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ABSTRACT 

In the past few years, we have witnessed an increased interest in using multithreading PDES on multicore 

platforms. The work-stealing scheme, which towards to general multithread computing, can be utilized in 

PDES to achieve load balance straightly. However, to the best of our knowledge, the work-stealing 

scheme has only served as a competitor, instead of a cooperator, to other load balancing algorithm. In this 

paper, we propose a work-stealing based dynamic load balancing algorithm (WS-DLB) with the aim of 

combining their advantages. It adaptively rebalances the LPs distribution based on a priori estimation, and 

uses a greedy lock-free work-stealing scheme to eliminate bias at runtime. In addition, these two schemes 

are well adapted to enhance each other. We analyze the performance characteristics of the proposed 

algorithm by means of a synthetic benchmark. Experiments demonstrate that our WS-DLB algorithm 

achieves better performance. 

1 INTRODUCTION 

Discrete event simulation is utilized extensively to study complex systems, such as transportation 

systems, biological systems, and military systems. With the growing complexity of models, it is difficult 

to run applications using sequential simulators. By exploiting the inherent parallelism among simulation 

entities, Parallel Discrete Event Simulation (PDES) can substantially improve the performance and 

capacity, and thereby enabling simulate larger applications and more detailed models in shorter time. 

Similar to other parallel and distributed applications, one of the greatest challenges in PDES is load 

imbalance. Because the pace of the simulation is limited by the slowest processing element, the 

distribution of the workload has a significant impact on the performance. Various algorithms have been 

proposed to solve the load imbalance for PDES. Most of them built a load estimator to predict the future 

workload, and map the LPs into different groups with close workload, either statically or dynamically. 

The static approach assigns logical processes (LP) to processors, and the LPs will stay at the same 

processor during their lifetime. In contrast, the dynamic approach, can rebuild groups to rebalance the 

workload during the runtime by migrating LPs. 

On the other hand, multicore architectures have quickly spread to all computing domains in the past 

few years. We also have witnessed an increased interest in moving PDES to multicore platforms, such as 

(Vitali, Pellegrini, and Quaglia 2012; Wang et al. 2014; Chen et al. 2011; Tang and Yao 2013). In these 

works, the multithreading have become the mainstream for PDES on multicore platforms. Moreover, 

thanks to the shared memory address, migrating LPs and coordinating threads are much more convenient 

and cause lower overhead, which provides a better circumstance for load balancing. As a special 
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application, classic load balancing strategies (Andrews 1999) for general multithreading computation can 

also be used in PDES straightly. Among these methods, the work-stealing strategy (Blumofe and 

Leiserson 1994) is proven to be a good algorithm which has acted as the kernel scheduling algorithm in 

many threading libraries, such as TBB, Cilk and .NET Task Parallel Library. Some researchers have 

previously introduced this scheme into PDES to enable dynamic load balancing. 

However, to the best of our knowledge, the work-stealing scheme has only served solely as one of the 

load balancing algorithms (Cai, Letertre, and Turner 1997; Vee and Hsu 2000). In other words, it acts as a 

competitor, instead of a cooperator, to other load balancing algorithms. In fact, the scheme can be used as 

an assistant to enhance other load balancing algorithm. A load balancing algorithm, which uses the data of 

the past to predict the future, will inevitably make some error. In this case, the work-stealing scheme can 

be used to adjust the bias at runtime. On the other hand, the work stealing scheme also introduces some 

more overhead than normal execution, such as thread conflicts and cache penalties. The load balancing 

algorithm can exploit more application information to achieve a relatively balanced workload distribution, 

so that the number of stealing can be reduced and thus improving the performance.  

Hence, we propose a work-stealing based dynamic load balancing algorithm (WS-DLB) to combine 

their advantages. The algorithm adaptively rebalances the LPs distribution based on the estimated 

workload, and uses a greedy lock-free work-stealing scheme to eliminate the bias. Our proposed WS-

DLB algorithm is composed of three modules: performance monitor, load balance manager and 

scheduler. During simulation, the performance monitor records the time that an LP utilized for model 

computation. Once a new rebalance is needed, the load balance manager collects the data from all 

performance monitors, and calculates a near-optimal partition to map the LPs into different groups. 

