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ABSTRACT

We consider a discrete-event stochastic simulation that represents a generic manufacturing process flow
and assume the availability of limited knowledge about part inter-arrival times and machine processing
times. We investigate how the state-of-the-art simulation methodologies can be utilized to propagate input
inter-arrival-time and service-time uncertainty through such a manufacturing simulation. We quantify the
impact of limited knowledge on steady-state manufacturing-line performance measures such as utilization,
lead time, inventory, and throughput. First, we conduct experiments for single-stage manufacturing systems
where we additionally study the impact of yield loss uncertainty on annual throughput predictions. Then,
we switch our focus to multi-stage manufacturing systems and investigate whether there may be situations in
which it becomes difficult to correctly identify the system bottleneck. We conclude with the identification of
the manufacturing system stages that contribute most to the variability in lead time and inventory predictions.

1 INTRODUCTION

This paper considers discrete-part manufacturing lines that are representative for complex production systems
and the use of discrete-event stochastic simulation to support their operations management. In industrial
manufacturing system design and analysis, the primary role of simulation is to provide strategic delivery
predictions that are utilized by stakeholders with responsibilities ranging from daily plant operations to
managing vendor decisions and making financial decisions. Therefore, the accuracy of simulation-based
predictions is critical to support the decision-making process. A challenge that often arises in the use of
simulation to serve this purpose, especially when the facility is under design, is the lack of sufficiently
large data sets to characterize the distributions of the manufacturing system’s input processes.

In Biller et al. (2018), discrete-event stochastic simulation is used to provide decision support for
silicon carbide fabrication design and operational policy selection at the New York Power Electronics
Manufacturing Consortium facility. Choosing simulation as the dynamic modeling technique for the silicon
carbide project is motivated by the recent advances in simulation software and the resulting flexibility to
model production system operations at a level of detail necessary to support the decision-making process.
However, there still exist challenges of conducting this semiconductor manufacturing simulation. One of
these challenges is the characterization of the input uncertainty in the simulation output analysis. In the
industrial application discussed by Biller et al. (2018), 659 different input processes are identified to have
limited data in relation to equipment profiles (e.g., loading times, processing times, unloading times, times
between failures, and repair times), time of transportation within the facility, and (manual) processing times
of the operators. Motivated by this industrial challenge in manufacturing system simulation design and
analysis, we focus on first single-stage and then multi-stage production systems in this study. We perform
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simulation experiments to develop insights on the impact of limited input data on utilization, lead time (i.e.,
total time a part spends in the system), inventory (i.e., total number of parts in the system) and throughput
predictions. The goal is to enhance our understanding of how much risk simulation-based predictions are
exposed to due to the lack of full knowledge of the systems’ arrival and service processes.

First, we consider a single-stage production system that forms the building block of many complex
manufacturing systems. The parts are assumed to arrive at the system at a rate of λ units per hour
while the workstation processes a part in an average of 1/µ hours. Both the inter-arrival times between
consecutive part arrivals and the machine processing times are independent and exponentially distributed
random variables.

Figure 1: Single-stage production system with part arrival rate λ and part processing rate µ .

We illustrate the single-stage production system in Figure 1 and consider the situation in which the
simulation practitioner does not know the true values of the arrival rate λ and the mean processing time
µ−1. These unknown parameters are estimated from N inter-arrival time data points and N service-time
data points. It is important to note that equal length of history for arrival and service processes is an
assumption that can be easily relaxed. We make this assumption only for the purpose of managing the
number of experiments conducted in this short paper.

Next, we switch our attention to a multi-stage production system. We specifically consider a ten-station
serial production line simulation developed using SAS Simulation Studio (Hughes et al. 2018) and illustrated
in Figure 2, where each yellow compound block represents a station whose process step details are provided
in Figure 3. In this case, there is a finite amount of service-time data for each of the ten workstations of
the manufacturing line. The goal is to investigate the sensitivity of the predictions for machine utilization,
lead time, inventory, and annual throughput to the increasing number of workstations.

Figure 2: 10-station serial line simulation (Simulation Studio). Figure 3: A step.

