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Summary

Machine-to-machine (M2M) is an evolving architecture and tends to provide
enormous services through the swarm presence of the networked devices. Local-
ization is one of those services. Previous localization techniques require complex
computation that is not suitable and affordable in such architecture. More-
over, integrating intelligent multiagents on these ubiquitous devices makes the
network more independent and reactive requiring for a less complex local-
ization model. This paper reviews the present localization techniques and
discusses their infeasibility for M2M communication while proposing a math-
ematical model that is derived from Anderson model for the distributed struc-
ture of machine-type-communication network involving autonomous agents.
This paper has made an attempt to use the property of Anderson model that
structures the distributed objects. This paper also classifies autonomous agents
according to their functionalities in a navigational network. Recently, Anderson
model have been customized for implication of optical communication; in this
paper, the proposed mathematical model involves intelligent agents for local-
ization that aim to reduce complexity of positioning computations for nodes
having restricted computational resources and battery life, which are the main
characteristics of M2M communication.
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1 INTRODUCTION

Machine-to-machine (M2M) communication paradigm is an evolving infrastructure grasping every aspect of life while
acting autonomous and react intelligently is a fundamental characteristic of involved applications. Autonomous commu-
nication usage is already tested and implemented in unmanned vehicles network environment.1 By integrating intelligent
and autonomous agents, the unmanned cars, aircrafts, and spacecrafts can perform many functionalities while commu-
nicating and supporting each other through machine-type-communication (MTC) standard protocols. Navigation2 is one
of those essential functions that is required by every other device either stationary or been mobile. Numerous applica-
tions involve tracking and localization capabilities for military, commercial, and public safety. As technology upgrades
and smart communication ecosystem3 emerges, machines can intelligently navigate and localize other machines with-
out any human intervention, although the main characteristics4 of an M2M ecosystem is different and restricted from
the rest of the wireless communication paradigm. The nodes involving are restricted for battery usage and perform
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limited computations. These nodes send and receive small amount of data and work through the processing in the form
of group, since their network life depends on usually small battery and cannot afford high computations. The main objec-
tives of these nodes are to observe the environment and collect data, making them a good source for navigation without
involving complex processing.5 For controlling these nodes, multiagent system (MAS) is integrated into the nodes. These
autonomous agents make the network a self-organizing and adaptable architecture. 6

Recent research by NASA7 has enabled a spacecraft to work cooperatively based on M2M communication for navigat-
ing other spacecrafts, through autonomous agents using inertial sensor measurements, cooperatively working out their
positions. Usually, the autonomous agent is a software agent; all the measurements and constraints calculations are per-
formed onboard, and no hardware upgrades are required. Using different frameworks of navigation, agents jointly infer
their locations both in temporal and spatial domains.8-10 But this navigational network is up till now restricted to space
domain. Every autonomous agent deployed in a such infrastructure is an asset to every other autonomous agent enhancing
and supplementing traditional state methods. Due to their cooperation, communication load can be reduced on ground
navigation systems and also reducing reliability on global positioning system (GPS) weak signals. Updates in navigation
are transfered through cross-communication between agents in the navigational network coupled with onboard estimates
for correct positioning.

Because of the increase in dependence on satellites architecture and ground-based navigation system, navigation has
become a complex issue at a larger scale. It has many present issues, such as jamming; it can be easily jammed as the trans-
mitted signals are so weak,11 and the frequency used by the system is very common, ranging from 1227.60 to 1575.42 MHz.
Some disruptions are natural, those include noise induced due to solar flares and high intensity of ionosphere distur-
bances. Other disruptions are man made such as transmission of unwanted radio frequencies, interference from other TV
transmissions, and microwave links. The efficiency also degrades in dense urban environment as building blocks attenu-
ate and reflect the signals, thus providing a bad quality of reception. Besides GPS, no technology is ever close to providing
complete coverage with accuracy. Commercial companies such as Polaris12 and Skyhook13 provide expensive subscription
to users, but still not efficient for providing better navigation. As technology has evolved it has enabled the mobile devices
to receive directions from Global System for Mobile Communications (GSM) and wireless local area network (WLAN).
These alternate methods are limited to a certain extent, as they only generate single positioning. The technology should
be upgraded and provide an alternate efficient path for the user, vehicle, and aircraft.

