based on the TCP window size W , the round trip time RT T , and the total
number of TCP sessions N. The TCP window size models additive increase in the first term, increasing by
one every round trip time, and multiplicative decrease in the second term, halving the window according to
the discard rate. TCP senses packet losses after approximately one RTT, so the discard rate is considered with
a dynamic RT T (t) delay transforming the equation into a DDE with the same considerations as discussed
earlier for Equation (3). Also, the sharp discontinuities introduced by the maximum and minimum size of
the window take the same considerations as discussed earlier for Equation (1). TCP hosts are connected
with the rest of the network as follows (in addition to Equations (9)-(12)):

link1.inputRate(t) = T cpHost.throughput(t), (14)

T cpHost.RT T (t) = ∑
link∈L

link.propDelay+ ∑
queue∈Q

queue.waitTime(t), (15)

T cpHost.discardRate(t) = ∑
queue∈Q

queue.discardRatei(t), (16)

3831

Bonaventura and Castro

(a) Fluid topology for Experiment 1.

(b) Packet-level topology for Experiment 1.
(c) Fluid topology for Experiment 3.

Figure 3: Topologies for Experiments in Section 4.

where L, Q and i are interpreted as in (9)-(12), which in this case includes the return path delay for ACKs,
and discards of ACKs can be considered negligible. As the basic hosts, the TCP thoughput output is
connected to a link. The RT T and discardRate input signals are, respectively, the accumulation of delay
and discards that the flow experiences when traversing each of the queues and links in its path. These
equations are encapsulated in the TcpReceiver block shown in Figure 1f to improve topology visualization.

Table 2: Block interface for the TCP host.

Name Signal/parameter Description

Input Ports
Round Trip
Time

RT T (t) Delay experienced by the flow to traverse the net-
work and back. as defined by (15)

Discard
Rate

discardRate(t) Total packet drops rate experienced by the flow as
defined by (16)

Output Ports Throughput throughput(t) Send rate as defined by (13)
Configuration
Parameters

Maximum
Window

Wmax Maximum allowed TCP Window Size, usually
65535 bits

#Sessions N Number of TCP sessions within the host

4 MODELING AND SIMULATION CASE STUDIES

Three experiments of increasing complexity are proposed to evaluate the new approach in terms of modeling
benefits. We verify that simulations yield results qualitatively comparable to the literature on the MGT model.
Fluid-flow models are compared against their counterpart packet-level models, both types implemented in
PowerDEVS (models available upon request). Finally, a performance analysis is provided.

4.1 Modeling of Case Study Topologies

The first experiment uses 2 basic hosts connected to a single bottleneck tail-drop queue. The topology
for the fluid-flow and packet-level models are shown in Figures 3a and 3b, respectively. The second
experiment demonstrates the TCP block in a single RED queue scenario, replacing basic hosts with TCP
hosts, the tail-drop queue with a RED queue, and TCP receivers and return links are added. The third
experiment demonstrates TCP hosts with several sessions traversing interconnected queues. Figure 3c
shows the fluid-flow topology composed by 3 TCP hosts and 2 RED queues.

3832

Bonaventura and Castro

The packet-level topology is analogous to the fluid topology (not shown). In all cases, topologies for
both the fluid and the packet-level models look very similar. The network modeler drags and drop (or
code) fluid- or packet-based blocks, and interconnects them to build full topologies. This is done within
the same tool and requires no prior knowledge about the internal implementations, thus decreasing the
learning curve. Conversely, in most existing fluid approaches, topology gets implicitly defined by the set of
ODEs, hiding away their graphical view. Also, pre-defined blocks provide different versions for network
elements (RED and tail-drop queues, basic and TCP hosts), which can be easily interchanged fostering
lightweight experimentation with different alternatives.

4.2 Experiment 1: Network Queue with Basic Hosts

The first topology demonstrates the basic UDP hosts and the tail-drop queue block (Equations 1-3). The
2 UDP inputs rates follow a linear and sinusoid trajectories and the queue is set up with a 600Kb buffer,
a link speed of 100Kb, and 0 propagation delay. The packet-level model uses stochastic packet sizes
(not considered in the fluid model) following a normal probabilistic distribution with mean = 1000Kb and
var = 500Kb. Experiments 2 and 3 are also configured with the same stochastic packet size.

Figure 4 compares the simulation results of the fluid and packet-level models. The fluid model
approximation shows excellent concordance with the packet-by-packet simulation. The fluid model follows
the averaged behavior and, as expected, does not capture the packet-size variance. The fluid tail-drop queue
provides an excellent approximation to the packet-level queue even in the presence of input noise.

Figure 4: Packet-level and fluid-flow simulations: tail-drop queue and UDP hosts.

4.3 Experiment 2: Single TCP Sessions

The second topology is configured with 5Mbps links, 10ms propagation delay, and the following parameters
for the RED queue: 400Kb buffer, tmin = 300Kb, tmax = 400Kb, pmax = 0.1, and α = 1E−3. The first host
begins with 2 TCP sessions (N = 2), then after 15s the second hosts starts another TCP session (N = 1),
and finally after 30s the first host closes all connections. The continuous model is set to start at 1.3s to
skip the initialization phase which is not modeled.

