
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

INCORPORATING ABSTRACTION METHODS INTO SYSTEM-ANALYSIS INTEGRATION
METHODOLOGY FOR DISCRETE EVENT LOGISTICS SYSTEMS

Timothy Sprock
Conrad Bock

National Institute of Standards and Technology
100 Bureau Dr, MS8260

Gaithersburg, MD 20899, USA

ABSTRACT

Analysis models, such as discrete event simulation models, are used to support design and operation of
discrete event logistics systems (DELS). The time and expertise required to construct these analysis models
can be significantly reduced by automatically generating them from formal models of the systems being
analyzed. DELS analysis models can be constructed from system abstractions much more reliably when
the system and analysis are specified at compatible levels of abstraction. Formal modeling languages, such
as those used in object-orientation, make abstraction explicit, simplifying the mappings between system
and analysis models and increasing reusability of the integration. In this paper, we propose fundamental
abstractions for DELS and identify corresponding libraries of analysis models. These are used in a system-
analysis integration methodology that incorporates abstraction as an explicit step, providing a path to refine
and extend those abstractions and model libraries to generate analysis models.

1 INTRODUCTION

Discrete event logistics systems (DELS) are dynamic systems that transform objects flowing through
networks of interconnected resources (Mönch et al. 2011). These include systems such as supply chains,
manufacturing systems, transportation networks, warehouses, and health care delivery systems. Traditionally,
each specialized kind of DELS has been addressed with its own dedicated research and development.
However, these systems share a common abstraction — products flowing through processes being executed
by resources configured in a facility (PPRF) — and they appear together in integrated models of engineering
enterprises. For example, production systems might integrate storage and fulfillment capabilities as well as
material handling and transportation systems, and supply chains might integrate flows between warehouses,
transportation systems, and manufacturing or health care facilities.

Industrial and systems engineers use a broad variety of analysis methodologies to support design and
decision making in DELS. Many, if not all, of these methodologies require significant time and expertise
to manually construct analysis models, such as discrete event simulation. The methodologies would be
simpler and less time-consuming with automatic formulation and construction of analysis models from
an independent representation of the system. Multiple analysis models could be generated from a single
system model rather than constructing each analysis model by hand, as is commonly done.

Analysis models that conform to standard definitions of the system (and abstractions thereof) can
be automatically generated and reused through formal system-analysis integration (SAI) methods. Most
analysis models commonly developed for DELS are based on some abstraction (simplification, view) of
the system. Therefore, formalized abstractions should be a cornerstone of system modeling and analysis
methodologies. Reusable abstractions can be captured in system reference models and analysis libraries.
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This paper seeks to harvest these abstractions, make them formal, and automate formulation of analysis
models from the abstractions.

This paper presents two modeling contributions that use DELS abstractions to simplify integration of
system and analysis models and make the integrations reusable in more applications. The first contribution is a
modeling methodology that explicitly incorporates abstraction into a model-to-model (M2M) transformation
process (Section 2). Generalization is used to formalize the relationship between system models and abstract
models. This method improves the reliability of retrieving abstractions from system models. The second
contribution of this paper is fundamental abstractions used for SAI in DELS (Section 3). The result is
models at multiple levels of detail that support simple and accurate retrieval of abstractions from specialized
system models. Examples of conforming analysis models, such as those that could support multi-fidelity
simulation methods, are identified for each level of abstraction.

2 SYSTEM-ANALYSIS INTEGRATION MODELING METHODOLOGY

Manually integrating information about DELS with discipline-specific analyses, such as discrete event
simulation, is time-consuming and difficult. Analysis models use concepts and formats that are incon-
sistent with each other and not integrated with formal system models. Model-based systems engineering
methodologies provide model-to-model transformation methods to automate the translation between system
models specified in standard, formal languages (Estefan 2007). System-analysis integration extends these
methods by developing standard models for widely-used engineering analysis techniques and integrating
those models with widely-used systems engineering modeling languages. Then standard transformations can
be developed to automatically translate between these standard system / analysis models and widely-used
analysis tools.

However, significant barriers exist to reusing knowledge and tools for modeling and analysis integration.
There is often not enough commonality among systems or analysis tools, requiring separate transformations
for each pair of system and analysis models. Knowledge relating system and analysis models is encoded
in informal and manual mappings between them. This implicit mapping knowledge is also a challenge for
manual analysis modeling methods. For example, how should engineers decide which analysis component
to select from a simulation model library to represent a particular system object?

