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ABSTRACT 

In micro manufacturing, the determination and scheduling of maintenance activities can strongly impact 

the production efficiency of the corresponding production system. Thereby, the supervision of quality 

relevant parts, tools and components can be very complex, due to the limited spaces within the 

manufacturing devices. This article proposes an extension of quality control charts by adding predictive 

component. This component predicts at which point in time maintenance activities are required based on 

quality characteristics of the produced work pieces. The article further presents two simulation studies. 

These demonstrate that the extended approach can compete with well configured time-based maintenance 

strategies in terms of production efficiency and rejection rates. In addition the predictive nature of this 

extension can issue forewarnings for tool wear induced quality defects very early during production, 

allowing for a suitable integration of maintenance activities into the production schedule. 

1 INTRODUCTION 

During the last decades the demand for metallic micro components has increased continuously. While the 

components themselves become smaller, their complexity constantly increases with respect to their 

functionality and geometry (Wulfsberg et al. 2010; Hansen et al. 2006; Mounier and Bonnabel 2013). 

Besides of Micro-Electro-Mechanical-Systems (MEMS), which are generally manufactured using semi-

conductor based processes, the demand for metallic micromechanical components increases similarly. 

These components are used for electrical or mechanical connections of and between MEMS as 

connectors, casings, contacts etc. In general, these micromechanical components cannot be manufactured 

using semi-conductor based processes, so that processes from the areas of micro forming, micro injection, 

micro milling etc. are applied (Hansen et al. 2006; Fu and Chan 2012). In particular, cold forming 

processes show great potential for the realization of an economic, industrial scale production of metallic 

micromechanical components. These processes can provide high throughput at comparably low energy 

and waste costs (DeGarmo et al. 2003). Using a combination of different cold forming processes in micro 

manufacturing, a highly flexible and efficient production system can be achieved (Scholz-Reiter and 

Rippel 2013). Nevertheless, combining different processes requires a careful planning and configuration 

of process chains (Scholz-Reiter et al. 2009). At this, high throughput rates of up to several hundred 

pieces per minute (Flosky and Vollertsen 2014), the inherently small tolerances of only a few 

micrometers as well as the occurrence of so-called size-effects (Vollertsen 2008) constitute major factors 

for an effective and precise planning and configuration of the involved process chains.  

Compared to macro manufacturing, the occurrence of size-effects induces strong and frequent 

variations, with respect to material properties as well as to the overall behavior of the involved 

manufacturing processes (Rippel et al. 2017). In order to achieve an adherence to the planned production 
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qualities and volumes, suitable methods for quality assurance have to be deployed. Thereby, the quality 

assurance includes the quality control (measurement and analysis) of workpieces as well as the definition 

of maintenance strategies for workstations and machines. In this context, the strong variances as well as 

comparably high repair and maintenance times render classical reactive maintenance strategies inefficient. 

In contrast, predictive strategies require reliable and constant measurements of the workpieces, which can 

be hard to acquire in micro manufacturing. This is due to the increasing measurement uncertainties 

concerning the calibration, systematic imprecisions and the repeatability, caused by increasingly smaller 

work pieces and features (Fleischer et al. 2008). 

To cope with the challenge of developing and deploying suitable maintenance strategies, this article 

proposes an adaptive, simulation/prediction based method to determine optimal timeframes for 

maintenance activities. The following sections provide an introduction to the area of micro manufacturing 

and further describes the influence of size-effects as well as the constraints on maintenance strategies 

imposed by increasing measurement uncertainties. Section four describes the proposed method as an 

extension of classical quality control charts and summarizes two simulation studies conducted to evaluate 

the method in terms of production efficiency and its forewarning behavior. Finally the article concludes 

with a discussion and a description of future work. 

2 MICRO MANUFACTURING AND SIZE-EFFECTS 

While cold forming processes are well established in macro manufacturing, they cannot be scaled down 

for micro manufacturing without adaptations. A simple downscaling of those processes and the involved 

work pieces, tools and devices, is only possible up to a certain degree. With a decreasing scale, so called 

size-effects begin to emerge, requiring adaptations to the processes.  

 Vollertsen defines size-effects as “deviations from intensive or proportional extrapolated extensive 

values of a process, which occur when scaling the geometrical dimensions” (Vollertsen 2008). In this 

context, he defines intensive values as parameters, which are not expected to change due to a change of an 

object’s mass (e.g. its temperature or its density). In contrast, extensive values are expected to vary with a 

different mass (e.g. the object’s inertia force or its heat content). Basically, size-effects occur due to the 

inability to scale all relevant process parameters equally (Vollertsen 2008). For example, the downscaling 

of a metal sheet’s thickness can result in a varying density due to local defects, although it is considered 

an intensive variable. In macro manufacturing these variations can usually be neglected, while they can 

have strong influences in micro manufacturing. Moreover, technical limitations can further facilitate the 

occurrence of size-effects. For example, the downscaling of mechanical grippers is limited by technical 

factors. For very small work pieces, Van-der-Waals forces between the gripper and the work piece will 

eventually overcome the gravitational force. As a result, the gripper will not be able to release the work 

piece without aid. In summary, Vollertsen (2008) defines three distinct categories of size-effects (Figure 

1): 

 

 Density size-effects occur, when the density of a material is held constant while scaling down its 

geometrical dimensions. For instance, local deviations become more serious with a continuing 

miniaturization. Thereby, the distribution of local deviations within a material can lead to more 

delimited sets of good and bad parts. 