Figure 5 compares qualitatively the following metrics: TCP window size (in packet-level: average over
all sessions in a host), hosts’ throughputs, buffer sizes (effective and RED estimate), and departure for
each flow. As reported for the MGT model, the fluid-flow approximation is meant to capture the averaged
operation of the system. The plot shows that the ODE system produces the same behavioral profile as
the packet-level system. In both models, fluid- and packet-level, it is observed that when the number of
sessions change TCP adapts to share fairly the bottleneck link. As expected, the packet-level simulation
shows a bigger variance, but the fluid approximation follows similar dynamics resembling the averaged

3833

Bonaventura and Castro

Figure 5: Comparison of packet-level and fluid simulations for Experiment 2.

behavior. There is a small phase shift between the two results probably due to fast-retransmit/fast-recovery
(FRFR) not being modeled in the fluid TCP block. The fluid RED queue follows a similar path as the
packet-level queue both for effective and estimated buffer sizes (again with a phase shift).

The results verify that the dynamics of the new fluid TCP and RED queue blocks yield results comparable
to those reported for the MGT model. The fluid equations approximate the mean values of network metrics
such as latency, buffer sizes, link utilization, etc. and follow similar dynamics as the packet-level metrics.

4.4 Experiment 3: Multiple TCP Sessions and Interconnected Queues

For the third topology, queues and links are configured as in the previous example. Traffic from the first
host traverses both queues, while traffic from host 2 and 3 only traverses queue 1 and 2 respectively.

Simulation starts with 40 TCP sessions per host (120 in total), after 10s sessions change to 10 per host,
and after 20s all 40 sessions per host restart. Figure 6a compares TCP window and buffer sizes. Again, the
fluid-flow model follows the expected averaged behavior and exhibits dynamics similar to the packet-level
model which shows steeper peaks. With 120 TCP sessions, the averaged TCP window and buffer sizes
stabilize around the RED tmin, tmax values. When TCP sessions drop to 30, RED is unable to control the
buffer size and the TCP window size oscillates. Fluid equations capture both transient and stable phases.

This experiment shows the qualitative accuracy of TCP equations for a larger number of connections.
When using simple data patterns (such as UDP) the fluid queue yields very satisfactory results. When
modeling more complex flows (such as TCP), as reported for the MGT model, the fluid model yield
acceptable approximations. Fluid TCP captures relevant dynamics in send patterns and key features such
as fair link sharing. Depending on the case study, the sacrificed accuracy is a price to pay for significant
execution speedups. As the modular approach allows to easily replace and test different implementations
of a same element, a new TCP host that models FRFR might yield better approximations.

4.5 Experiment 4: Simulation Performance Scalability Analysis

The goal is to verify that our modular approach (using QSS solvers for the fluid case) exhibits similar
scalability results and performance advantages as reported by the MGT model (using discrete-time solvers).

3834

Bonaventura and Castro

(a) Comparison of packet-level and fluid simulations metrics.

Throughput Scaling Factor (K)

Si
m
ul
at
io
n
Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Fluid-Flow Simulation
Packet-level Simulation

5
M

bp
s 10

0
M

bp
s

25
0

M
bp

s

50
0

M
bp

s

(b) Simulation Execution Time.

Figure 6: Simulations results for Experiments 3 and 4: 2 RED queues and 3 TCP hosts with 120 sessions.

The model in Section 4.4 is scaled up by a factor of K, increasing proportionally the link bandwidth, buffer
capacity, RED thresholds and number of TCP sessions. We set α = 1/K and use 3rd order QSS with
accuracy parameters according to link speeds. Single threaded simulations are run for increasing values of
K using PowerDEVS2.2 (Intel Corei7 3.40GHz, 8GB RAM). Figure 6b shows that simulation times for
packet-level models scale linearly with link bandwidth (more packets required to saturate each link) while
remaining almost flat for fluid models. We verified speedups of up to 200x for 1Gbps links.

5 CONCLUSIONS AND FUTURE WORK

We presented a novel modeling methodology and simulation tool to unify the experience of designing
network simulation models both with fluid- and packet-level techniques. Under the DEVS M&S framework
both types of models boil down to a common discrete event simulation, rely on a same mathematical
framework, modeling methodology, and practical tool, thus reducing the learning curve and simplifying
model description. Experimentation with canonical network scenarios corroborated that our models and tool
indeed provide flat simulation times for fluid-based abstractions, compared to linearly increasing simulation
times in the packet-based models. Meanwhile, the strategy of developing libraries of reusable, block-
oriented and self-contained models proved successful: the visual design of network topologies can now be
implemented almost indistinguishably from the representation of the network, be it fluid- or packet-based.

Next steps include: test larger topologies/higher-speed networks (like those modeled for the TDAQ
network at CERN), evolve towards hybrid network simulation (interacting fluid- and packet-level models),
and generate fluid models automatically (based on network descriptions available at SDN Controllers).

