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Abstract—Microgrids (small scale power systems optimizing 
variable generation and loads) that serve a remote island’s load 
requirements demonstrate both the extreme challenges and 
opportunities in providing reliable power in remote locations. 
Microgrids, which provide the entire power requirements with 
on-island resources, can be considered complex systems. These 
complex systems can be modeled using a variety of tools. This 
paper provides an overview of different tools used to characterize 
different aspects of microgrids’ behavior in order to improve 
their overall efficiency. These tools include agent-based modeling 
as one of a class of computational models commonly used in 
Systems Engineering, as well as specialized software packages 
specifically developed to address energy performance modeling, 
like EnergyPlan. A broad overview of the used methods is 
followed by illustration of how these tools could be applied to the 
analysis of a green microgrid of a remote island. The paper ends 
with conclusions on advantages and disadvantages of employing 
different tools to investigate the dynamics of remote island 
microgrids. 
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nonlinear dynamics  

I. INTRODUCTION 
Energy independence and reliability for remote islands are 

compelling requirements for microgrids as seen for both the 
U.S. Navy and civilian communities residing on these islands. 
Without the capability to provide power in a sustainable and 
affordable manner, the ability to support either the military 
operations or communities is significantly decreased. For these 
reasons, it is worthwhile to better understand the system 
behavior of these power systems that are typically modelled as 
microgrids. 

Given the variability of renewable energy generation 
serving small and disparate loads coupled with the system 
operation of a microgrid, these microgrids can conceivably be 
considered a complex system by virtue of their “interrelated, 
heterogeneous elements (agents and objects) [1].” By 
understanding the complex system characteristics of a 
microgrid to potentially include emergent behavior, resilient 
networks [2], and synchronous states, there may be an 
opportunity to improve the overall efficiency of the microgrid 
as well as to enhance overall system reliability of the island’s 
electrical grid through optimization of the microgrid 
architecture design. 

This paper provides an initial construct for researching the 
behavior of green microgrids. It reviews several approachs to 
conduct such a research and illustrates advantages and 
disadvantages of applying these methods based on a a set of  
data available for one of the remote islands.  Specifically, 
Section II provides a literature review of research conducted 
that directly relates to this effort. Section III describes the 
construct and resulting architecture for microgrids. Section IV 
outlines existing tools that can be be used to study and 
optimize a green microgrid for remote islands. Section V 
provides illustrative examples of modeling the the very same 
system using different tools. The paper ends with conclusions. 

II. BACKGROUND 
Microgrids (Fig.1) are small scaled power systems located 

closer to the load than typically found in conventional power 
plants. A microgrid normally includes three core components: 
hybrid generation, energy storage and controls. All of these 
components work together as a system solution to serve a 
nearby load. 

 
Figure 1. Microgrid components [3]. 

Green microgrids leverage an alternative energy source in 
the power generation. Typically, but not always, this 
alternative energy is a renewable energy source and is paired 
with traditional generation such as a diesel genset. The 
renewable energy is often from solar photovoltaic (PV) or wind 
turbines. Besides renewable energy, there are alternative 
energy sources that can still be considered green such as a 
reversible solid oxide fuel cell system when connected to a 
renewable generation source. 

Most microgrids are designed and installed to meet a 
specialized need not ideally served by the utility company. 
Often this need is dictated by the remoteness and dislocation of 
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the load from a utility company such as a remote island or by 
loads that are deemed critical infrastructure. 

For remote island communities the microgrids have been 
used to provide greater independence, reliability and 
sustainability from off-island power services. As a result, these 
green microgrids have rather creative and complex designs [4]. 

For U.S. Naval installations, microgrids have been used 
and considered primarily to serve critical infrastructure 
typically employed in remote locations to include San Nicholas 
Island of California (SNI), Hawaii, and Diego Garcia of the 
British Indian Ocean Territory at least. 

The most recent and robust example of a military microgrid 
on a remote installation is the smart cybersecure microgrid 
installed at Camp Smith on Oahu, Hawaii. This microgrid was 
designed and installed to provide emergency backup power for 
critical infrastructure as the culmination and third and final 
phase of the SPIDERS (Smart Power Infrastructure 
Demonstration for Energy Reliability and Security) JCTD 
(Joint Capability Technology Demonstration). The microgrid 
employed hybrid power generation (diesel gensets and solar 
PV), power storage (lithium ion batteries), a networked control 
system and the first ever grid interconnect to the local utility, 
Hawaiian Electric Company (HECO). The interconnect created 
the opportunity for power factor correction, peak demand 
management and load shedding. SNI also represents a 
significant effort to provide power to a remote island 
infrastructure. The microgrid on SNI also uses hybrid 
generation (diesel gensets and wind turbines), and a simple 
control system. 

