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ABSTRACT 

The use of simulation modeling for scientific tasks demands that these models be replicated and 
independently verified by other members of the scientific community. However, determining whether two 
independently developed simulation models are “equal,” is not trivial. Model alignment is the term for 
this type of comparison. In this paper, we present an extension of the model alignment methodology for 
comparing the outcome of two simulation models that searches the response surface of both models for 
significant differences. Our approach incorporates elements of both optimization and design of 
experiments for achieving this goal. We discuss the general framework of our methodology, its feasibility 
of implementation, as well as some of the obstacles we foresee in its generalized application.

1 INTRODUCTION 

The present work is part of a larger research endeavor focused on simulation model transformation across 
different platforms. The overarching goal is to support the replicability and reproducibility of simulation 
experiments for scientific discovery. Model transformation is not, of itself, sufficient to achieve this goal. 
It is also necessary to verify that the transformed model properly mimics the behavior of the original. But 
what does it mean for a model to mimic another model? In this paper, we consider two models to be equal 
if the response surfaces of both models are equal. Due to the stochasticity of many simulation models, the 
actual response surfaces will most likely differ in absolute terms, so statistical methods are required to 
determine whether the differences are statistically significant. In other words, the two response surfaces 
are considered equal if, for each input parameter combination, the statistical distribution of the responses 
is equal. 

In consequence, determining whether two models are the same requires comparing their response 
surfaces. For any real application, a brute force approach—one where each parameter combination is 
evaluated and compared—is not only undesirable, but practically impossible due to the size of the 
parameter space, and the computational effort required to explore the response surfaces in their entirety. 
That is, evaluating the models at each and every point yields little information about the response surface 
per model evaluation, so to obtain the requisite confidence many replications are required. Because this is 
computationally impossible, we need a method that gains additional information about the response 
surface with each model run. 

What we are looking for, then, is an intelligent search method for exploring the response surfaces. For 
instance, one that is aimed at finding potential differences (if they exist) between the two surfaces and 
focusing the comparison to those points. 

To find these points of potential difference, we propose using an optimization algorithm. 
Optimization algorithms are essentially search algorithms that seek a combination of parameters that 
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optimize a certain objective function. In this case, we are searching for those points where the difference 
between both response surfaces is maximized. That is, instead of comparing the two responses over the 
entire parameter space, we identify and concentrate on those areas where it is most likely that the 
responses differ. 

Once these points are found (there can be more than one), we can run a designed experiment around 
them to sample from both response surfaces and gather enough information to perform a statistical 
analysis that can help us determine whether the responses from both models are drawn from the same 
distribution or not.  Note that we confine ourselves to model alignment of two simulation models in this 
paper but the approach can be readily extended to three or more model comparisons. 

This paper discusses such an approach in greater detail, and outlines some of the obstacles and 
potential applications of such approach. The paper is organized as follows: Section 2 goes over the 
concept of model alignment, how it has been used for model comparison, and some of its limitations. We 
also explain how our approach represents an extension of the model alignment methodology. Section 3 
presents our methodology, including a discussion of some of the important decisions that have to be made 
to implement it. Section 4 describes a proof-of-concept demo that we developed to test the ideas 
presented in this paper. Finally, Section 5 covers the limitations of our approach, our conclusions, and 
some future work. 

2 BACKGROUND 

The methodology described in this paper combines aspects of model alignment and design of 
experiments. In this section, we discuss these in greater detail, with a particular emphasis on how our 
approach extends those found in the literature. 