REFERENCES

Ethernet Alliance 2015. “Ethernet Roadmap”. www.ethernetalliance.org/roadmap. Accessed: April 4, 2018.
Bergero, F., and E. Kofman. 2011. “PowerDEVS: a Tool for Hybrid System Modeling and Real-Time

Simulation”. Simulation 87(1-2):113–132.
Bonaventura, M., D. Foguelman, and R. Castro. 2016. “Discrete Event Modeling and Simulation-Driven

Engineering for the ATLAS Data Acquisition Network”. Computing in Science & Engineering 18(3):70–
83.

3835

Bonaventura and Castro

Castro, R., and E. Kofman. 2015. “An Integrative Approach for Hybrid Modeling, Simulation and Control
of Data Networks Based on the DEVS Formalism”. In Modeling and Simulation of Computer Networks
and Systems: Methodologies and Applications, Chapter 18. Morgan Kaufmann.

Castro, R., E. Kofman, and F. E. Cellier. 2011. “Quantization-Based Integration Methods for Delay-
Differential Equations”. Simulation Modelling Practice and Theory 19(1):314–336.

Fernandes, S. 2017. Performance Evaluation for Network Services, Systems and Protocols. Springer.
Kleinrock, L. 1969. “Models for Computer Networks”. In Proceedings of the IEEE International Conference

on Communications, 21/9–21/16. Boulder, Colorado.
Kofman, E., and S. Junco. 2001. “Quantized-State Systems: a DEVS Approach for Continuous System

Simulation”. Transactions of The Society for Modeling and Simulation International 18(3):123–132.
Kunniyur, S., and R. Srikant. 2003. “End-to-End Congestion Control Schemes: Utility Functions, Random

Losses and ECN Marks”. IEEE/ACM Transactions on Networking (TON) 11(5):689–702.
Laurito, A., M. Bonaventura, M. E. Pozo Astigarraga, and R. Castro. 2017. “TopoGen: A network Topology

Generation Architecture with Application to Automating Simulations of Software Defined Networks”.
In Proceedings of the 2017 Winter Simulation Conference, edited by W. K. V. Chan et al., 1049–1060.
Piscataway, New Jersey: IEEE.

Liu, J., Y. Liu, Z. Du, and T. Li. 2014. “GPU-Assisted Hybrid Network Traffic Model”. In Proceedings of
the 2nd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, 63–74. ACM.

Liu, Y., F. Lo Presti, V. Misra, D. Towsley, and Y. Gu. 2003. “Fluid Models and Solutions for Large-Scale
IP Networks”. In ACM SIGMETRICS Performance Evaluation Review, Volume 31, 91–101. ACM.

Mao, G., and L. R. Petzold. 2002. “Efficient Integration Over Discontinuities for Differential-Algebraic
Systems”. Computers & Mathematics with Applications 43(1-2):65–79.

Marsan, M. A., M. Garetto, P. Giaccone, E. Leonardi, E. Schiattarella, and A. Tarello. 2005. “Using
Partial Differential Equations to Model TCP Mice and Elephants in Large IP Networks”. IEEE/ACM
Transactions on Networking 13(6):1289–1301.

Misra, V., W.-B. Gong, and D. Towsley. 2000. “Fluid-Based Analysis of a Network of AQM Routers
Supporting TCP Flows with an Application to RED”. In ACM SIGCOMM Computer Communication
Review, Volume 30, 151–160. ACM.

Ngangue Ndih, E. D., and S. Cherkaoui. 2015. “Simulation Methods, Techniques and Tools of Computer
Systems and Networks”. In Modeling and Simulation of Computer Networks and Systems: Methodologies
and Applications, edited by O. M. et al. Morgan Kaufmann.

Padhye, J., V. Firoiu, D. Towsley, and J. Kurose. 1998. “Modeling TCP Throughput: A Simple Model and
its Empirical Validation”. ACM SIGCOMM Computer Communication Review 28(4):303–314.

Riley, G. F., R. M. Fujimoto, and M. H. Ammar. 1999. “A Generic Framework for Parallelization of
Network Simulations”. In Proceedings of the 7th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, 128–135. IEEE.

Wehrle, K., M. Günes, and J. Gross. 2010. Modeling and Tools for Network Simulation. Springer.
Zeigler, B. P., A. Muzy, and E. Kofman. 2018. Theory of Modeling and Simulation 3rd Edition: Discrete

Event and Iterative System Computational Foundations. Elsevier.

AUTHOR BIOGRAPHIES

MATÍAS BONAVENTURA is a MASc in Computer Science, PhD student at the Universidad de Buenos
Aires and Project Associate with the ATLAS TDAQ group at CERN. His research interests are hybrid
modeling and simulation of networked systems. His email address is mbonaventura@dc.uba.ar.

RODRIGO CASTRO is Professor at the Departamento de Computación, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires, head of the Simulation Lab, and Researcher at CONICET. His
research interests include simulation and control of hybrid systems. His email address is rcastro@dc.uba.ar.

3836