Previously, Earth-based assets14 were responsible for providing navigation parameters such as computation of ranging
signals,15,16 using inertial measurements and through observation of orbital determinations. All of these methods require
high computations that are not suitable for M2M communication architecture, as usually a typical node in such architec-
ture comprises of 1Gb of memory and a standby time using 2.5 Ah battery. The existing localization techniques also lacks
a less complex mathematical model for integrating MTC type nodes and where each node can consist of autonomous
multiagents. The MAS technologies such as multiagent oriented programming (MAOP) integrates different governance
properties in such a network while controlling the devices exogenously or endogenously. In this paper, current naviga-
tion network is reviewed with respect to mathematical computations required by autonomous machines communication
network. Moreover, a computationally efficient mathematical model for autonomous localization is also proposed in this
paper that is based on Anderson model.17 The Anderson model is named after physicist P.W. Anderson who introduced a
model for disordered objects and senses through their spectral energies. Up till now the Anderson model has been used
and customized for a number of different problems including optical fiber communication. Through this proposed model,
localization computations are simplified and efficiently resolve positioning communication. This paper also classifies the
multiagents used in localization scenario.

The structure of this paper is as follows. Section 2 discusses the related work with regard to autonomous naviga-
tion. Section 3 discusses M2M network and review existing localization techniques and their infeasibilities for the nodes
involved in that network. In Section 4, autonomous agents are classified according to their roles for estimating position-
ing scenarios and presented the proposed mathematical model for autonomous agents for localization based on Anderson
model.17 For effective implications of the proposed model, use case study is performed in Section 5. The paper concludes
the research through the conclusion and future research in Section 7.

2 RELATED WORK

Most of the previous work are based on cooperation techniques by nonautonomous devices (vehicles) for determining
locations. One article18 uses the audibility information generated from devices; first phase of the algorithm sets time
offset maximum likelihood estimation (MLE) and second phase imply differential source location algorithm on MLE.
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In Bejuri et al,19 the focus is based on ubiquitous mobile navigation systems. It has proposed techniques for intelli-
gent ubiquitous locating positions, but only limited to the mobile phones. The paper20 discusses cooperative navigating
possibilities in vehicular-to-vehicular networks. The authors have constructed a mathematical model and simulated coop-
erative positioning techniques for vehicular ad hoc networks (VANETs) architecture. The literature also have proposed
an algorithm for identifying clusters of cooperative vehicles. The following paper21 has expressed the issues with Global
Navigation Satellite System (GNSS) and the loop holes that are present in the system. It discusses the scenarios of
peer-to-peer navigation when there is a failure detected from a GPS system. It also presents benefits of cooperative
peer-to-peer positioning system. A comparison is performed between a typical GNSS system, a centralized navigation
approach verses a peer-to-peer positioning system. It explains the architecture of cooperative positioning from a technical
view and the challenges it faces for future developments. The article22 surveys the cooperative positioning with respect
to vehicular networks and terms as intelligent transportation system (ITS). It discusses the applications and the con-
straints encountered by a successful vehicular cooperative navigation system. It presents the current trends of cooperative
positioning research in terms of VANET infrastructure.