2.1 Model Alignment 

Model alignment is defined as the process “needed to determine whether two models can produce the 
same results” (Axtell et al. 1996). It is an essential process for model replicability and reproducibility. It is 
also referred to as “model docking.” In our particular case, the investigation is motivated by some of our 
previous research into model transformation. Consider the situation where a simulation model was 
converted from one platform to another. How can we know whether the transformation produced a model 
that is enough like the original in its modeling ability? We need some method for comparing the 
outcomes of both models and determining whether they are equal. If the models are deterministic, this is 
fairly straightforward, either they yield the same result, or they do not. If, however, they are stochastic, 
then we must rely on statistical techniques that can tell us whether both models produce the same 
distribution of results. We are concerned, then, with verifying the success or failure of a model 
replication. Wilensky and Rand (2007) identify six dimensions along which a model and its replicates can 
differ: (1) time of the implementation, (2) hardware used, (3) language of implementation, (4) toolkits, (5) 
algorithms, and (6) authors. In the context of our research, the models differ along several dimensions, but 
particularly dimension (3). We want to verify whether a model that has been converted from one language 
(or simulation platform) to another is a sufficient replicate of the original. A successful replication of a 
model (a successful alignment), means that the output of the original model and its replicate are “similar 
enough.” This requires a criterion for judging whether they are similar enough, which we, following 
Wilensky and Rand (2007) will term the replication standard. Of particular interest is the discussion 
provided in Axtell et al. (1996) about this standard of model equivalence. They identify three possible 
criteria: (1) numerical identity, (2) distributional equivalence, and (3) relational equivalence. Numerical 
identity cannot be expected in simulation models with stochastic elements in them. By distributional 
equivalence is to be understood that both models yield distributions of results that are not statistically 
distinguishable, that is, the outcome of both models is “drawn from the same distribution.” Lastly, 
relational equivalence implies that both models produce the same internal relationship among their 
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results, for instance, if the response increases by increasing an input in one model, it does the same in the 
other (Axtell et al. 1996). 

Model alignment was first introduced by Axtell et al. (1996). In their research, they compared two 
models, one of which was thought to be a more general version of the other. Their goal was to compare a 
simplified version of the more general model, and evaluate whether it produced the same outcome. To do 
this, they ran the model at the same parameter combinations as the experiment that had been performed 
on the original model when it was first published. This model comparison is used as a case study and as a 
backdrop for a larger discussion on what it means for two simulation models to “be the same,” as well as 
to discuss other issues faced when aligning two models. 

Wilensky and Rand (2007) describe their experience trying to replicate an agent-based model, and 
offer a series of recommendations for facilitating model replicability. Edmonds and Hales (2003) also 
describe their experience replicating an agent-based model and using alignment methods to evaluate their 
success. In particular, they describe how they detected some errors in the implementation of the original 
model, so the use of model alignment is not only a tool for replicability, but also for verification and 
validation. Miodownik et al. (2010) also aligned two agent-based models and used the alignment process 
to detect not only programming errors, but also hidden assumptions. Model alignment has also been used 
to evaluate whether model parallelization has been done successfully (Fachada et al. 2016), and to 
compare modeling toolkits (Xu, Gao, and Madey 2003). Another interesting perspective on the topic is 
provided by Will and Hegselmann (2008) who document a failed attempt at replicating a simulation 
model, and followed it up with a detailed analysis of the code and assumptions made in the original 
model, and which were not properly specified, leading to the failed alignment (Will 2009). 

Fachada et al. (2017) discuss some of the limitations of the model alignment methods proposed by 
other authors, and propose using Principal Component Analysis (PCA) to align different implementations 
of the same model. They argue that traditional approaches rely on statistical summaries representative of 
each output (for instance, the average of an output), called focal measures (FM), for their comparison. 
These FMs are selected by the model designer and are always dependent on the model. Their approach, 
on the other hand, converts all of the model’s outputs into a set of linearly uncorrelated measures that are 
then analyzed. This removes the dependence on the FMs, making it a model-independent method. In 
addition to that advantage, this approach also detects automatically which output features best explain 
differences between implementations, does not depend on the output’s distributional properties, and 
works directly on simulation output. 

What stands out in all these uses of model alignment is that the comparison between models is limited 
to those parameter combinations included in a previously defined experiment. As a result, this only allows 
them to affirm that the models are aligned along the parameter combinations used in the experiment. It is 
possible that they are not aligned along other parameter combinations, so even when Fachada et al. 
(2017)’s approach is model-independent, it is not independent of the input parameter combinations used 
to run the model. 