Relying on complex, ad-hoc mappings to automate generation of analysis models only moves complexity
from the models to the mappings. One source of complexity in these mappings is that system and analysis
models are often specified at different levels of abstraction. Integrating abstraction as an explicit step in the
M2M methodology simplifies mappings between system and analysis models by breaking them up across
multiple levels of abstraction. The analysis methodology proposed in Thiers (2014) separates the M2M
transformation into two steps: one from the system model to an abstract model, and then a second to the
target analysis model. The system model is mapped to the abstract model via stereotype application in the
Unified Modeling Language (UML) (OMG 2015). Network models are proposed as reusable abstractions for
DELS. Stereotype application, however, cannot guarantee the correctness of resulting abstraction, because
stereotypes are not available for specialization to domain-specific models once they are applied, and are
only supported in UML tools.

The approach proposed here uses generalization relationships to formalize the results of abstraction,
rather than stereotype application. Generalization relates classes of things to broader classes that include
them. For example, the class of forklifts is generalized by the class of mobile resources. Generalization
enables system models to be constructed (specialized) directly from abstractions, rather than mapped to the
abstraction after the system model has been constructed, as with stereotypes. The resulting system model
naturally conforms to the abstraction, because the abstraction is identified as the broader class. Abstractions
can be retrieved correctly and efficiently from detailed system models. Model libraries and taxonomies
constructed using generalization can be extended and specialized to incorporate new specific system
behaviors and any corresponding analysis models, while retaining access to higher levels of abstraction.
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Generalization is supported in almost all modern programming languages, as well as UML, providing many
more potential modeling platforms than stereotypes.

2.1 Modeling Method: Formalizing Mappings to Abstractions with Generalization

Frantz (1995) describes a taxonomy of abstraction methods for simulation modeling. Two of these abstraction
methods, model boundary modification and model behavior modification, can be formalized using object-
oriented languages. The model boundary modification method creates taxonomies of model elements related
by explicit simplifications and assumptions. Object-oriented languages formalize this with generalization.
The model behavior modification method aggregates components and behavior into systems and other
behaviors, respectively (Frantz 1995). Object-oriented languages formalize this with composition. This
paper and this section focus on model boundary modification.

Generalization formalizes the mapping between system models and their abstractions. It is shown in
UML by a hollow headed arrow going from a specialized class to a more abstract one. For example,
the generalization from Warehouse to Node in Figure 1 specifies that everything fitting the description of
Warehouse will also fit the description of Node (a network abstraction). This formal relationship between
two model elements guides construction of the transformation from the system model (of warehouses) to
the abstraction (of network nodes).

Methods that transform specialized classes into abstract ones, such as conversion, up-casting, or other
substitution methods, require an explicit definition of transformations from detailed properties in system
models to less detailed properties in abstractions. These transformations are specified by expressions captured
as mathematical equations or UML constraints. For example, consider the problem of selecting locations for
new warehouses within a supply chain. Algorithms solving facility location problems (FLP) use a network
formulation (abstraction) to select the best set of nodes to optimize the network configuration. Formulating
this analysis requires mapping Warehouse to the more general class Node. It also requires extracting the
cost of selecting each node from a more detailed cost model included in Warehouse (Figure 1). For example,
the fulfillmentCost and orderManagementCost of warehouses are aggregated to totalCostToServe, which
then generalizes to the cost of a Node.

Figure 1: Warehouses are specialized nodes. Detailed cost properties of warehouses are mapped to the
cost property of nodes.
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Generalization is a method to organize things into taxonomies (classifications) by their similarity,
defining specialized classes to elaborate differences within broader classes while retaining a relationship
to them. Taxonomies constructed using generalization explicitly model the assumptions, extensions, and
simplifications embedded in them. Things that are logically similar can be organized by generalization. For
example, trucks and forklifts can be generalized to mobile resources that carry pallets, mobile resources
in general, or all resources. Classes can be specialized to capture differences between specialized things.
For example, machines that execute subtractive manufacturing processes can be specialized into classes of
milling machines and turning machines, or further into specific brands of milling or turning machines. A
model library of extensible components simplifies the construction of analysis models by reusing similar
mappings and transformations. In DELS, similarities between system models reduce the number of model
library components that need to be constructed in the analysis language. These similarities can also be
exploited to reuse analysis models that apply to the abstraction, rather than the system model, when that
level of detail is not necessary or available.

One of the key advantages of this SAI method is that system models are constructed from abstractions,
rather than mapped to abstractions after modeling. The mapping is defined as part of system model
construction by extending existing reference models using generalization. This approach reduces errors
and inconsistencies resulting from ad-hoc abstraction mappings and reduces the time-required to verify
correctness of abstractions retrieved from the system model. The abstraction used to construct the analysis
model can be extracted correctly and automatically from the detailed system model.