Moreover, the article23 discusses M2M communication popularity and its implications in vehicular networks and
explains the factor that can improve networking in VANET. The vehicles communicate autonomously and supporting
several smart applications while the paper also discusses the network paradigm modules that enhances the vehicular
inter working. Further challenges are discussed that are faced by the effective deployment of smart applications in vehic-
ular networking environment. The article24,25 proposes a localization technique for indoor and outdoor Internet of Things
(IoT) services. The technique is divided into two phases. The first phase splits the region into small grids and in the sec-
ond phase that is the refinement phase. Received signal strength indicator (RSSI) values of nodes are used in refinement
phase, such that RSSI values are large if the distance is shorter and vice versa. Blind nodes are encapsulated in grid forma-
tion. By applying Pythagoras theorem, position coordinates are estimated. Mobile agents termed as “seekers” are targeted
devices in the paper.26 The technique uses a nongradient-based approach known as “particle swarm optimization” (PSO)
for decaying profile in real-time system. Two different variations of PSO are simulated (1) having inertia weights and (2)
constriction of PSO. The paper27 proposes a cooperative localization technique for mobile agents. The communication
between device agents are either through multihop or single broadcast fashion. Every agent is required to rebroadcast
the received messages so every member of the group receives the coordinates. Proprioceptive sensor of each device agent
measures the self motion. An extended Kalman filter (EKF) is applied to the motion equation for estimating coordinates.

The algorithms proposed in the above articles are very extensive and require complex computations; moreover, none
of them used multiagents techniques for localization. The M2M devices are small in size and have limited computational
resources, and the processing is bounded to less energy consumption. This paper proposes a less complex mathemat-
ical model based on the Anderson model17 for smart devices involving intelligent agents for sensing the spectrum
characteristics and computing the coordinates.

3 M2M COMMUNICATION FOR NAVIGATION

Multiple devices and autonomous machines including sensors, actuators, unmanned vehicles, and aircrafts interact and
take decisions, providing value added services all existing in an ecosystem of M2M. It is a network of intelligent machines
and smart devices.3 The city that implements such infrastructure is called Smart City. Barcelona28 is an example of such
cities.

As discussed above in Section 1, GPS navigation has many issues but those issues can be reduced by effective implica-
tion of the M2M navigation network.29 The devices(machines) cooperatively share location information and estimating
their positions and directions. Machines have the knowledge base (databases) integrated to make them intelligent and
autonomous for the reason they have ability to compute location estimates onboard and getting any updates from the GPS
system. This information is analyzed before following them. The infrastructure works very effectively by collaborating
and cooperating with each involved device for accomplishing tasks. Each machine or device in this ecosystem is governed
by an intelligent and autonomous agent, which is discussed in detail in Section 4. Proper working of these agents enables
the following characteristics in the infrastructure such as (1) adaptability, (2) self-healing, (3) self-organizing, (4) scalable,
and (5) autonomous.

The M2M communication infrastructure is capable of handling interpretation between agents. The network
deploys compressed protocols4 for generalizing communication structure for communicating and detecting every
other machine.
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FIGURE 1 Classification of localization techniques. AOA, angle of arrival; RSST, received signal strength indicator; TDOA, time difference
of arrival; TOA, time of arrival

TABLE 1 Machine-to-machine (M2M) localization techniques
specifications

Method Technologies Accuracy Type Infrastructure

Centroid Wi-Fi, BLE 60% Range-free Fixed
DV-Hop Zigbee 60% Range-free Ad hoc
MCL Wi-Fi 50 % Range-free RFID tags
TOA Wi-Fi 5 meters Range-based WLAN
TDOA Wi-Fi, UWB 13 cm Range-based WLAN
RSSI WiMax 6-7 meters Range-based Fixed, cellular

3.1 Localization techniques in M2M
Localization techniques can be classified as range-free and range-based categories as shown in Figure 1 of interconnected
nodes. Table 1 lists the specifications of localization techniques that can be applied to M2M network. The article30 classifies
the range-free localization techniques into two types, which are as follows: (1) incremental and (2) concurrent depending
on the computing and the assignment of coordinates of nodes. Range-free localization protocols are discussed below.