Normally, the scheduler chooses the LPs from its own group using the largest workload first rule, which 

can improve the probability of successful stealing under the same workload distribution. When there is no 

LP left, it uses a greedy lock-free scheme to randomly steal LPs from other groups to make the thread 

keep on working. We discuss the performance characteristics of the proposed algorithm by means of a 

synthetic benchmark. Experiments show that our WS-DLB algorithm achieves better performance.  

The remainder of this article is organized as follows. In Section 2 we discuss the background and 

related works. The description of the WS-DLB algorithm in provided in Section 3. Section 4 is devoted to 

the experimental study. 

2 BACKGROUND AND RELATED WORKS 

Recently, some researchers have designed multi-threaded PDES engines to improve PDES performance 

on multicores, such as (Vitali, Pellegrini, and Quaglia 2012; Wang et al. 2014; Chen et al. 2011; Lin et al. 

2016). These works mainly use the optimistic time management algorithm to run the simulation. 

However, programming based on optimistic algorithm is extremely hard due to the necessity to write 

reversing (or state saving) and commit methods. Moreover, in most experiences of the authors’ 

researches, only the libraries, instead of source code, can be provided by domain experts due to the 

intelligence protection. Hence, building applications on real problems remains great challenges even 

though some tools can generate optimistic methods from the sequential source code automatically. In 

addition, conservative algorithm can be further categorized into two classes, namely synchronous and 

asynchronous protocols. The asynchronous conservative algorithms rely on static topology which cannot 

fit our need in many applications. Take these reasons into account, we focus on the synchronous 

conservative PDES on multicore systems in this work. 

A lot of research has been done to achieve load balance, including static and dynamic methods. Static 

approaches cannot handle the workload variation, and thus are usually employed with specific 

applications, such as (Boukerche and Fabbri 2000; Lemeire et al. 2004). Solutions for dynamic load 

balancing have been studied for both conservative and optimistic algorithms. Generally, the dynamic load 

balancing algorithms use a monitoring scheme to detect load imbalance, and make dynamic adjustment to 

improve the performance of simulation. These approaches differ in metrics of detecting load imbalance, 
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and balancing schemes. As we focus on conservative synchronization here, we refer to (Meraji, Zhang, 

and Tropper 2010) and (Carothers and Fujimoto 2000) for dynamic load balancing with optimistic 

synchronization.  

(Boukerche and Das 1997) propose a dynamic load balancing algorithm that uses the notion of CPU-

queue length as the load metric and a process migration mechanism as the balancing scheme. (Xiao et al. 

1999) propose a critical channel traversing algorithm for dynamic load balancing on shared-memory 

multiprocessors, which let each processor to obtain a cluster of LPs to process from a centralized queue. It 

can be seen as a work-sharing strategy that utilized in PDES. Both the above algorithms are based on the 

CMB (Chandy-Misra-Bryant) protocol, so they attempt not only to balance the load for a distributed 

memory system, but also to minimize the number of null messages sent between LPs. There are also some 

work oriented to the synchronous protocol. (Vee and Hsu 2000) present several new locality-preserving 

load balancing mechanisms for synchronous simulations on shared-memory multiprocessors. (Cai, 

Letertre, and Turner 1997; Turner 1998) present a novel approach to parallel discrete event simulation 

based on the Cilk model of multithreaded computation. The simulation executes in cycles, where each 

cycle contains a divide and conquer computation. In essential, these works use the work-stealing scheme 

to achieve load balance. In our work, the work-stealing scheme is only a component of the proposed 

algorithm and some efforts have been taken to let it cooperates with other components. 

3 ALGORITHM DISCRIPTION 

3.1 Framework Overview 
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Figure 1: The architectural overview of WS-DLB algorithm on multicore platform. 

The architectural overview of WS-DLB is illustrated in Figure 1. In WS-DLB, logical processes are the 

basic unit to adjust workload among threads. They are assigned into different groups (LPGroup), and each 

LPGroup is mapped onto a thread. LPs communicate with each other through exchanging peer-to-peer 

messages or using publish/subscribe. The mailbox is utilized to store peer-to-peer messages for each LP, 

and the BBS is used to store interest messages for publisher/subscriber. These communication utility are 

implemented by concurrent data structures so they can provide service to all LPs efficiently. 