2.2 Experimental Design 

Since our goal is to evaluate whether two models are “the same,” it is not enough to compare them 
over a pre-defined set of parameter input values. We need to verify whether they produce the same output 
over the entire input parameter space, or a surrogate for this. Space-filling experimental designs are meant 
to do this. The most well-known space-filling design is the Latin hypercube (McKay, Beckman, and 
Conover 1979), though there are many other designs available (Pronzato and Müller 2012). These designs 
“seek to find a model that approximates the true response surface over a much wider range of the design 
variables, sometimes extending over the entire region of operability” (Montgomery 2009). However, most 
of these designs do not include replicates, because they have been primarily used for deterministic 
computer models (Montgomery 2009). Another common type of designs are grid designs, also known as 
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factorial designs. These can be used to characterize complex response surfaces, though they are limited to 
few factors, as their size grows exponentially as the number of factors increases (Kleijnen et al. 2005). 

A possible approach to align two models would be to run a space-filling experiment design for each 
model, and then compare the results produced by them. However, there is a significant drawback because 
we are interested in using stochastic, not deterministic, simulation models. Space-filling designs have 
many design points, so that the model must be run many times, even without replicates. Hence, the 
computational burden of running an experiment on a stochastic model would be greatly magnified when 
using such designs, and would, in addition, be doubled if we are comparing two models. Furthermore, 
from an information gain point of view, if the differences between models are few and very localized, 
many of those design points will yield little, if any, new information about the differences between 
models. A more efficient approach is needed which conserves computational effort while gaining 
valuable information. The space-filling design approach to model alignment can be thought of as a “brute-
force” approach. The approach we propose, on the other hand, seeks to explore the differences in 
response surfaces intelligently, by detecting areas where information gain might be maximized and 
focusing on those. 

Our approach was inspired partly by the response surface methodology’s (RSM) iterative use of 
optimization and design of experiments. However, there are significant differences between both 
methods. RSM is used for determining the values of the input parameters that yield an optimal response. 
It is a sequential procedure that works as follows: a first-order model is fit as the result of a designed 
experiment. The path of steepest ascent (or descent, if it is a minimization problem) is found in which the 
response of the fitted model increases most rapidly. At each step along the path of steepest ascent, 
experiments are run until improvement ceases. At this point, a new experiment is run, to fit a new first-
order model. When a first-order model no longer fits the true response surface, it means that the true 
surface has a curvature, which might indicate proximity to the optimum. At that moment, we fit a second-
order model instead, and use it to approximate the location of the optimum point. Our approach shares the 
sequential nature of RSM, as well as its use of designed experiments to provide guidance to the 
optimization. That is the extent of their similarities. Our approach does not seek the input parameter 
values that optimize the response, but those that maximize the difference in the model responses. For a 
more in-depth presentation of RSM, see Montgomery (2009). That said, the use of first and second-order 
models to approximate the response surfaces, and using them in the optimization, is an idea that might be 
incorporated in our approach and could reduce the computational burden. 

3 THE GENERALIZED MODEL ALIGNMENT FRAMEWORK 

Our framework makes use of a two-phase methodology for model alignment. The first phase is an 
optimization (search) phase that explores the space and finds areas of interest, that is, it returns points in 
the space where it is most likely that the models differ. Once one of these areas has been found, the 
second phase performs a statistically designed experiment over the region of interest. This phase provides 
a statistical analysis of the outcomes of both models to determine whether or not they are equal. 
Furthermore, since the experiment is designed using the principles of statistical design of experiments, the 
results are collected to allow us to characterize the differences (if any). Once a conclusion is reached, 
phase I is repeated, but the region of interest that has already been explored is blocked out, preventing it 
from being explored again. This continues for as long as the user requires. 

The following subsections discuss each phase in greater detail. 