• Centroid: Location estimation through centroid technique is based on the concept that target device position is
calculated by the known points of the anchor nodes existing in the transmission range.31 The precision level of
centroid technique is low and used in dense network. It must contain fixed nodes those position are known. Through
the known positions, unknown positions are calculated as follows:

ȳ =

∑N

i −1
wiyi

∑N

i=1
wi

. (1)

Here, wi represents weight of the ith fixed node, N is anchor number, and yi is the current position. wi can be
calculated as follows:

wi(t) =
mi

rec(t)
mi

sent(t)
(2)

Here mrec and msent are the received and sent messages in time t. Only 90% weight is considered for accepted
messages.

• DV-Hop: Uses anchor nodes (an M2M device behaving like a relay node) in a range-free algorithm broadcasts pack-
ets to the neighboring device providing them information about the localization and helping to navigate.32 A flag is
set in the packet information indicating the hops count that is achieved before reaching the current receiving device.
When a packet is transmitted from one device to another the hop count, which is the flag is incremented. In start, it
is initiated to one. By knowing the value of flag, an assessment can be made about how far is the receiving device.
Average distance per hop (ADH) is maintained and broadcast along the packet; by using ADH value, each device
can calculate their distance from the neighboring devices by multiplying their hop count with ADH. This algorithm



ALI ET AL. 5 of 13

has problems with accuracy in sparse environment. DV-Hop is best in an urban environment where the number of
devices are many, although many improvements are made in this algorithm for the sparse M2M network.

• Monte Carlo localization (MCL): It is also known as “particle filter localization.”33 This algorithm is mostly used
for localizing robots, but it is also used in the M2M network. The algorithm implies the term “particle filter” for esti-
mating their location. Where each particle is the state of any particular location. Through artificial intelligence the
device predicts the state by filtering through present particles. Recursive Bayesian estimation is used for resampling
the particles. For observing the state, the device involves sensors according to which guesses are made, which are
transformed into particles. Finally, after processing all these particles, they are converged to an accurate location.

Range-free positioning techniques34-39 are based on the characteristics of RF signals used in communication.
Range-based approaches40-44 use complex mathematical computations to calculate angles and distances between two
nodes those are transmitting and receiving signals while maintaining communication between them. Following
range-based techniques are discussed below.

• Received signal strength indication (RSSI): Localization information is estimated by measuring the received
signal strength. Scales are maintained by comparing the signal strength with distance traveled. Propagation loss of
the signal strength provides estimated distance using following Equation 3.

pr(d) =
ptGrGt𝜆2
(4𝜆)2d2 . (3)

Here, 𝜆 is the wavelength of the signal, p is the power of the signal, and G is the gain of the antenna.
Time of arrival (TOA): In this technique, time of receiving signal is measured along with the wavelength of the
signal. The difference between measured values by a relay or anchor devices and unlocalized device provides estima-
tion of the location. This technique is very precise, but it is expensive and due to which it is unsuitable for common
M2M network, which consists of cheap devices operating on very low energy.

• Time difference of arrival (TDOA): For using this technique, the device usually is equipped with speaker and
microphone. The time difference between the arrival of the signal and ultra sound estimates the location of the
transmitting device. The variable involved in this computation are tdelay, that is, the wait time of the relay or anchor
device after which it generates “Chirps” for ultra sound signal, tradio is the received time of data signals at the unlo-
calized device, and tsound is the received time of “Chrips” ultra sound signal. Location is estimated by differencing
the above variable through the following Equation 4.

d = (sradio − ssound) ∗ (tsound − tradio − tdelay). (4)

• Angle of arrival (AOA):Devices can be localized by estimating the angle of receiving signal between two relay
or anchor devices. Triangulation techniques45 are applied for estimating the location through using the angles of
the signals.