The WS-DBL algorithm consists of three modules: performance monitor, load balance manager and 

scheduler. The performance monitor is a lightweight timer which is transparent to the simulation 

application. It is inserted into each LP and collects the time that a LP consumed to do model computation. 

The load balance manager plays a role in rebalancing the workload among threads adaptively. Once 

imbalance is detected, the load balance manager gathers the data from all performance monitors, and 
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regroups the LPs according to the estimated workload. In this work, an exponential weighted moving 

average is adopted to forecast the workload trend based on the preceding data. Based on the information, 

the load balance manager is able to calculate a near-optimal partition to map the LPs on their suitable 

groups. The scheduler is responsible to select an LP and make it move forward. Normally, it chooses the 

LPs from its own LPGroup using the largest workload first (LWF) rule, which can help improve the 

probability of successful stealing under the same workload distribution. When there is no LP left in its 

own LPGroup, it uses a greedy lock-free algorithm to randomly steal LPs from other groups to adjust 

workload at runtime. In addition, a relative value is used for the load balance manager to detect imbalance. 

Explicitly, a threshold is counted as the number of stealing in a time window after a rebalancing. Once the 

number of stealing in a time window exceeds the threshold significantly, it means the current partition is 

not well enough and a new rebalancing must be triggered. The behind rationale is load imbalance can 

only be minimized rather than be annihilated. For example, if one LP consumes more than 90% 

computations, the load imbalance always exists wherever we distribute the LPs. The rebalancing is 

uesless on such situation. In general, the work-stealing can help to adjust the workload imbalance and 

provide a way to compute relative imbalance. The rebalancing uses application information to enable a 

relatively balanced scenario to reduce number of stealing. 

Algorithm 1. The Simulation Execution of the scheduler i 

Gi: the i-th LPGroup 

1. WHILE    simulation in progress 
2.     LBTS ← Synchronization() 
3.     IF   need to rebalance = true &&  is_master_thread 
4.            The load balance manager redistribute all LPs into each group  
5.    IF a rebalance has began 
6.         wait until the rebalance procedure completes 
7.     lp←ChooseMaxLoadLP(Gi) 
8.     IF    lp!=NULL 
9.         advance(lp, LBTS), goto line 6 
10.     ELSE 
11.         steal a LP from other LPGroup, and advance the LP 
12.         repeat line 10 until all LP has advanced in this cycle 
13.     ENDIF 
14. ENDWHILE 

As mentioned before, the synchronous conservative protocol is studied in this work. As shown in 

Algorithm 1, the lowest bound on time-stamp (LBTS) of all LPs is computed after Synchronization (line 

2). In this step, messages, which are generated in the previous cycle, are retrieved from the mailbox/BBS 

and be inserted into the target LP’s event list. Once load imbalance has been detected, the master thread 

will trigger the load balance manager to assign LPs into different group (line 3-4). Other threads have to 

wait until the rebalance procedure finishes. After that, the scheduler chooses the LPs with the maximum 

estimated workload from its own LPGroup and make it advance to the LBTS. The procedure will be 

iterated until there is no LP left (line 6-8). Then, the scheduler will steal LPs from other LPGroups so that 

the thread can keep on executing useful work instead of idle waiting. The scheduler will repeat this 

procedure until all LPs are processed in this cycle (line 10-11). What needs illustration is that the 

scheduler only possesses the LP temporally, and the stole LP is still stored in the original LPGroup before 

the next rebalancing. How to rebalance the workload and how to efficiently steal work are described in 

detail in the following sections. 
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3.2 Rebalance LPs Distribution 

Due to the dynamic nature of simulation, the workload of each LP is unknown in advance. Here, we 

utilize an exponential weighted moving average to predict the future workload, as shown in formula (1). 

The rational of the estimator is from the temporal and spatial locality of simulation entities. 

load(lp, w) = ∑ λw−i−1Ti(lp)

w−1

i=0

 (1) 

Here, Ti(lp) refers to the wall clock time for the LP in the i-th control interval, λ ∈ [0,1] is a decay 

factor to remove the impact of the far past. In addition, observing the fact that load(lp, w) =
λload(lp, w − 1) + Tw−1(lp) , the estimator can be easily calculated, and introduces negligible 

computational and memory overhead. 