III. MICROGRIDS ARCHITECTING 
The U.S. Department of Energy classifies a microgrid as a 

complex system not so much for its characteristics of 
emergent behavior or nonlinear dynamics, rather simply 
because of their use of advanced distributed energy resources 
(DER) components. Specifically, microgrids can include [5] 

• Small, local and stand-alone power systems 
integrated with a larger distribution feeder 

• Both energy storage and distributed generation (DG) 
within a small “control area” 

• Variety of DG 
• Plug-and-play functionality not dependent upon 

communications 
• Single interface to power system to have seamless 

power transition between parallel to grid and islanded 

Although there has been a steady push into architecting 
“smart microgrids” by optimizing the entire system, this 
approach has not effectively leveraged Complex Systems 
tools. Some consider the primary value of microgrids to have 
“an economic character, and to a lesser extent increased 
reliability and renewable energy [6].” However, for remote 
islands and U.S. Navy installations the primary benefit is 
energy security and mission assurance, not economic [6]. 

There has been some progress made by researchers from 
the Technical University of Denmark in developing a “Robust 
Optimization” approach for a microgrid’s overall energy 

management. In this research a microgrid was modelled using 
agent-based modelling (ABM) by considering the following 
agents: a mid-size train station with an integrated solar PV, a 
small wind turbine power plant, and surrounding residential 
and small business loads. 

“The system is decribed by Agent-Based Modelling 
(ABM), in which each player is modelled as an individual 
agent aiming at a particular goal, (i) decreasing its expenses 
for power purchase or (ii) increasing its revenues from power 
selling. The context in which the agents operate is uncertain 
due to the stochasticity of operational and environmental 
parameters, and the technical failures of the renewable power 
generators. The uncertain operational and environmental 
parameters of the microgrid are quantified in terms of 
Prediction Intervals (PIs) by a Nondominated Sorting Genetic 
Algorithm (NSGA-II) - trained Neural Network (NN). Under 
these uncertainties, each agent is seeking for optimal goal-
directed actions planning by Robust Optimization (RO) [7].” 

The researchers ultimately concluded that the microgrid 
using RO resulted in increased performance. The metrics used 
to evaluate performance included Loss of Load Expectation 
and Loss of Expected Energy. These metrics were 
implemented for optimization instead of designated expected 
values for the uncertain parameters [7]. 

A further progression in ABM has been made by using a 
hierarchical control model for microgrids through the lens of a 
self-organizing multi-agent system. This hierarchical control 
model is developed as a third generation of control theory that 
includes large-scale system theory and intelligent control 
theory. Large scale system theory combines modern control 
theory, the second generation employing state equation 
models and time domain analysis, as well as operational 
research using state and algebraic equation models to 
optimize, stabilize, and simplify large-scale models. 
Intelligent control theory combines control theory and 
artificial intelligence using a general model employing both 
knowledge and mathematics to design an intelligent system 
and its corresponding automation. 

The first generation of control theory is otherwise the 
classical control theory. Classical control theory uses transfer 
functions and frequency domain analysis for single variable 
design of single-machine automation. This is in comparison to 
the advanced applications of the second generation to multi-
variable system design and integrated automation. 

It is this controlled object of the intelligent system that will 
also to green microgrids’ control systems. The renewable 
energy generation has the same characteristics of an intelligent 
system that include nonlinear, time-varying, uncertainty of the 
controlled object and its environment. As such, self-
organizing control theory can be used in this research to 
develop an optimized mechanism for complex self-organizing 
systems like green microgrids. Researchers at the China 
Electric Power Research Institute have proposed an intelligent 
control architecture based upon multi-agent and self-
organizing control theory. In so doing they hope to provide a 
practical system solution for self-organizing control of smart 
distribution networks such as microgrids. 



A hierarchical control structure is used combining the 
control structure of a large-scale system and hierarchical 
control structure of intelligent control system. This is then 
tested and verified on a distribution network with three 
substations and five feeders. The results suggest that the 
hierarchical control takes advantage of both local and global 
control to deliver good performance in response to changes of 
operation state and global coordination [8]. 