4 AUTONOMOUS AGENTS IN M2M

Agents are intelligent entities or software programs that perform their tasks without any human intervention. They have
3 basic components through which they are operational (1) inference rules, (2) knowledge base database, and (3) actions
repository. They are goal-oriented and social as well. They observe and perceptions are translated to take initial steps,
compare and plan their actions after processing through their inference rules. Autonomous agents are constructed to be
independent, respond back without any human support on their own decisions by working through their knowledge base.
They are also capable of updating their knowledge, migrating, and collaborating with other multiagents. Their priorities
are set for best action plan for achieving their objectives. An autonomous agent architecture is shown in Figure 2 consisting
of main module for M2M based navigation. Integrating an autonomous agent in a machine or device creates intelligent
and automated interconnected machines ecosystem based on 3 components:

1. Embedded processing;
2. Controlling and managing applications; and
3. Communicating and sharing data.
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FIGURE 2 Machine-to-machine (M2M) navigation network

4.1 Autonomous agents vs normal daemons
A program executes continuously and handles periodic tasks requests that are received by the computer systems. Such
programs are termed as daemon. Related requests are forwarded to other programs or processes by the daemon programs.
Such as there is an HTTPD (hypertext transfer protocol daemon) related to each server of pages existing on the Web.
This daemon continuously waits for request coming from users on the Web. In case of localization, the software daemon
receives the data coming from localization devices and passes the data. The parsed data are converted into messages. The
combination of messages provides the estimation of speed, position, and altitude ranging between different precisions.

Whereas in artificial intelligence an intelligent agent observes data from sensors and act autonomously through actu-
ators, it has the ability of analyzing the data before acting in an environment. In case of localization, the agent interprets
the data as map and performs learning and reasoning upon it for estimating the location in an unknown environment.

4.2 Interfacing autonomous agents
In each electronic device autonomous agent is integrated through software or using Agent Communication Language
(ACL). There are a number of frameworks available for interfacing autonomous agents with the electronic device or
machine, Table 2 lists their specifications. One of those frameworks is FIPS (Foundation of Intelligent Physical Agents)46

created ACL framework. In case of navigating, a developer will create an agent that is aware of the location and position-
ing algorithms. The goal of this agent is to estimate directions, positions, and cooperate with other autonomous agents,

TABLE 2 Multiagent system (MAS) frameworks For machine-to-machine (M2M) localization

Framework Function License Distributed Programming language

ABLE Building intelligent network Open source Yes ARL
SimAgent Agent Development Kit Open source Yes Lisp
Boris MAS Development Platform Open source Yes Lisp, C#, Java
Behaviour Composer Agent-based computer models new BSD Yes NetLogo
Jack Agent Development Platform Proprietary No Java
TerraME Network Agent Development Platform GPL No C++
Fluxy Multiagent Platform Academic licence No Python
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integrated into other devices and machines for correct positioning while sensing their surroundings. Following are the
benefits provided by autonomous agents:

1. Applications are universal and independent from the devices on which they are running;
2. Connecting and interacting with devices are dynamic; and
3. No human interaction is required; best possible actions are performed.

4.3 Agents classification
Agents can be classified into many different types according to the tasks that they perform. This paper classifies the agent
types involved in navigation into two categories: (1) computative agents and (2) decisive agents.

1. Computative agents: Computation logic provides a rigorous and well-defined framework for developing proce-
dures and semantics for multiple tasks performed by individual agents while defining interaction formats for agents
existing in multiagents systems. The computational cost is a major factor in M2M architecture; the agents in this
network should work at lower computational cost. Computational agents are usually encapsulated objects, recog-
nizing computational algorithms such as energy controller, distance calculator, or spectrum identifier. This type of
agents observes the measurements and compute results, but they have restricted deliberation capabilities. The types
of agents related to this category are reactive agents, energy agents, communication agents, sensing agents, etc.
Their functionalities relate to the observations that they experience. Agents have finite but significant computational
resources. Explicitly, agents show beliefs according to their computational resources. These beliefs cater the agen-
t's environment in which they reside. Each cognitive action related to agent behavior uses their own computational
resources. These agents can be controlled by decisive agents. Their intelligence is constrained to the measurements
only and does not involve taking actions. Extensive computational resources are used by these agents. Analytical
solutions and experimenting the problems are also under their responsibilities. There are two fields upon which they
can act: (1) hardware and (2) software. In hardware, these agents are embedded along with sensors and actuators
for measurements and observations.