Now, we are given n LPs, 𝑙𝑝1 , 𝑙𝑝2 , …, 𝑙𝑝𝑛 , where each LP 𝑙𝑝𝑘  has an associated nonnegative 

workload of load𝑘. We are also given m identical cores, 𝑐𝑜𝑟𝑒1, 𝑐𝑜𝑟𝑒2, …, 𝑐𝑜𝑟𝑒𝑚. Any LP can run on any 

core. The goal is to find a partition to distribute LPs into different LPGroups so that the makespan (the 

total time that elapses from the beginning to the end) is minimum. In essential, it is a classic job shop  

scheduling problem, which has been proved to be NP hardness. Find an optimal solution will lead to 

unacceptable complexity and runtime overhead. Hence, we use an approximation approach to find a near-

optimal solution, as shown in Algorithm 2. All LPs are sorted increasingly in LPLoadList ordered by the 

estimated workload. The rebalancing procedure will traverse the list, and put the next LP into the 

LPGroup with minimum workload. The rebalancing algorithm has a polynomial time complexity. It can 

be further proved to be a 2-approximation algorithm (Cormen et al. 2009).  

Algorithm 2.  Procedure of Rebalancing LPs Distribution 

LPLoadList: an increasingly sorted list of all LPs, orderd by the predicted workload 
LoadHeapofLPGroup: a priority queue of LPGroups, the key value is the sum of workload of all LPs in the group 
1. WHILE   LPLoadList contains item 
2.     lp ←LPLoadList.pop() 
3.     lpgroup ←LoadHeapofLPGroup.pop(); 
4.     lpgroup.append(lp)    
5.    LoadHeapofLPGroup.insert(lpgroup) 
6. ENDWHILE  
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Figure 2: An example to show why scheduling sequence affects the work-stealing under the same 

workload distribution 

Though the rebalancing algorithm behaves well in theory, many factors will affect the final result, 

such as biased workload estimation and un-optimal partition. Hence, it is still needed to use the work-

stealing to adjust the imbalance. The scheduler uses the largest workload first rule to choose LP to 

advance. The scheme is necessary in order to improve the probability of successful stealing under the 

same workload distribution. Fig.2 uses an example to demonstrate the fact. At timestamp Ts, there are two 
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LPGroups in the simulation, and each block denotes the processing time of an LP advancement. Both part 

(a) and (b) have the same LPs distribution and thus the same makespan. In part (a), scheduler B completes 

the advancement of LPs in its own group after timestamp Ts+30. It can steal an LP from LPGroup A 

because there are un-advanced LP left. However, scheduler B cannot steal in part (b) because the second 

LP in LPGroup A has begun its work. Finally, the part (a) can achieve less makespan than the part (b). 

The rationale behind this fact is: the LP is the basic unit for stealing in the proposed algorithm and it 

cannot be stolen once it begins processing events. When a stealing happens to an LPGroup, the largest 

workload first rule can make un-advanced LPs as many as possible. Therefore, the thief thread can steal a 

task successfully in higher probability. Furthermore, as shown in Algorithm 2, LPs are sorted 

decreasingly in the LPGroup after rebalancing, so the scheduler can simply get the first item from 

LPGroup. 

3.3 Greedy Lock-free Stealing 

The work-stealing scheme has been widely used in multithread programming. Generally, it acts roughly 

as follows: each thread holds a deque to store tasks. When a new task is generated (spawned), it will be 

put into the top of the deque. Threads will keep on getting tasks from the top of the deque. Hence, the 

most recently created tasks and, therefore, the hottest in the cache, are processed by the host thread. When 

there are no tasks in its own deque, the thread will randomly steal a task from the bottom of the other 

deque. However, we face a relatively less sophisticated environment than the general multithread 

programming, so that some optimization can be made to obtain a better performance. The main difference 

between the traditional work-stealing scheme and the proposed method includes: (a). Schedulers steals the 

LP with maximum workload from other LPGroups. (b). Stealing and coordination are implemented by 

atomic operations instead of locks.  