Independent of the structure of the manufacturing line, there are three main sources of uncertainty
to account for in the simulation output analysis (Biller and Corlu 2015): Stochastic uncertainty (i.e., the
uncertainty that is due to the dependence of the simulation output on random input processes) (Helton 1997),
parameter uncertainty (i.e., the uncertainty that is due to the estimation of the input-model parameters
from limited data), and model uncertainty (i.e., the uncertainty due to the selection of a single model
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from a set of alternative models) (Raftery et al. 1996). Because we assume exponentially distributed
inter-arrival times and exponentially distributed service times for each workstation of the production line,
we do not consider model uncertainty in this paper. We further assume unlimited computing budget so
as to approximate the impact of stochastic uncertainty on simulation outputs to the value of zero. The
goal is to obtain accurate quantification for the effect of input parameter uncertainty on single-stage and
multi-stage production system performance measurements.

Today, accounting for input parameter uncertainty in discrete-event stochastic simulations is a well-
studied problem of interest to considerable numbers of simulation researchers and practitioners. Song and
Nelson (2017) present the most recent review of a variety of methods that have been used to capture input
parameter uncertainty in stochastic simulations when input models are fit to finite samples of real-world data.
In this paper, we propagate input parameter uncertainty via direct simulation; i.e., we perform simulations
for different collections of input distributions and study the empirical quantiles of the output performance
measures to assess the impact of input parameter uncertainty on system performance. However, the
distinguishing feature of our work is the selection of a multi-stage production line as the area of application
and to address the issues of yield loss and bottleneck management for the first time under input uncertainty.

The remainder of the paper is organized as follows: We discuss the representation of input parameter
uncertainty surrounding inter-arrival time and service-time distributions estimated from limited historical
data in Section 2. We also describe how input uncertainty representation is reflected in the 95% confidence
intervals constructed for machine utilization, part lead time, system inventory, and annual throughput.
We present our numerical findings for single-stage production systems in Section 3. We conclude with
a multi-stage manufacturing simulation, representative for industrial manufacturing system simulations
(Biller et al. 2017) in Section 4 and with future research in Section 5.

2 REPRESENTATION OF INPUT PARAMETER UNCERTAINTY

We use θ = 1/λ to represent the mean inter-arrival time parameter and β = 1/µ for the mean service-time
parameter. We consider the measurement of each of inter-arrival-time and service-time variables in terms
of weeks per part in Section 3 and in terms of minutes per part in Section 4. It is critical to account for the
opinions of the experts in the input uncertainty characterization, for example, when the objective is to solve
a strategic equipment portfolio selection problem (Biller et al. 2017). However, we want the results of
this paper to only reflect the impact of limited arrival and service histories on the performance assessment.
Therefore, we choose to follow a frequentist approach and capture the input uncertainty using the sampling
distributions of maximum likelihood estimates of mean inter-arrival-time and service-time parameters θ

and β . Notice that our uncertainty characterizations build on mean inter-arrival time θ and mean service
time β instead of the arrival rate λ and the service rate µ . The reason is that the maximum likelihood
estimates of θ and β are unbiased while the maximum likelihood estimates of λ and µ are biased.

We denote the length-N history available for the inter-arrival time random variable A by the time series
an, n = 1,2, . . . ,N. Similarly, we define sn, n = 1,2, . . . ,N for the historical data set of the service-time
random variable S. It is well known that both

āN =
1
N

N

∑
n=1

an and s̄N =
1
N

N

∑
n=1

sn

are unbiased maximum likelihood estimators of θ and β , respectively, attaining the minimum variance
(Rohatgi and Saleh 2001). Since the random variables An, n = 1,2, . . . ,N are independent and identically
distributed, each with an exponential distribution having a true mean parameter of θ , it can be shown that
the sampling distribution of āN is of type gamma with a shape parameter of N and a scale parameter of
θ/N. Similarly, the random variables Sn, n = 1,2, . . . ,N are independent and exponentially distributed,
each with a true mean parameter of β ; therefore, the sampling distribution of s̄N is of type gamma with a
shape parameter of N and scale parameter of β/N.
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Table 1: Standard deviations (τ(·)) and coefficients of variation (ϑ(·)) of āN , s̄N and p̄N as a function of
N ∈ {10,30,50,10000} for the true inter-arrival time parameter θ = 0.0625, the true service-time parameter
β = 0.05, and the true yield-loss parameter p = 10%.