3.1 Phase I: Optimization 

Suppose there are two simulation models denoted  and  respectively, which need to be aligned. Since 
we know nothing beforehand about the form of the response surfaces, we want to look for those areas 
where we have the greatest probability of detecting any differences between the two surfaces. We call 
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these “areas of interest.” Figure 1 illustrates what we mean by areas of interest for two models with a 
single parameter. In the figure, the arrows show the two points (A and C) where the difference between 
the model responses is maximal, hence, those are the areas where an experiment is most likely to reveal 
that the two response surfaces are different. Point B, on the other hand, would require a more highly 
sensitive experiment to detect differences. Therefore, to get the most benefit with the least computational 
cost, it is better to evaluate the models at points A and C, and not at B. 

 

 

Figure 1: Response surfaces for two stochastic simulation models. 

To detect these areas of interest, we rely on the following optimization model: 
 

max | | 
 
Subject to a series of constraints on the possible values of the vector of parameters ∈ . For 

instance, the value of  can be restricted to lie within the range  to  where the values of  and  
vary as we explore different regions of the parameter space, allowing us to focus the search on those 
regions of the parameter space that have not been explored. 

Since the simulation models  and  are stochastic, it is necessary to adjust our objective function to 
account for the variation in outcome that results from their stochastic nature. Hence, our objective 
function becomes: 

 
max| | 

 
Where  and  are the expected values of the responses for models  and  

respectively, for a small sample of size . The sample size will be dependent on the computational effort 
required by the simulation models, and by the desired accuracy in detecting areas of interest.  Note that 
we use a linear error objective here but a quadratic or other error metric could be used equally easily. 

3.2 Phase II: Designed Experiment 

Once the points of interest are obtained by the optimization phase we perform a designed experiment on 
the region surrounding each point. For each experimental point (or parameter combination), we obtain a 
sample of observations from each model. Using the Kolmogorov-Smirnov test (and/or other tests of 
goodness of fit, such as the Chi-Squared or the Anderson-Darling tests), we can determine if these 
samples are drawn from the same distribution (effectively verifying their equality) or not. Additional tests 
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can help determine whether the differences are in the expected value (t-test for equality of means), the 
variance (Chi-squared test for equality of variance for two samples), or whether there is bias in one of the 
models, and so on.  

Suppose the optimization phase finds, as we mentioned above, two points of interest, point A and 
point C. We can then perform a designed experiment using these points as center points. Figure 2 shows 
this for point A. In this case, we use a factorial design centered on point A, and sample from both models. 
The figure shows the results of taking a sample of size 3 from each experimental point.  

 

 

Figure 2: Experiment around point A. 

The advantage of using a designed experiment is that it can provide additional information about how 
the two surfaces might be different. For example, interactions between parameters can be detected. If the 
designed experiment reveals an interaction between parameters for one model but not for the other, we 
conclude that there is a difference between the two models and know something about the nature of that 
difference. This discovery can help us discern why the two models are different. In the context of model 
transformation, it might bring to light some error in the transformation procedure. 

4 A BRIEF EXAMPLE 

To clarify the process we just described, consider this simple example. We want to compare two 
stochastic simulation models. The first model is implemented in one simulation platform, Simulink, while 
the second one is obtained from a transformation procedure that converts the model from a Simulink 
model to a RePast model. We want to know whether both models, despite running on different platforms, 
are the same. The models have three parameters: , , . 

First, an optimization algorithm that seeks to find a point of maximal difference in responses is run. 
The set of best points found at each iteration of the algorithm are shown in Table 1. 

Table 1: Results of the optimization algorithm. 

Iteration      | | 
1 1.5 2.4 3.2 4.5 4.7 0.2 
2 1.5 2.6 3.3 4.5 4.75 0.25 
… … … … … … … 
1000 5.6 6.5 4 1.7 6 5.7 
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The point of interest, then, is (5.6, 6.5, 4). This becomes the point around which a designed 
experiment is performed, a three factor with two levels per factor in a full factorial design.  This is shown 
in both the encoded and decoded representation in Table 2. The user can determine what radius should be 
used to define the experiment around the central point. In this case, the radius is chosen to be 0.1, so that 
the low value of  is 5.5, its high value is 5.7, and so on. The user can also specify the number of 
replicates per factor level combination. 