Firstly, the workload of LP, though estimated, is known before stealing. The information can help us 

improve the efficiency of stealing. In other words, it helps us steal a specified LP, the LP with maximum 

workload in LPGroup, to make the load as balanced as possible. Let’s inspect the stealing from a local 

view which includes only the thief thread and the victim thread. Assuming that Cvictim  denotes the 

completion time of the victim thread while Cthief denotes the completion time of the thief thread. At time  

Cthief, the thief thread finishes its own job and tries to steal an LP from the victim thread. Among all LPs 

which have not advanced at that time, let mlp denotes the LP with maximum workload and alp denotes 

any other LP. Without loss of generality, mlp and alp are different LPs. Hence, 

Cvictim − workload(mlp ) − workload(alp ) >  Cthief (2) 

if mlp is stolen, then the completion time of both threads is  

T_Completem = max { Cvictim − workload(mlp ), Cthief + workload(mlp ) } 

if alp is stolen, then the completion time is  

T_Completea = max { Cvictim − workload(alp ), Cthief + workload(alp ) } 

According to formula (2), Cthief + workload(mlp ) < Cvictim − workload(alp ). 

According to the definition of mlp, Cvictim − workload(mlp ) < Cvictim − workload(alp ). 

⇒ T_Completem < Cvictim − workload(alp ) 

So, T_Completem < T_Completea.  

In summary, stealing mlp is the best option from the view of the thief thread. And it is also the reason 

that we call the algorithm a greedy stealing. Furthermore, the stealing rule is consistent with the way that 

a scheduler chooses the LP from its own LPGroup. Therefore, it is also helpful for improving the 

probability of successfully stealing. 

Secondly, each LPGroup is determined and will not change between two rebalancing. Thus, it is not 

necessary to use a flexible deque to store dynamic tasks. Instead, the LPGroup is implemented as a vector, 

and some atomic data are used to achieve a lock-free coordination between threads. Algorithm 3 shows 

the procedure of scheduler i choosing or stealing LP to advance. It can be decomposed into three stages, 
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namely selfwork, stealing and reset. In selfwork stage (Line 1-8), the scheduler keeps on getting LPs and 

makes it advance until there is no un-advanced LPs in its own LPGroup. The scheduler will add 1 to 

n_finish_selfwork at the end of the selfwork stage. In stealing stage (Line 9-18), the scheduler will 

randomly steal a task from other LPGroup. Atomic data, index_ unadvancei, is used for coordination 

between host scheduler and thief scheduler in Group i. When n_finish_selfwork equals to the number of 

LPGroup, it means that all LPs in the simulation either have been selected by its host scheduler or stolen 

by thief schedulers. Hence, the scheduler can stop stealing and add 1 to n_stop_stealing. In reset stage 

(Line 19-25), the scheduler must wait until all schedulers finish their work in hand. When n_stop_stealing 

equals to the number of LPGroup, all LPs  have been advanced in the current cycle. Hence, schedulers 

can move on to the next synchronization. In addition, the last scheduler need to set the shared atomic 

variables to 0 for the next cycle.  

Algorithm 3.  Procedure of scheduler i choosing or stealing LP to advance 

Gi: the i-th LPGroup 
index_unadvancei: an atomic int type, denote the index of the first un-advanced LP in LPGroup i [init: 0] 
n_finish_selfwork: an atomic int type, denote number of schedulers that finish its own work [init: 0] 
n_stop_stealing: an atomic int type, denote number of schedulers that stop stealing   [init: 0] 
n_end_wait: an atomic int type, denote sequence of a scheduler know that all schedulers have finished the stealing stage  
[init: 0] 
1. FOR    i ←  0   to    Gi.size() 
2.     current_index ← index_ unadvancei++  // get the id of the next unadvanced LP in Gi 
3.     IF    current_index ≥ Gi.size() 
4.             BREAK; 
5.     lp ← Gi.getlp[current_index] 
6.     advance(lp, LBTS)       
7. ENDFOR 
8. n_fsw  ←  ++n_finish_ selfwork    // add 1 to n_finish_ selfwork and return the new value to n_fsw 

 
9. WHILE    n_fsw < Num_LPGroups 
10.     randomly choose a victim LPGroup j 
11.     steal_index ← index_ unadvancej++  // get the id of the next unadvanced LP in Gj 
12.    IF    steal_index < Gj.size() 
13.         lp ← Gj.getlp[steal_index] 
14.           advance(lp, LBTS) 
15.     ENDIF 
16.     n_fsw  ←  n_finish_ selfwork  
17. ENDWHILE 
18. n_ss ← ++n_stop_stealing     // add 1 to n_stop_ stealing return the new value to n_ss 