θ = 0.0625 β = 0.05 p = 10%
N τ(āN) ϑ(āN) τ(s̄N) ϑ(s̄N) τ(p̄N) ϑ(p̄N)

10 0.020 0.32 0.016 0.32 9.487% 0.95
30 0.011 0.18 0.009 0.18 5.477% 0.55
50 0.009 0.14 0.007 0.14 4.243% 0.42

10,000 0.001 0.01 0.001 0.01 0.300% 0.03

First, we investigate the impact of mean inter-arrival-time parameter uncertainty and mean service-time
parameter uncertainty on the mean performance measures of single-stage production systems with reliable
workstations. Then, we introduce yield loss as an additional event to the simulation. We denote the true but
unknown yield loss parameter by p. In this particular case, the data set is composed of pn, n = 1,2, . . . ,N
where pn = 1 if the part completed its processing is identified as being defective and pn = 0 otherwise.
The maximum likelihood estimate p̄N of p is given by

p̄N =
1
N

N

∑
n=1

pn;

the sampling distribution of p̄N is N−1 multiplied by the binomial distribution with parameters N and p.
Table 1 presents standard deviations τ(āN), τ(s̄N), and τ(p̄N) of āN , s̄N , and p̄N and their coefficients

of variations ϑ(āN), ϑ(s̄N), and ϑ(p̄N) as a function of N for the true values θ = 0.0625 weeks per part,
β = 0.05 weeks per part, and p = 10% yield-loss probability. The goal is to develop an initial insight into
how fast the sampling distributions of āN , s̄N , and p̄N approach the true parameter values θ , β , and p with
the increasing length of the arrival history, the service history, and the yield loss history, respectively. We
further illustrate sampling density functions of āN and s̄N in Figure 4 and in Figure 5, and the sampling
mass function of p̄N in Figure 6. For each input process, we observe that the input risk due to limited data
decreases rather slowly and this is especially the case for yield loss. When there are only 10 observations
in the historical data set, the coefficient of variation is 0.32 for each of āN (i.e., (0.020)/(0.0625)) and
s̄N (i.e., (0.016)/(0.05)) while the coefficient of variation is 0.95 (i.e., (9.487)/(10)) for p̄N . When the
data length increases from 10 to 50, the coefficient of variation for āN and s̄N decreases to 0.14 but to
0.42 for p̄N . Our goal is to understand how these observations are reflected in the distributions of the
mean steady-state performance measures of the production systems. We achieve this goal in Section 3 for
a single-stage production system and in Section 4 for a multi-stage production system.

We propagate the input parameter uncertainty, which is quantified in Table 1 and illustrated in Figures
4, 5, and 6 for arrival, service, and loss events, by using the simulation replication algorithm implemented
within the SAS Simulation Studio environment. SAS Simulation Studio is a Java-based application for
building and working with discrete-event simulation models (Hughes et al. 2018). Its distinguishing feature
of flowing values through the simulation in a flexible manner makes SAS Simulation Studio a good candidate
to propagate input uncertainty in manufacturing process flow simulations. Here is the presentation of the
simulation replication algorithm for an M-station serial production line:
for outer loop simulation replication r from 1 to R do{

sample a value for theta[r] from Gamma(N,theta/N)

for process step m from 1 to M do{

sample process step m processing time beta[m,r] from Gamma(N,beta/N)

sample process step m yield loss probability p[m,r] from Binomial(N,p)/N }
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Figure 4: āN sampling function. Figure 5: s̄N sampling function.

Figure 6: p̄N sampling functions for maximum likelihood estimate of yield loss p probability.

for inner loop simulation replication j from 1 to J do{

drive the manufacturing line simulation with sampled parameter values.

collect simulation output data, generically indicated by Y[r,j]. }

};

We implement the simulation replication algorithm for M = 1 in Section 3 and for M = 10 in Section
4. In each section, we choose a sufficiently large value for J to reflect the impact of infinite computing
budget. Because the density functions of machine utilization, lead time, inventory, and throughput may not
necessarily be symmetric, we construct a 95% confidence interval for each of these performance measures
using 2.5% quantile, 50% quantile, and 97.5% quantile of the simulation output data Ȳr := J−1