Table 2: Encoded and decoded factor level combinations. 

Encoded Decoded 
      

0 0 0 5.5 6.4 3.9 
0 0 1 5.5 6.4 4.1 
0 1 0 5.5 6.6 3.9 
0 1 1 5.5 6.6 4.1 
1 0 0 5.7 6.4 3.9 
1 0 1 5.7 6.4 4.1 
1 1 0 5.7 6.6 3.9 
1 1 1 5.7 6.6 4.1 

 
The experiment is conducted by running the simulation model by using each factor level combination 

as the input parameter vector, and repeating each run for the specified number of replicates. The number 
of replicates is an important value because it must be large enough to make conclusions about each mode 
at each parameter combination to increase the power of the statistical tests. With the outcome of the 
experiment, we can already answer a few questions about the two models: are there differences in the 
significance of each parameter? Are there differences in the interactions between factors, or in the 
direction in which these affect the outcome (positively in one model, negatively in the other)? 

Besides the comparison based on the analysis of the experiment, we compare each sample using the 
Kolmogorov-Smirnov test to determine, at a certain level of confidence, whether the samples are drawn 
from the same distribution or not. Other tests that can be used for similar analyses include the Chi-
Squared test and the Anderson-Darling test. 

We might also collect additional measures (expected value, variance, skewness, etc.) that can provide 
more information about how the models behave, and how they might potentially differ, even in the cases 
where the statistical tests reveal no difference. For instance, while the Kolmogorov-Smirnov test might 
fail to detect a difference in distribution between both models, we might detect that one model’s response 
is consistently larger than the other, bringing to light a bias. The Kolmogorov-Smirnov test is based on 
the maximum vertical difference between the empirical cumulative functions of two samples (Darling 
1957), so a small, yet consistent bias, might escape detection. 

Once these analyses are completed for the region surrounding point A, the optimization phase 
resumes with additional constraints to keep the search away from point A, ensuring exploration of other 
regions of the parameter space. When a new region of interest is found, the designed experiment phase 
begins once more and the whole process is repeated. 

5 PROOF OF CONCEPT DEMO OF THE MODEL ALIGNMENT METHOD 

To test the feasibility of this approach, we developed a proof of concept demo using a quadcopter 
simulation model built in Matlab and available at https://github.com/gibiansky/experiments/tree/master/ 
quadcopter under a CC BY-SA 2.0 license (Creative Commons 2017). The model was modified to 
incorporate some stochasticity (added as a random disturbance in the position of the quadcopter) and to 
produce a single output measure. The quadcopter model can use different control modules. We wanted to 
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test whether changing the control module results in different behavior for the quadcopter. The two 
controllers used were a Proportional-Integral (PI) controller, and a Proportional-Integral-Derivative (PID) 
controller. The controllers receive a set of tuning parameters as input. The PI Control has two parameters: 
the proportional (P) and integral (I) terms; while the PID controller has three parameters: a proportional, 
integral, and derivate (D) term. The model response is the distance traveled by the quadcopter, and the 
input parameters used are the proportional and integral terms required by the control module. For the PID 
controller, the derivative term was left at its default value. 

For the optimization phase, we use a particle swarm metaheuristic that runs for 100 iterations with a 
swarm size of 10 particles. At each iteration, every particle runs both models 10 times (this sample size 
can be adjusted by the user) and measures the difference between the model outcomes. For the 
experimentation phase, we use a 2  full-factorial design, with the radius size around the central point 
predefined by the user. The number of replicates for each factor level combination was set to 30. All of 
these values can be modified by the user. A screenshot of the demo is seen in Figure 3. 

 

Figure 3: Demo screenshot. 