Practical applications of modelling microgrid controls 
through multi-agent systems have been applied to excess wind 
generation capacity. One such simulation studied integrates 
both real and simulated loads. In this simulation, a unique 
demand response program is used to have consumers increase 
consumption when power is cheap. This situation occurs when 
there is excess wind generation. 

The results of this simulation are promising. The responses 
of both real and simulated agents proved adequate to respond 
to requests and events by operator agents [9]. 

Another promising approach to optimizing wind 
generation into microgrid systems was conducted based upon 
wind power prediction using a neural network trained by 
hybrid particle swarm optimization and back-propagation 
algorithms. The objective of this research was to determine the 
optimal policy to maximize benefit and minimize cost. This 
approach considered microgrids with different generation 
sources such as wind turbines and fuel generators. 

Observations of wind speed over three months were used 
from different seasons. A hybrid optimization algorithm 
demonstrated a correct dynamic performance. Wind speed was 
predicted with good accuracy. As a result, the multi-agent 
architecture could be applied to realize the goal of maximizing 
benefits and minimizing costs [10]. 

Cyclostationary processes naturally arise from periodic 
phenomena. This can be seen in microgrids in the rotational 
motion of turbines and generators through their periodic AC 
signals. These periodic AC signals can also be created from 
pulse width modulation switching of inverters. 

Cyclostationary data has been useful in understanding 
which parts of a microgrid are isolated from each other. 
Specifically, Wiener Orthogonality can be applied to 
microgrids by representing voltage time series from DC power 
sources. This can then help make decisions about which 
subsystems should be islanded [11]. 

The most relevant and promising research conducted to 
date has been to consider microgrids as a system of systems 
using ABM with system dynamics modelling. This has 
produced both emergent effects on the interconnected system 
that were analyzed through simulation. 

Microgrids have been viewed as Complex Computer 
Systems. A microgrid model using this approach was 
simulated to include the following elements: 

• Diesel generator 
• Wind power generator 
• PV 
• Battery storage 

• Two loads 
• Substation 

An ABM to simulate the microgrids was built using 
AnyLogic and a two-layer structure. The logical layer was 
used for real time agent communication. The physical layer 
integrated technical power flow calculation results. The two 
together delivered real-time simulations of the microgrid. 

This model offers one framework for implementing 
microgrids using a complex systems approach. Although this 
model does create many options, it still needs expanded. 
Expansion for instance could ensure intelligent control of 
energy storage devices. Modularization of the microgrid 
model is an important factor in microgrid design [12]. 

IV. TOOLS FOR MICROGRID OPTIMIZATION 
There are several tools available to both evaluate and 

potentially improve efficiencies of green microgrids. Some of 
these tools are as follows. 

A. Agent-Based Modeling 
Agent-based modeling is one tool used in evaluating 

complex systems by classifying the respective and dynamic 
components of the system as agents. Each agent’s behavior can 
be modeled over time using simulation tools such as open 
source software like NetLogo. 

ABM can be used to model the microgrid and simulate its 
behavior over time (Fig. 2). Overall performance of the 
microgrid in different models can be evaluated to understand 
how complex systems theory can be applied to improving the 
microgrid’s performance. 

 
Figure 2. Agent based modeling for smart grids [13]. 

ABM has been used for wind turbines using a mathematical 
model for wind energy generated as a factor of the wind speed 
and a state chart describing behavior and states of wind 
turbines as depicted in Fig. 3. 

 
Figure 3. State chart of wind turbine agent [14]. 



PV systems use a mathematical model for energy generated 
as a function of PV surface temperature, irradiance and rated 
power output. The state chart for PV can be seen in Fig. 4. 

 
Figure 4. State chart of PV agent [14]. 

B. Modeling in MATLAB/SIMULINK Development 
Environment 
All networked microgrids employ a control system. The 

characteristics and design of the control system chosen can be 
evaluated using MATLAB’s Controls Systems toolbox. It is 
expected that the superior behavioral characteristics of the 
more capable microgrids is directly related to the choice and 
logic of the control system. 

For example, MATLAB/SIMULINK development 
environment has been used in a loop microgrid system 
composed of loads, Superconducting Magnetic Energy 
Storage (SMES), and renewable energies such as solar and 
wind generators [15]. The system was simulated using 
MATLAB to prove that power flow can be controlled. This 
was modelled using control blocks in MATLAB and applied 
to the microgrid system (PSIM) as depicted in Fig. 5. 

 
Figure 5. Simulation model of PSIM using MATLAB [15]. 