∑
J
j=1Yr j.
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It is common practice to construct the confidence intervals of the output performance measures using
mean (E) and variance (V) of the simulation output data Ȳr. In fact, characterization of the variance of the
mean output performance measure gives us the well-known insight that increasing the number of simulation
replications J decreases the amount of stochastic uncertainty in the confidence interval but it has no impact
on the portion of the confidence interval length due to input uncertainty. We demonstrate this result for
manufacturing lines with reliable workstations by first representing the output random variable Yr j of the
jth simulation replication as Yr j := g(θ ,β , p)+σZ j where σ2 represents the simulation stochastic variance
and Z j, j = 1,2, . . . ,J correspond to the independent and identically distributed random variables, each
with a mean of zero and a standard deviation of one. Furthermore, g(θ ,β , p) is the mean simulation
response function with the mean inter-arrival time parameter θ , mean processing time parameter β , and
failure-probability parameter p. We are now ready to write down the variance of the mean simulation
output variance:

V[Ȳr] = Vθ ,β ,p

[
E

[
1
J

J

∑
j=1

(g(θ ,β , p)+σZ j)
∣∣∣θ ,β , p

]]
+Eθ ,β ,p

[
V

[
1
J

J

∑
j=1

(g(θ ,β , p)+σZ j)
∣∣∣θ ,β , p

]]

= Vθ ,β ,p

[
1
J

J

∑
j=1

(g(θ ,β , p))

]
+Eθ ,β ,p

[
1
J2

J

∑
j=1

V(σZ j)

]

= Vθ ,β ,p [g(θ ,β , p)]+
σ2

J
. (1)

As shown by various studies, increasing values of J does not affect the first component of the right-hand
side in (1). Our goal is to understand how this term Vθ ,β ,p[g(θ ,β , p)] responds to increasing arrival, service,
and yield-loss history under different production system designs. However, we do this by the computation
of 2.5%, 50%, and 97.5% quantiles of Ȳr especially for the accurate computation of machine utilization in
congested systems.

3 SINGLE-STAGE PRODUCTION SYSTEM

The goal of this section is to quantify the impact of input parameter uncertainty on four primary performance
measures of a single-stage production system. We experiment with the three scenarios tabulated in Table
2 under the assumption of full knowledge of arrival and service processes:

Table 2: Single-stage production system: Scenarios and performance under full knowledge.

Scenario λ µ Machine Lead Time Inventory Throughput
Index (parts/week) (parts/week) (utilization) (weeks) (inventory) (annual)

1 14 20 70% 0.17 2.33 700
2 16 20 80% 0.25 4.00 800
3 17 20 85% 0.33 5.67 850

Table 3 presents the 95% confidence intervals of the mean performance measures (i.e., their 2.5% quantile,
50% quantile, and 97.5% quantile) as a function of the data history of length N ∈{10,20,30,50,100,200,300,
500,1000,5000,10000} under Scenario 1. Similarly, we present the results from Scenario 2 and Scenario
3 in Table 4 and Table 5, respectively. In each case, we observe that the impact of input uncertainty can
be significant on the mean performance measures of single-stage production systems. Specifically, when
there are only ten historical observations in each data set, we determine the median utilization as 62%,
underestimating the true utilization by an absolute difference of 8% under Scenario 1. When the data
length increases to 100, we then determine the median utilization to coincide with 70%. However, the
95% confidence interval for machine utilization is identified as between 53% and 91%. Thus, the length

3149



Biller and Mokashi

Table 3: Scenario 1: 95% confidence intervals for mean performance under input uncertainty.