2. Decisive agents: These kinds of agents act as coordinators of the system. Collaborate, deliberate reasoning, plan-
ning, and taking actions are the main functions of this category of agents. Decisive actions should be faster and
reliable. Through the usage of command agility, decision dominance can be achieved. Each action is a resultant out-
put of a certain condition. They take results from computative agents, compare from their knowledge bases, and
plan their actions. The pairing of condition/action forms a rule. A condition can be a certain sensitive condition or
formula. The rule is basically of two types: (1) message action rule and (2) cognitive action rule. Formulating the
rules creates a knowledge base through which all of the reasoning and planning are based and provides a stabil-
ity while governing the system. These rules relating to some coordinates can be shared with other devices in the
machines based navigation network. Controlling of the agents is an extremely complex issue. Planning agents, rea-
soning agents, and control agents are the types of agents involved in this category. These agents cater complex views,
those that are necessary for making correct decisions. Coordinating and decision making is a challenging task in
the large multiagents system. The system may be comprised of as many agents as in case of M2M communication
network, where these agents are spatially distributed. Decisive agents control these heterogeneous agents, circu-
late decision in whole group, and collect information. Not a proper coordination can become a bottleneck in the
communication process. Previously, a decentralized decision agents has successfully elaborated the communication
and while creating an information asymmetry. Many benefits can be achieved by agents working in background,
retrieving information and deciding decisions collaboratively.

4.4 Calculative measurement
For estimating positions and directions, the agents have to calculate following measurements. The measurements that an
agent communicate may include the following:

• The distance between the communicating agents, such as in IEEE Wi-Fi Standard 802.11 certain protocols are
defined for calculating distance between two peer nodes of Wi-Fi;

• Relative position of two autonomous and cooperating agents;
• Altitude differences of two communicating and navigating agents; and
• Some autonomous agents clocks might not be synchronized; the differences in their clocks should be calculated.
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4.5 Mathematical model
A mathematical model can be computed for M2M localization integrated with intelligent multiagents. This paper has
proposed the model that is based on the Anderson Model.17 The Anderson model is structured on Hamiltonian principle.
The Anderson model uses techniques for spreading and localizing the electrons and recently applied to image processing
in optical fiber.47 The same technique with customization can be deployed for detecting and navigating the smart devices
through their spectrum energies. The multiagents that are governing the devices senses spectrum energies of the devices
and by using the measurements discussed in the previous section calculates the distances. Let h = (hn) be a set of inde-
pendent machines (devices) distributed in an area indexed by n𝜖Z. The probability that the devices can be found lies on
the Borel probability. Borel sets B ⊂ R. Then the overall probability can be structured as in Equation 5

P(hn1𝜖B1... … hnL𝜖BL) =
L∏

j=1
P(hnj𝜖Bj). (5)

Each device has one agent or multiagents “A” as Equation 6.

h0(Ai, .... … An). (6)

Every device has a potential Vn to be detected by the multiagents of other devices. Hence, the total potential of a certain
device can be calculated as Equation 6

hn = h0 + Vn. (7)

The random potential is the RF measurement values that each device exerts. The intelligent agents sense this potential
and weigh the decisions of location estimation. Through the implication of spectral theorem, the definitions of surround-
ings can be estimated. The possible energies of the devices can be given by the spectrum 𝛿(hn). A spectrum can be created
deterministically from those energies summation. If there are no large gaps present between, then the spectrum has the
vital intensity that can be computed as Equation 8.

𝛿(hn) =
∑

. (8)

The multiagents measure the behavior of the spectrum and computes the probabilities. This spectrum is a combination
of 3 types of spectrum subspaces computable by Equation 9

∑
= Sp ⊕ Sac ⊕ Ssc, (9)

Sp = subspace of point spectrum
Sac = subspace of absolute continuous spectrum
Ssc = subspace of singular continuous spectrum.