 
19. WHILE    n_ss  < Num_LPGroups 
20.     n_ss ← n_stop_stealing 
21.     CONTINUE; 
22. n_ew  ←  ++n_end_wait 
23. IF  n_ew = Num_LPGroups     // The last thread will reset the shared vairable 
24.     n_stop_stealing ← 0, n_finish_ selfwork_stage ← 0, n_end_wait  ← 0 
25. ENDIF 
26. NextSynchronization … 

Figure 3 uses a series of snapshots to show some critical scenarios of the procedure. The initial LPs 

distribution is shown in t = 0, and the value associated with LP denotes how much time are needed to 

advance the LP. At this time, all schedulers select the item from their own LPGroups. When t = 55, 

scheduler 1 finishes all tasks and tries to steal a LP from LPGroup 0. Since the index_unadvance0 = 2, 

scheduler 1 steals LP2, and change the index_unadvance0 to 3. Therefore, scheduler 0 will choose LP3 to 

advance later and the final makespan is 63. For comparison, if the LP3 is stolen, the final makespan is 66. 
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When t = 60, all schedulers have finished their jobs in selfwork stage. However, the LP2 has been stolen 

and is being processed by the scheduler 1. Instead of entering to the next synchronization, the scheduler 0 

has to wait until the scheduler 1 completes its tasks in hand (t = 63). Till then, all schedulers can go to the 

next synchronization according to Algorithm 3. 
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Figure 3: an example to show the procedure of the work-stealing scheme 

4 EXPERIMENT 

This section presents an initial evaluation of the proposed WS-DLB algorithm. We discuss the 

performance properties of the proposed algorithm using a parameterized benchmark, La-pdes. The 

computing platform is a Server providing two Intel Xeon E5-2650 8-core CPU with 32 GB of main 

memory. The simulation framework runs on a 64 bit version of CentOS 6.5 and g++ in version 4.4.7. 

Furthermore, each data point shows the mean and the 99% confidence intervals computed over 50 

independent repetitions. 

The La-pdes benchmark application, which is developed by Los Alamos National Laboratory, aims to 

mimic the behavior of real discrete event simulation applications (Park et al, 2015). Roughly, the La-pdes 

contains some entities, each of which has a SendHandler, a ReceiveHandler and a local list data structure 

consisting of floating-point value elements. The SendHandler sends messages to other destination entities, 

and re-schedules itself for the next event. The ReceiveHandler receives an event and then calculating a 

specific number of floating point multiplications and additions using the elements of the list. The La-pdes 

benchmark contains a set of twelve parameters, which enables fine-grained control over the numbers of 

events, the number of entities, the distribution of events to sending and receiving entities and so on. In 

this paper, we only focus on the a subset that closely relative with the load balancing, as shown in Table 1. 

More details can be found in the reference paper (Park et al. 2016). 
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Table 1: Description of parameters for La-pdes experiment. 

Parameter Default Value Range Description 

nent 1000 1, …, ∞ Number of entities 

ssent 1000 1, …, ∞ Average number of send events per entity 

endTime 1000 1, …, ∞ Duration of simulation 

preceive 0.0 [0, 1] 

 

Entity Ei receives a fraction of preceive×(1−preceive)
i-1

 of all 

the requested messages. preceive = 0: uniform distribution.  

psend 0.0 [0, 1] Entity Ei sends a fraction of psend×(1−psend)
i−1

 of all the 

requested messages. psend = 0: uniform distribution. 

plist 0.0 [0, 1] Parameter for geometric distribution of linear list sizes. 

Set to 0 for uniform distribution; Set to 1.0 to make 

entity 0 the only entity with a list. 

opsent 10
4
 1, …, ∞ Average number of operations per handler per entity. 

cores 8 1, … , 16 Number of cores to run simulation. 

 

Three algorithms are utilized for comparison, namely WS-TBB, WS-DLB and DLB. The WS-TBB 

algorithm only uses the work-stealing scheme to achieve balance, and is built upon the Intel TBB library. 

The TBB provides the parallel template and supports the work-stealing scheme automatically. The 

proposed WS-DLB algorithm is built based on the boost threading library which exposes more controls to 

developers. The DLB algorithm only uses the rebalance scheme of the WS-DLB to rebuild LPGroups. 