N Utilization Lead Time Inventory Annual Throughput
10 24% 62% 98% 0.03 0.12 2.94 0.32 1.62 49.13 402 672 1103
20 37% 66% 97% 0.05 0.14 2.15 0.59 1.91 33.70 459 687 1049
30 41% 68% 97% 0.06 0.15 1.87 0.69 2.08 28.42 496 689 962
50 48% 69% 95% 0.08 0.16 1.10 0.92 2.24 18.85 543 700 903
100 53% 70% 91% 0.09 0.17 0.62 1.15 2.33 10.05 583 701 868
200 58% 70% 86% 0.11 0.17 0.41 1.37 2.33 6.35 615 698 807
300 60% 70% 82% 0.11 0.17 0.30 1.49 2.33 4.57 621 698 787
500 62% 70% 79% 0.12 0.17 0.26 1.64 2.33 3.81 647 702 761
1000 64% 70% 77% 0.13 0.17 0.23 1.77 2.33 3.33 657 699 745
5000 67% 70% 73% 0.15 0.17 0.19 2.06 2.33 2.67 682 701 720

10000 68% 70% 72% 0.16 0.17 0.18 2.14 2.33 2.57 687 700 714

Table 4: Scenario 2: 95% confidence intervals for mean performance under input uncertainty.

N Utilization Lead Time Inventory Annual Throughput
10 29% 66% 98% 0.03 0.13 3.00 0.42 1.91 53.67 441 740 1253
20 41% 72% 98% 0.06 0.17 2.79 0.71 2.51 50.64 520 767 1107
30 47% 75% 98% 0.06 0.19 2.70 0.88 2.98 45.38 564 778 1045
50 55% 77% 98% 0.09 0.21 2.34 1.21 3.27 43.12 622 787 998
100 61% 79% 97% 0.11 0.23 1.82 1.54 3.70 34.63 656 795 945
200 66% 80% 95% 0.13 0.25 1.16 1.95 3.90 19.95 699 797 914
300 68% 80% 94% 0.14 0.25 0.98 2.08 3.98 16.79 710 800 894
500 71% 80% 91% 0.16 0.25 0.60 2.40 3.99 10.15 733 802 878
1000 73% 80% 87% 0.18 0.25 0.40 2.70 3.99 6.64 750 802 851
5000 77% 80% 83% 0.21 0.25 0.30 3.34 4.02 4.93 778 801 822

10000 78% 80% 82% 0.22 0.25 0.29 3.53 4.02 4.02 786 800 815

Table 5: Scenario 3: 95% confidence intervals for mean performance under input uncertainty.

N Utilization Lead Time Inventory Annual Throughput
10 31% 70% 99% 0.04 0.15 4.18 0.45 2.33 74.16 476 776 1312
20 42% 76% 99% 0.05 0.20 3.47 0.72 3.25 68.76 552 795 1170
30 49% 77% 98% 0.07 0.21 3.20 0.96 3.43 61.61 597 809 1075
50 56% 80% 98% 0.09 0.25 3.16 1.30 4.09 58.65 645 823 1030
100 63% 83% 98% 0.11 0.29 3.613 1.68 4.85 54.03 694 840 993
200 70% 84% 98% 0.15 0.32 2.24 2.36 5.45 42.05 751 849 961
300 73% 85% 97% 0.17 0.32 1.95 2.68 5.49 35.75 764 850 952
500 75% 85% 96% 0.19 0.32 1.30 3.01 5.50 23.07 782 850 927

1000 78% 85% 93% 0.22 0.33 0.73 3.61 5.55 12.83 799 850 904
5000 82% 85% 89% 0.26 0.33 0.45 4.43 5.65 7.74 825 850 876
10000 83% 85% 87% 0.28 0.33 0.40 4.77 5.66 6.92 833 850 868

of the 95% confidence interval continues to be too large – even when when there are 100 observations of
inter-arrival times and 100 observations of service times – to effectively inform the plant manager about the
machine utilization. Nevertheless, increasing the data length by tenfold decreases the confidence interval
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half-length from 17% to 6%. We further decrease the 6% half-length to a 3% half-length by increasing
the data length from 1,000 observations to 5,000 observations.

Another striking observation is the impact of limited input data on average inventory predictions. When
there are only 10 observations of each of inter-arrival time and service time, we find that the 95% confidence
interval for average system inventory is between 0.32 parts and 49.13 parts with a median of 1.62 parts.
This observation is concerning because focusing on the median will lead to the underestimation of the need
for the maximum buffer size. When there are 100 observations in each of the data sets, we identify the
upper bound of the 95% confidence interval as 10 parts. Therefore, in the presence of very limited data,
it would be ill-advised to make any buffer investment decisions. This observation also holds for annual
throughput in which case the range of the 95% confidence interval is approximately the true unknown
mean of the annual throughput; i.e., the lower bound, median and upper bound of the confidence interval
are calculated as 402, 672, and 1,103. In the case of having 100 observations in each of the data sets, we
then identify the lower and upper bounds of the 95% confidence interval as 583 and 868.