Observing the physical institutions of these subspaces provides multiagents with information on the characteristics of
the regions surrounding the scattered devices. The electromagnetic spectrum is the input to the agent autonomous system,
and through their knowledge base, the agent provides location estimation, such as Sp belongs from a compact region and
is bound state, whereas the nature of Sac is a scattered states region. By using the dynamical properties of Hamiltonian
structure, the algorithm can be made more reactive and dynamic.

4.6 Agents measurements
Depending on the above measurements, the following model can be derived for cooperative navigation. Let “N” be the set
of all present autonomous agents integrated in vehicles or aircraft/spacecraft. “M” is the set of all M2M devices, “U” is the
set of anchors, and there might be possibility of receiving signals through satellite; therefore, “G” is the set of satellites.
Mn, Gn, and Un are the set of devices, satellites, and anchors autonomous agents, respectively. The information attained
from satellite is “Ign”, the positional information attained from terrestrial anchors denoted by “Tun”, and the information
received from an autonomous agent of the neighboring M2M device is denoted by “Amn”. Also, g𝜖G, u𝜖U, m𝜖M, and n𝜖N.
The total information obtained by a certain agent is calculated in Equation 10:

Nn = Ign ∪ Tun ∪ Amn. (10)
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The unknown, which are left are W = [PmCm], where Pm = [xmymzm], Pu = [xuyuzu], and Pg = [xgygzg] are the sets of
positional values of certain autonomous agent, of a terrestrial anchor, and of a satellite, respectively. The distance between
the terrestrial anchor agent and the M2M device agent can be calculated as Equation 11:

Dum = ||Pu − Pm|| + Noiseum. (11)

Here, Noiseum is the noise present in the communicating spectrum band. The symbol “||.||” represents Euclidean
distance. The distance between the satellite and the autonomous agents is calculated through Equation 12:

Dgm = ||Pg − Pm|| + Cm + Noisegm. (12)

Here, Cm is the clock bias of the agent. The measurement model can be created through following calculations:

1. The distance between an autonomous agent “i” and the neighboring agent “j” can be calculated as Equation 13
having Noiseij is the noise present in the communication channel.

dij = ||xi − xj|| + Noiseij. (13)

2. The relative position between the autonomous agent “xi” and neighboring agent “xj” can be calculated as
Equation 14:

rji = xj − xi. (14)

3. If the clock of an autonomous agent “ci” is not synchronized with neighboring agent “cj” clock, the difference is
calculated as Equation 15:

ΔCji = cj − ci. (15)

4. For calculating the difference in altitude in case if an aircraft is communicating and sharing autonomous navigation
with a ground vehicle. In case of ground vehicle-to-ground vehicle, the values become zj = zi. The altitude difference
of an agent “zi” and the neighboring agent “zj” can be calculated as Equation 16:

ΔLji = zj − zi. (16)

Through the computations of these variables, the agent enables the device to be located and navigated. The main empha-
sis of the mathematical model is to reduce the complexity of computational components involved in localization as M2M
communication network devices are energy constrained and have little processing resources.

5 USE CASE STUDY

The cost of computation for positioning the devices can be effectively reduced, as the complexity of the proposed model is
only O(n). To study deeply the effects and for the implication of the proposed model, certain use cases are discussed below.
Table 3 lists main functions related to the type of intelligent agents and instruments that can be used in this localization
model.