Without number of work-stealings to indicate imbalance, the DLB algorithm has to trigger the 

rebalancing periodically. In addition, the Sequential algorithm is utilized to compute speedup. 

(1) Performance comparison with different plist settings 

The first experiment is carried out to compare the simulation execution performance with different 

plist settings. Though all entities receive similar number of SendHandler and ReceiveHandler events, 

lower-indexed entities have longer list, thereby involving more computation. For example, when plist = 0.1, 

E0 needs to process 11% computation among all ReceiveHandler workload and E1 needs to process 10% 

computation among all ReceiveHandler workload. Hence, the speedups achieved by two algorithms drop 

down when plist increases, as shown in Figure 4. In some extreme case, the parallel algorithm is even 

worse than the sequential algorithm. It is also an evidence that load balancing is necessary for simulation. 

In comparison, the WS-DLB algorithm behaves better than the WS-TBB and the DLB algorithms. When 

imbalance is moderate (plist = 0.01), both algorithms achieve similar results and relatively high speedup. 

When imbalance is serious, the WS-DLB algorithm is better than the WS-TBB algorithm by 50%-66%.  

  

Figure 4: Performance Comparison of La-pdes using different plist 
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(2) Performance comparison with different preceive settings 

The second experiment is carried out to compare the simulation performance with different preceive 

settings, from 10
-5

 to 10
-1

. Different from the first experiment, the value of preceive also affects the 

performance of sequential algorithm. When preceive is small, simulation entity needs compute preceive×(1 − 

preceive)
i-1

 many times in order to find the destination entity. Hence, simulation with smaller preceive 

consumns more time even with the sequential algorithm. Moreover, the second experiment presents a 

more complicated scenario. preceive not only generates imbalance on event processing, but also generates 

imbalance on simulation management. Lower-indexed entities will receive larger shares of 

ReceiveHandler events and thereby consumes more computation. The results demonstrates the peak 

performance are achieved by both algorithms when preceive = 10
-3

, as shown in Figure 5. Since LP is the 

basic and indivisible unit to adjust workload, the performance improvement cannot be achieved when the 

workload cannot be divided equally. In comparison, the WS-DLB algorithm obtains better or comparable 

results than the WS-TBB and the DLB algorithms. When imbalance is moderate (preceive=10
-5

, 10
-4

, 10
-3

), 

the WS-DLB algorithm is better than the WS-TBB algorithm by 16%-36%. When imbalance is serious, 

all algorithms achieve similar results.  

 

   

Figure 5: Performance Comparison of La-pdes using different preceive 

 (3) Scalability 

The third experiment is carried out to compare the strong scalability between WS-TBB and WS-DLB 

methods. As shown in Figure 6, the number of cores is varied from 2 to 16. Different from default setup, 

nent is set to 10000, plist is set to 0.01 in part (a) and preceive is set to 0.001 in part (b). Different from the 

previous experiments, the DLB algorithm usually performs worst due to more overhead is needed for 

each rebalancing and the DLB algorithm cannot trigger the rebalancing adaptively. Hence, it is not a good 

choice to achieve load balance when application scale is large. Moreover, the scalability is affected by the 

load imbalance in both cases, so the linear speedup cannot be achieved. In comparison, the WS-DLB 

algorithm presents a better scalability. It always obtain better performance when more cores are used. In 

contrast, the WS-TBB algorithm meets a inflexion point in part (b). The performance dropped 

dramatically when 16 cores are used, even worse than the DLB algorithm. 
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 (a) plist = 0.01                                                               (b) preceive = 0.001 

Figure 6: Performance Comparison of La-pdes using different cores 

5 CONCLUSIONS AND FUTURE WORKS 

In this paper, a work-stealing based dynamic load balancing algorithm (WS-DLB) is proposed to solve 

the load imbalance of the synchronous conservative protocol running on multicore platforms. The 

algorithm rebalances the LPs distribution based on estimated workload adaptively, and adjusts the 

assignment when imbalance occurs. Experiments show that the proposed algorithm can take advantages 

of load balancing and work-stealing, and thus achieve a better performance. 

In our future work, we plan to consider the impact of communication and simulation housekeeping, in 

order to be adapted to more fine-grained applications. 
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