The severity of input uncertainty on machine utilization, average inventory, and annual throughput
increases further with the higher (true) system utilization. We illustrate the corresponding results presented
in Tables 3, 4, and 5 in Figures 7, 8, and 9, respectively, where we also observe the need of a longer history
for the median of the performance measures to converge to their true values.

Table 4 presents the results identified under the true utilization of 80% with reliable workstations.
Next, we relax this assumption and compute median annual throughput and its confidence interval at true

Figure 7: Machine Utilization. Figure 8: Total Inventory.

Figure 9: Annual Throughput.
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yield loss probabilities of 5%, 10%, and 20%. We present our findings in Table 6 and illustrate them in
Figure 10. The relative comparison of the medians calculated under 0% and 5% (or 10% or 20%) true
yield probabilities result in a reduction of 5% (or 10% or 20%) in annual throughput. We observe the input
uncertainty to exhibit its impact on annual throughput at lower values of N and especially at the lower bound
of the 95% confidence interval. In the presence of 5% (or 10% or 20%) true yield loss probability, the lower
bound of the 95% confidence interval is found to be 8% (or 15% or 34%) lower than its counterpart at
0% yield loss probability. In each case, however, we find this observation to disappear and that all relative
differences converge to their corresponding yield loss probabilities as soon as the number of historical data
points for each input process reaches 200.

Table 6: Scenario 2: Impact of yield loss uncertainty on annual throughput.

N 0% Yield Loss 5% Yield Loss 10% Yield Loss 20% Yield Loss
10 441 740 1253 419 700 1218 387 659 1156 300 580 1070
20 520 767 1107 492 728 1066 456 678 1034 385 609 931
30 564 778 1045 527 739 1028 499 690 949 426 619 882
50 622 787 998 587 748 957 540 708 934 460 629 829

100 656 795 945 634 762 915 590 720 857 516 636 779
200 699 797 914 660 761 872 627 720 833 553 640 741
300 710 800 894 673 760 853 638 721 813 563 641 719
500 733 802 878 698 761 835 659 720 791 576 640 705
1000 750 802 851 714 759 809 675 719 769 595 642 688
5000 778 801 822 739 760 783 699 720 743 620 640 659
10000 786 800 815 745 760 776 706 720 734 627 640 655

Figure 10: Illustration of the impact of yield loss uncertainty on annual throughput.
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4 MULTI-STAGE PRODUCTION SYSTEM

In this section, we consider a serial manufacturing line motivated by an application discussed in Biller et
al. (2017) and illustrated in Figure 2 and Figure 3 of Section 1. We continue to make the assumption of
exponentially distributed part inter-arrival times and exponentially distributed processing times for each
workstation of the production line. We impose no constraints on the sizes of the buffers between consecutive
workstations. We aim to understand the inventory storage needs under the given operational assumptions.
Furthermore, we consider each workstation to be reliable; i.e., 0% yield loss probability. Table 7 assumes
200 as the true mean inter-arrival time (i.e., θ = 200 minutes per part) and presents the design of this
manufacturing line under full knowledge of arrival and service processes. In this table, we also provide
steady-state average performance measures utilization, lead time, and inventory, and present each at the
workstation level. It becomes immediately evident that the bottleneck is Machine 5 with an average

Table 7: Multi-stage production system: Process flow and performance under full knowledge.

Process Resource Type βi Station Lead Time Inventory
Step i at Station i (minutes/part) Utilization (minutes) (parts)

1 Machine 1 160 80.0% 800.00 4.00
2 Operator 1 0.80 0.40% 0.80 0.00
3 Machine 2 0.87 0.44% 0.87 0.00
4 Operator 2 0.80 0.40% 0.80 0.00
5 Machine 3 0.85 0.43% 0.85 0.00
6 Machine 4 45 22.5% 58.06 0.29
7 Machine 5 170 85.0% 1133.33 5.67
8 Machine 6 45 22.5% 58.06 0.29
9 Machine 7 55 27.5% 75.86 0.38

10 Machine 8 67.5 33.8% 101.89 0.51

utilization of 85% where each part is expected to spend a total of 1,133 minutes. Furthermore, there are, on
average, 5.67 parts in this workstation. The second busiest workstation of the production line is Machine
1 with an expected utilization of 80% where each part is expected to spend 800 minutes. In addition, there
are, on average, 4 parts in the first station of the manufacturing line.