C. Nonlinear Dynamics Modeling 
Given that the behavior of the microgrid system is often not 

explained as the sum behavior of the parts, these microgrids 
categorically can be classified as being nonlinear dynamic 
systems. It is neither expected that the microgrid systems will 
be adaptive or chaotic, but the significance of being nonlinear 
dynamic in nature should be studied. 

Nonlinear dynamics of each distributed generation in a 
microgrid have been formulated on its own d-q (direct-
quadrature) reference frame. An adaptive feedback 
linearization-based tracking synchronization using the 
Lyapunov function technique was used to design the 
distributed controllers. This simulation proved that the 
proposed controller provided the synchronization for the output 
voltage of the distributed generation [16]. 

D. System Dynamics Modeling 
Flow and storage of energy storage devices have been 

modeled using System Dynamics Modeling (SDM), a tool that 
relates stocks and flows mathematically in a temporal 
environment.  Stock is defined storage capacity of the 
microgrid system. Flows describe how the stocks change over 
time and the dynamics of the system. This model can be 
represented as depicted in Fig. 6. 

 
Figure 6. Flowchart of storage device [13]. 

The findings for a microgrid-electric vehicle system 
indicated that charging the electric vehicles at night result in 
maximum discarded energy. As a result of the ABM and SDM, 
a cascade charging is proposed [13]. 

E. Utilizing Microsoft Excel Solver 
To optimize the microgrid being studied, a formulation will 

be built that is expected to be multi-objective, mixed-integer 
and nonlinear. As such, Microsoft Excel’s Solver will be 
initially used to find an optimal solution that is of course 
feasible. The feasibility of the solution is established by 
constraints governing the requirements for the load and the 
capabilities of both the generation, storage and overall system. 

The objective functions maximize reliability, penetration 
of renewables onto grid, and minimize costs. A multi-
scenario, multi-objective optimization method of a grid-
parallel microgrid was presented based on application 
scenarios classification. This method can not only access 
microgrid costs and benefits under different scenarios, but also 
evaluate the microgrid architectures from different aspects 
including construction and operation costs, customer outage 
costs and the environment. The use of battery and diesel 
generators in different scenarios decreases the difference 
between load and renewable resources output thereby 
increasing the penetration of renewable energy. Although the 
increased use of diesel generators has higher emissions, the 
total emission level is still much lower than that of a 
traditional power system. The findings suggest the optimal 
microgrid configuration is in fact determined by the multi-
scenario, multi-objective optimization method being much 
better than that of a mono-scenario, mono-objective 
optimization method. 

This problem formulation was described as optimizing a 
microgrid configuration under different scenario constraints to 
minimize lifecycle cost, energy cost, and emissions while 
maximizing penetration of renewable energy. Constraints 
included energy conservation, reliability, power output ranges, 



battery state of charge parameters, minimum required life of 
battery, maximum yearly emissions, and minimum renewable 
energy penetration [17]. 

One such recent, multi-objective optimization example 
was applied to islanded microgrids. The optimization 
minimized two objectives: fuel loss and power losses. A 
NSGA-II was used to solve the optimization problem. This 
research concluded the addition of DERs and the use of load 
management and a supply optimization algorithm decreased 
line losses and fuel costs dramatically. Of note is that the fuel 
price per kWh produced is reduced by an average of 33% [18]. 

V. EXAMPLES OF UTILIZING DIFFERENT SE TOOLS 
In the final manuscript this will be the key section where 

the aforementioned tools will be used to model microgrids of 
Isle of Eigg and SNI. Table 1 shows some of the data 
characterizing these two somewhat similar (population, 
remoteness) islands. 

Table 1. Microgrid power system characteristics 

Component Isle of Eigg [19] SNI [20] 
Peak load (KW) 92.3 700 - 1150 
Demand (MWh/year) 312.44 5644.77 
Wind turbine capacity (KW) 24 700 
Solar PV capacity (KW) 79.8 1 
River hydro capacity (KW) 110 0 
Diesel genset capacity (KW) 128 3021 
Battery storage (Kwh) 720 0 

Controls system Smart inverters 4160V underground 
distribution system 

CONCLUSIONS 
A variety of the tools usually used to analyze complex 

systems can be utilized to optimize microgrids. The paper 
reviews these tools and showed examples of utilizing them to 
model and  analyze microgrid systems on Isle of Eigg, 
Scotland and San Nicholas Island, California. The final version 
of the paper will have more specific conclusions based on the 
outcomes of Section V. Ideally, the modelling results will be 
synthesized to create useful knowledge to alter the controls 
systems solution for future microgrids. 
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