TABLE 3 Processing navigation and related multiagents

Function Agent Type Role Instrument
Synchronize Control agent Send and receive beacon to synchronize up Proximity sensor

Detect radio frequency Communication agent Sense the surrounding radio frequencies Radio direction finder
from neighboring devices

Spectrum sensing Energy agent Sense the energy spectrum reflected Doppler radar sensor
or emitted by the devices or objects

Position estimation Reactive agent Correct and estimate self position Altimeter
Environment sensing Reasoning agent Detect the surroundings and compare Vision sensors

with knowledge base for correct navigation

Movement Planning agent Take decisive action for correct navigation Actuators
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5.1 Terrain sensing
There are many requirements for accurate terrain sensing, especially for navigating devices such as, many of the times
GPS navigation has lead the vehicles teetering on a cliff edge and fall from it, localizing the autonomous robots within a
building and providing them information of the surrounding environment and maneuvering a car in densely populated
urban terrain, etc, are some of the examples that require estimation of the terrain before mobility.

By the implication of Equation 9 of the proposed model, the device can become capable of sensing the terrain. Choosing
the appropriate agent, such as energy agent from Table 3, the energy agent of the device analysis the spectrum signatures
and generate an estimation of the terrain. The estimations can be of various types, depending on the knowledge base of
the energy agents such as the nature of the terrain consists of scattered objects/devices, belongs from a compact region,
and is bounded environment or wide spaces, etc. The analysis can alert the entity such as an autonomous vehicle or robot
or user of possible wrong turn or maneuver. Such instructions are at a less cost as compared to vision sensors, which not
only cost more but also require an extensive knowledge base for identifying the objects or devices.

5.2 Positioning
Previous positioning algorithms are more complex and require high computational cost, which is a negative aspect in case
of M2M network. By using the information sharing capability of the subjective network, Equations 11 to 16 of the proposed
model can enable the device to estimate the residing location and calculate certain distance or a trajectory. By using the
knowledge base of communication agent from Table 3 of a device, analysis can be made for the shortest path availability.
Since IoT is based on the M2M network, many of the applications,48-49 such as smart transportation, autonomous moving
of robots, and smart postal service, require accurate positioning in less time. The proposed model can effectively work
in diverse situations even if the system stop receiving navigational information from Wi-Fi hot spots. Each bus or drone
working in a group share their communication agent knowledge base and together work out their positions data points in
less cost and efficiently while forming an autonomous network in which collaborating and coordinating with each other.

6 IMPLEMENTATION

The possible implementation and simulation methodology can be achieved through using of two systems. One system is
responsible of computational activities of wireless signal received from other vehicles and sensors. After evaluation of data,
decision making is transferred to the second system that handles the intelligent agents. The actions are performed through
that module (model shown in Figure 3). With simulation perceptive first module can be implementable through Mason
framework50 and Jade software can be used for simulating autonomous agents. The deployment area is considered as
100 m × 100 m with 50 sensor nodes. Number of iterations were 40. During simulation, Gaussian noise was incorporated.
One of the result obtained is shown in Figure 4. The result obtained from simulation achieved better localization in
less time. The results achieved are 40% more precise even after increasing the distance till adoptable range as shown in
Figure 5. Moreover, due to less complexity of the algorithm, it can be easily managed by M2M communication system.

6.1 Pros and cons
This mathematical model has great potentials for M2M communication architecture, and by expanding the Hamiltonian
parameters, the localization errors present in larger gaps can be covered. There still exist many challenges for precise
navigation that needed to be addressed such as positioning while in variable speed, cell phone dead zone coverage,

FIGURE 3 Implementation model



ALI ET AL. 11 of 13

FIGURE 4 Simulation scenario with 6 nodes

FIGURE 5 Localized record

and localization in sparse presence of devices. These and other issues should be carefully and critically considered for
future research.

7 CONCLUSION

In this article, a review was presented about localization techniques for M2M communication networks. The techniques
comparison was discussed regarding multiagents scenario and their infeasibilities for the machines-based communication
network. Intelligent agents were explored and classified in regard to navigation for MTC. By adopting the Anderson model
for autonomous M2M localization purpose, a mathematical model was proposed. The proposed scenario tends to reduce
the complexities of localization computations and structures the technical specifications of multiagents operations in
Table 3. Related use cases are studied for effective implication of the proposed model.
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