3 ABSTRACT MODELS FOR DELS

Analysis models for DELS are formulated at multiple levels of abstraction, due to variations in the information
available about the system and in desired performance of the solution method. A modeling methodology
should support construction of abstract analysis models, but also provide a method to increase fidelity of
those models. Methods for abstraction, refinement, and reuse of models and model components are not
supported by most analysis languages, such as those used to construct simulation and optimization models.

Figure 2: A hierarchy of system and analysis models represent the real-world system at multiple levels of
abstraction.
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Reusability of the SAI method in the previous section relies heavily on constructing the right abstractions.
If they do not apply to a broad enough class of systems, then the return on investment for abstract modeling
and integration is not substantially greater than integrating each system individually. A more robust
solution is to use several inter-related abstractions of DELS, rather than a single abstraction. The proposed
DELS abstractions are multi-layered and designed to maximize reuse of analysis models by harvesting
commonalities across this class of systems and their related analyses. Object-orientation provides a
method for extending abstractions to specify domain-specific attributes and specialized analysis models
and methods. Rather than having a two-step transformation with a single abstract model, a continuum of
models can represent the real-world system at many levels of abstraction (Figure 2). This continuum of
system abstractions and associated analysis models reduces or eliminates the need for ad-hoc models or
transformations to bridge the gap between the two. This section describes reusable, standard, multi-layered
abstractions for DELS and some typical analysis models applicable at each level.

3.1 Network-based Abstractions

Network-based abstractions are common in DELS modeling because of their widely-understood mathematical
representations, their suitability to many algorithms, and their applicability to a broad range of (abstract)
analysis questions about the structure of and flows through DELS. Basic networks, flow networks, and
process (or queuing) network models are foundational abstractions for DELS (Figure 3) (Thiers 2014).
Each of these abstractions has libraries of analysis algorithms, such as finding shortest paths and optimal
facility locations (Drezner and Hamacher 1995), determining throughput for multi-commodity flow networks
(Ahuja et al. 1993), as well as service time and utilization in queueing networks (Walrand 1988, Marzolla
2010).

Figure 3: Basic networks, flow networks, and process (or queuing) networks are foundational abstractions
for DELS.
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3.2 DELS Behavior

Integrating system and analysis models is simpler when the systems models extend standard abstractions
corresponding to widely used analysis techniques. DELS share a common abstraction for their behavior:
products flowing through processes being executed by resources configured in a facility (PPRF) (Figure
4). Each element of the PPRF abstraction is elaborated with taxonomies of more detailed abstractions,
such as the resource taxonomy in OZONE (Smith and Becker 1997) or the resource/process taxonomy in
ISA-95 (ISA 2010) (Figure 5).

Figure 4: DELS share a common abstraction for their behavior: products flowing through processes being
executed by resources configured in a facility.

Figure 5: Each element of the PPRF abstraction is elaborated with taxonomies of more detailed abstractions.

Analyzing the complex interactions inherent in DELS behavior is usually done using simulation, such
as discrete event. For this class of analysis models and tools, system models constructed from a standard
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model library of components specialized from PPRF make it easier to validate simulation models and
replicate the results. The application of analysis methods designed for one DELS subdomain to another
can be formalized by mapping the behavior of systems from the two subdomains to a common abstraction
beforehand. For example, analysis methods for solving the traveling salesman problem (TSP) can be used
to construct manufacturing schedules (Lenstra and Kan 1975), and methods for scheduling manufacturing
job shops can be applied to scheduling nurses or operating rooms in a hospital (Pham and Klinkert 2008),
(see also (Beck et al. 2003) for a comparison of vehicle routing (VRP) and job shop problems (JSP)).

Taxonomies of analysis models for specialized system behaviors should be differentiated from taxonomies
of solution methods for making control decisions. For example, extensions to common analysis models,
such as flexible JSP (FJSP) or capacitated VRP (CVRP), are constructed from specializations of (extensions
to) abstract system behavior models (the PPRF taxonomies). Adding resource flexibility to a process, or
capacity constraints to resource (system behavior), does not change the types of control decisions that need
to be made (control functions), just how decision is made (analysis methods).

3.3 DELS Operational Control

Operational control manipulates the flow of tasks and resources through a system in real-time, or near
real-time. A significant body of analysis models and algorithms exist to select control actions to be taken,
including: 1) “Should a task be served?” (admission); 2) If so, “When should the task be serviced?”
(sequencing); and, 3) “By which resource?” (assignment); 4) “Which process does the task require next?”
(dynamic process planning/routing); and 5) “To which state does a resource need to be changed?” (change in
resource capacity or capability). Our model of operational control links a controller, which may use analysis
models to support decision making, to actuators in the base system (plant) that execute the prescribed
actions (Figure 6) (Sprock 2015).