The demo works as expected, scanning the response surfaces for differences, and evaluating regions 
of interest in greater detail. Using both a Kolmogorov-Smirnov and an Anderson-Darling test, it evaluates 
whether the samples from each model are drawn from the same distribution. In the figure, the cell 
highlighted in red indicates that during the evaluation of the region surrounding the first point of interest 
(obtained from the first run of the PSO), a difference was detected by the Anderson-Darling test. This test 
is more sensitive than the Kolmogorov-Smirnov test to differences in the tails of the distribution. 

To better understand the difference between the proposed approach and the more traditional DoE 
methods, consider a 2 factor full-factorial design. A configuration of the proposed approach such as the 
one described above would result in 10,120 model comparisons (meaning twice as many model runs) per 
cycle. If we run for 10 cycles, we would have 101,200 comparisons. An approximately equivalent full-
factorial would be a 58 factor level design, with 30 replicates per factor level combination, which results 
in 101,124 comparisons. Both approaches evaluate the simulation models roughly the same number of 
times, but the areas they explore are different. The full factorial evaluates the response surfaces evenly, 
while our approach focuses its search on certain areas. The full factorial design would compare the 
models in 582 = 3,364 different points. The proposed approach would explore, during the optimization 
phase, 10*100 = 1,000 points, plus 4 points from the DoE phase, per cycle, for a grand total of 10,040 
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different points. That said, the points explored during the optimization phase were not explored with the 
same level of detail as those evaluated during the DoE phase. In the optimization phase, each point was 
replicated 10 times, whereas during the DoE phase, they were replicated 30 times, for better precision in 
the comparison. Nonetheless, even the reduced sample size used in the optimization phase can produce 
information about the surfaces that might be of interest. The differences in exploration approaches can be 
seen, in a simplified manner, in the following figures. 

 

 

Figure 4: Full-factorial design. 

 

Figure 5: Optimization/DoE approach. 

The full-factorial design (or any space-filling design) is a better approach if what is intended is to 
characterize the response surface, since it offers an unbiased sampling of the entire surface. The even 
distribution of experimental points allows for the observation of the surface over its full range. However, 
if what is sought is to find differences between response surfaces, then many observations in such designs 
will yield little information. In Figure 4, only points A, B, and C are useful for detecting the difference in 
the two surfaces. The only information provided by the remaining observation points is that the two 
models are statistically identical. In Figure 5, on the other hand, even those observation points used in the 
optimization phase (indicated with a thin dotted line), provide some information about the location of 
points where the probability of detecting a difference is greater, and it is these points that are evaluated in 
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greater detail during the DoE phase (indicated in the figure by a thick dashed line). While in the full-
factorial, 10 points are evaluated in detail, of which 7 yield little information, in the proposed approach, 
only 2 points are evaluated in detail, and the additional points help us locate them. The proposed approach 
is a biased search, because its intent is not to explore the entire surfaces, but only those parts of them that 
are of interest.  

This behavior is also observed when we compare the outcomes of both approaches. The full-factorial 
approach yielded, as was mentioned above, 3364 observation points, of which 138 indicated there was a 
difference between the models. An analysis of these revealed that there were several clusters, or regions 
where the differences were concentrated. 10 different regions were found. A region was defined if there 
were at least 4 observation points in close proximity that signaled a difference between models. For 
example, Region 1, ranging roughly from point (0, 3) to (0, 5), consists of 11 points, of which 10 
indicated a difference between the models. At the same time, there were several points where a difference 
was detected but which do not fall into any of the regions defined. The proposed approach evaluated 40 
observation points in detail, of which 4 detected differences. The remainder of the points, however, were 
located in or close to the regions found by the full-factorial, as can be seen in Table 3. 

Table 3: Location of proposed approach observations vs. regions found by full-factorial. 