We assume the availability of only 50 observations for the inter-arrival times and for each of the
processing times in the 10-station serial production line characterized in Table 7. We first present the 95%
confidence interval for utilization of each workstation in Table 8. Then, we illustrate these confidence
intervals associated with all stages of the production line in Figure 11. We immediately notice that it is not
clear anymore whether Machine 5 is the bottleneck of the manufacturing line. In fact, it is inconclusive
whether Machine 1 (i.e., process step 1) or Machine 5 (i.e., process step 7) is the bottleneck. In this particular
case, there may be value in designing the data collection plan in a way to reveal system bottlenecks in a
fast and accurate manner.

Table 8: Impact of arrival and service process uncertainty on workstation utilization.

Process Step
Utilization 1 2 3 4 5 6 7 8 9 10

2.5% Quantile 50.8% 0.3% 0.3% 0.3% 0.3% 14.6% 54.8% 14.5% 18.1% 22.6%
50% Quantile 75.3% 0.4% 0.4% 0.4% 0.4% 21.5% 79.4% 21.5% 25.9% 32.0%

97.5% Quantile 97.6% 0.5% 0.6% 0.5% 0.6% 30.1% 98.9% 31.2% 37.7% 45.1%

Next, we present the 95% confidence intervals for steady-state annual throughput, total lead time, and
overall inventory in the system and compare them to those provided by Table 7:
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Figure 11: Illustration of the impact of input process uncertainty on workstation utilizations.

Table 9: Impact of lacking full arrival and service process knowledge on system performance.

Full Knowledge Data Length N = 50
Throughput Lead Time Inventory Throughput Lead Time Inventory

2.5% Quantile 600 2,230.55 11.15 451.82 953.20 3.81
50% Quantile 600 2,230.55 11.15 575.49 1,920.07 9.24

97.5% Quantile 600 2,230.55 11.15 718.35 24,883.87 142.89

It has already been observed in the single-stage production system simulation that the input uncertainty
may cause high variability in the confidence intervals constructed for mean performance measures such as
annual throughput, lead time, and inventory. We continue to make this observation in Table 9 but with even
more pronounced impact of arrival and service process uncertainty on lead time variability and inventory
variability. Under the full knowledge of the interarrival-time and service-time distributions, the part lead
time is expected to be 2,230.55 minutes and the average inventory is identified as 11.15 parts. When we
lack this knowledge and assume the availability of only 50 historical observations for each input process
of the simulation, we are 95% confident that the mean part lead time falls between 953.20 minutes and
24,883.87 minutes and the average system inventory falls between 3.81 parts and 142.89 parts. Thus, this
limited level of knowledge about inputs causes simulation to fall short of delivering accurate predictions
about the performance of the manufacturing line described in this section. Nevertheless, it would be critical
to understand which operational stages of the manufacturing line would contribute to this high level of
variability in lead time and inventory predictions. Without conducting any further experiments, Table 7
would suggest those stages to be Machine 1 and Machine 5. We, however, quantify the contribution of
each resource to the lead time variability. Consequently, we find that 22% of simulation’s average lead time
variance is due to Machine 1 and remaining 78% of the variability is due to Machine 5. Similarly, 25%
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of the simulation’s average inventory variance is due to Machine 1 and remaining 75% of the variability
is due to Machine 5. These types of quantification would be beneficial in attempts towards improving the
accuracy of simulation-based predictions.

5 FUTURE RESEARCH

Section 4 decomposes the manufacturing line lead time and inventory variability into different stages of
production. The resulting quantification would be guiding the collection of new data and information in
an effective manner. However, each stage is exposed to both arrival uncertainty and service uncertainty
and additionally to yield loss uncertainty in the case of unreliable machines. This makes it difficult to
further trace the simulation output variability to the input processes themselves. Solving this problem for
multi-stage production systems is the objective of future research.
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