Figure 6: A model of operational control that links a controller to actuators in the base system that execute
the prescribed actions.

Each control function is carried out in the base system by a specialized resource (actuator that executes
the selected action) performing a specialized process (how the actuator executes the selected action).
Process and resource taxonomies are extended to model control functions in the plant (Figure 7). System
specifications use these model library elements to indicate where and when control decisions are required
by the system. Decision support is designed separately, specifying how control actions are chosen.
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Figure 7: Each control function is carried out in the base system by a specialized resource and specialized
process.

A wide variety of specialized system resources can carry out each control function, for example, diverters,
robotic arms, or humans can admit tasks and raw materials into the system. However, most analysis models
do not require highly detailed specification of every resource in the system. Detailed specifications of
actuators that execute control functions are mapped by generalization to common abstractions (specialized
resources) that specify the control function for each class of actuators. These abstractions of actuators are
used to construct analysis models.

Decision support methods for each control function can also be specialized (refined) from a library of
simple methods or can be abstracted (simplified) for analysis models. For example, sequencing tasks in a
queue may be specified by a simple static priority rule that can be later refined into a complex decision
tree of priority rules. Every control function in the system conforms to the same definition and uses the
same abstraction. A standard abstraction of DELS control functions enables consistent and correct models
of control across analysis models and tools, such as discrete event simulation.

3.4 Extending and Composing DELS

DELS abstractions can be specialized to represent many kinds of DELS, reusing the libraries described
in previous sections as needed. The Process element can be specialized into a taxonomy of basic DELS
functions, Make, Store, and Move. These processes are allocated to specialized DELS for production,
storage, and transportation, respectively (Figure 8). Allocation of a process to a DELS, such as allocating
MOVE to TransportationSystem, adds an operation (function) that executes that process when the operation
is invoked. The DELS must provide a behavior that implements the function by defining what process
steps and required resources are used to execute that operation.

Many DELS are composed of other DELS. For example, a manufacturing facility might have production
systems, such as work cells or production lines, linked by material handling or transportation systems,
and buffered by intermediate storage points. Composing DELS out of existing specialized DELS, rather
than defining a new monolith, allows domain-specific analysis models to be reused for functionally similar
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Figure 8: The DELS abstraction can be specialized to represent many kinds of DELS. These specializations
can be composed to specify complex DELS.

subsystems. Each specialized kind of DELS can be further specialized as necessary to capture domain-
specific features, such as differences between manual and automated material handling systems.

4 CONCLUSIONS AND DISCUSSION

System-analysis integration methodologies for DELS automate generation of analysis models, such as
discrete event simulation, from formal system models. Development and reuse of these methodologies
can be simplified by explicitly incorporating abstraction. The system-analysis integration approach in this
paper first models abstractions common to many system and analysis models in the DELS domain, rather
than integrating individual simulation or analysis tools. This maximizes reusability of SAI methods, and
any corresponding tools. On-going research seeks to extend and refine existing taxonomies to the level of
detail required by detailed system models.

This paper presents two contributions to modeling systems and related abstractions that are the foundation
for many analysis models. Generalization is used to formalize the relationship between system and abstract
models. Multi-layer abstractions can be used to generate many different types of analysis models for a variety
of specializations of DELS. Abstractions are captured in libraries of components that are linked formally by
generalization and organized into taxonomies under the PPRF abstraction. System models are constructed
from the abstractions by selecting appropriate library components from the taxonomy, specializing when
necessary, and assembling them. Formalizing the relationship between system and abstract models allows
abstractions to be retrieved from system models correctly and automatically.

Some analysis methods, such discrete event simulation, present many challenges to developing stan-
dard transformations between the abstract models and widely-used analysis tools and techniques. One
significant challenge is the lack of complete, standard simulation model libraries for specifying the product,
process, resource, and facility aspects of DELS. The lack of standard descriptions is also apparent when
integrating representations of control functions, simulation components that carry out the control functions
(actuator blocks), and representations of control behavior (control rules). One solution would be a standard
specification, abstraction, or model library for simulation tools used in the DELS domain. Then analysis
models could be constructed from the abstraction using nearly one-to-one mappings. On-going research is
focused on identifying and resolving SAI capability gaps within and between system models, developing
additional multi-layer abstraction models and taxonomies, and identifying the analysis model libraries they
should be transformed to in simulation tools.
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