Center point found by optimization In or near region 
(0.1589, 3.777) 1 
(1.5568, 0) None 
(0.5177, 10) 2 
(0.6678, 9.9394) 2 
(0.1376, 10) 2 
(0.1739, 2.8040) 1 
(1.3217, 9.1310) * None * 
(0.1375, 0) 2 
(0.1636, 6.4042) 2 
(0.3525, 7.3217) 2 

 
The optimization/DoE approach indicated a difference between models in the neighborhood of the 

point marked with an asterisk. Though this point is not near or in a region of those identified by the full-
factorial experiment, the latter identified an isolated observation point where there was a difference fairly 
close to it (1.4035, 8.5964). What these results show is that the proposed approach is focused on 
exploring those areas where differences are concentrated (in particular regions 1 and 2). The fact that it 
does not explore other areas of interest (the remaining 8 regions identified by the full-factorial) is due to 
the optimization algorithm finding the same optima at each cycle. This can be addressed by using the 
results of previous iterations and using them to restrict the search space, so to direct it in new directions. 

The proposed approach has an additional advantage with respect to the full-factorial. The power of 
the comparison test can be improved by running more replicates per observation point, that is, by using a 
larger sample. Running one more replicate per point would imply 3,364 additional comparisons for the 
full-factorial experiment. For the proposed approach, that would imply only 40 additional comparisons. 
As a result, we can more readily use more replicates with the proposed approach, which in turn would 
improve the precision of the test. 

6 CONCLUSIONS AND FUTURE WORK 

This paper discussed an approach to model alignment for detecting differences in the responses of two 
simulation models. The context of this work is that of model transformation for experiment replicability. 

1297



Teran-Somohano, Smith, and Yilmaz 
 

A proof of concept demo is developed that shows how our approach can work, though the model used in 
it is fairly simple and runs very quickly. 

We foresee the following obstacles to using our proposed approach on larger scale models. The most 
pressing obstacle has to do with the computational burden or execution time of the models. This approach 
requires multiple runs of the models being compared, both for the optimization and the design of 
experiment phases. Many optimization procedures, particularly population based meta-heuristics like the 
particle swarm used in our demo, rely heavily on repeated evaluations of the objective function. Hence, 
this approach (at least in its current form) will have difficulties dealing with slow or burdensome 
simulation models. On the other hand, the approach is not bound to a specific optimization algorithm, so 
that one that requires less model evaluations could be used instead. Another obstacle has to do with the 
size of the parameter space. As the number of model parameters multiplies, as does their possible range of 
values, the space size grows exponentially. In such a case, even an effective optimization procedure 
would need a long time to find areas of interest. This approach can be used to explore as much of the 
parameter space as possible, but it can also be adjusted to explore only parts of it that might be of interest 
to the researcher.  

Though the motivation for developing this method arose from work in model transformation for 
scientific replicability and reproducibility, it can have applications in other areas of modeling and 
simulation. It might, for instance, be used to test the validity of simulation metamodels, or, as Edmonds 
and Hales (2003) mention, to detect errors in implementations or reveal hidden assumptions. It can also 
be used to compare the simulation model to data from the real-world system, if such is available. 

Our future work is aimed at addressing the major obstacles mentioned above, which includes testing 
our demo with larger scale models and analyzing the effects of using different optimization algorithms. 
We also need to further investigate how different designed experiments can yield more valuable 
information to characterize the differences between the models, or how the meta-models developed from 
a designed experiment might reduce the computational burden during the optimization phase. 

Another important area of future work is one looking into the statistical methods used by our 
approach. The demo is based on a comparison of expected values, but this is clearly not sufficient. 
Comparisons aimed at detecting bias, differences in the variance of both models, among others, are also 
important. These comparisons would require different statistical tests than the ones discussed in this 
paper. Lastly, it is also important to define methods for specifying the sample sizes to be used both in the 
optimization and the design of experiment phases. Besides statistical considerations, one must also take 
into account the computational effort required by the model, as well as the acceptable accuracy of the 
comparison. Tests concerning the robustness of different sample sizes would be particularly interesting. 
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