 Shape size-effects occur due to the increasing ratio of an object’s total surface area, compared to 

its volume. An example of this category is provided by the described imbalance of the adhesive 

force in relation to the gravitational force. 

 Micro structure size-effects occur because micro structural features (e.g. the grain size or the 

surface roughness) cannot be scaled down the same way as the geometrical size of an object. A 

consistent surface roughness can for example lead to a decreasing number of surface pockets, 

which reduces the effectivity of applied lubricants. 
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Figure 1: Categories of size-effects (Vollertsen 2008). 

 The occurrence of size-effects particularly affect the quality assurance. On the one hand, the 

processes themselves become harder to control, which requires more specialized methods for the quality 

control. On the other hand, maintenance requires specific strategies that can react quickly and assure a 

constant quality despite comparably high variations. Moreover, micro-structure size-effects can heavily 

influence the lifetime of tools used in micro cold forming. As indicated in Figure 1, these effects may for 

example induce inconsistencies when using lubricants, which leads to highly dynamic stresses on the 

tools and as a result, can render the prediction of a tools remaining lifetime complicated.  

3 MAINTENANCE STRATEGIES IN MICRO MANUFACTURING 

In general maintenance strategies can be subdivided into five categories (Figure 2). While reactive 

maintenance strategies generally only react to imminent or already occurring failures, preemptive 

strategies focus on the prevention of failures. Thereby, time based strategies schedule maintenance 

activities in fixed intervals, which can be adapted to the respective processes requirements. Condition 

based strategies rely on sensory information in combination with (mathematical) models, which describe 

and estimate the condition of a tool, component or machine and trigger maintenance activities if the 

estimated condition undercuts a selected threshold. Predictive strategies generally use the same type of 

condition models as condition based strategies. In contrast, they try to predict the development of the 

tools, components or machines condition, in order to schedule maintenance activities in advance. In some 

cases, these predictive strategies can include quality related aspects as target criteria. 

 

Figure 2: Classification of maintenance strategies (c.f. (Schenk 2010)). 
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 In comparison to macro manufacturing, the application of classical maintenance strategies is 

complicated in micro manufacturing as they require precise knowledge about the processes involved 

(Jacobs et al. 2009). The comparably high measurement uncertainties combined with the high variances 

within the processes behavior can easily result in unsuitable intervals for time based strategies. Too short 

intervals lead to high costs for maintenance induced down times and spare parts, while too long intervals 

increase the risk of breakdowns or impact the product quality. Condition based or predictive strategies 

usually require a very detailed descriptive model of the involved processes, tools, components or 

machines, which in many cases cannot be acquired in micro manufacturing, often due to the occurrence of 

size effects. In contrast, the application of reactive strategies suffers the same problems as unsuitable time 

based maintenance strategies. Resulting from the high production rates in micro cold forming, machine 

breakdowns lead to comparably high down time costs. Additionally, the high costs for specialized tools or 

spare parts require suitable maintenance strategies to maintain an efficient production. 

While most maintenance strategies focus on supervising and maintaining the condition of a tools, 

components or machines, others focus on determining the maintenance activities based on the quality 

criteria of the respective products. One particular strategy is the application of quality control charts (see 

e.g. (Gerboth 2002)) (Figure 3). Thereby, each process is assigned a number of quality control charts, 

each focusing on a particular, quality related statistical characteristic of the respective product. Examples 

for those characteristics can be a part’s diameter or the average roughness of a metal sheet after 

manufacturing. Each chart is assigned a desired value as well as a set of tolerances between which the 

value may vary. Based on these values, intervention boundaries are calculated which are used to 

determine required maintenance activities. During production, the respective characteristics are measured 

and noted on the corresponding quality control chart. Quality control charts trigger maintenance activities 

if the intervention boundaries are exceeded. In addition they use an additional set of rules for triggering 

maintenance activities, which are based on statistical improbabilities. Examples for these are the 

occurrence of a so-called trend (6 consecutive measurements which either increase or decrease) a so-

called run (9 consecutive measurements above or below the desired value) or a sequence of 14 points 

which are alternating above and below the desired value. In general, quality control charts are used as a 

part of the statistical quality control to trigger certain activities. Thereby, the design of appropriate charts 

in terms of distributions and boundaries is a challenging task (for more details on statistical process 

control and different types of quality control charts see e.g. (Oakland 2007). 

 

Figure 3: Quality control chart. 

 While quality control charts provide advantages for an application in micro manufacturing, they 

require detailed knowledge about the processes’ behaviors to correctly configure the respective 
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compensate for the high variances and measurement uncertainties. Finally, their reactive nature only 

leaves limited time to schedule suitable maintenance activities, without heavily impeding the production 

efficiency. 

4 PREDICTION BASED DETERMINATION OF MAINTENANCE ACTIVITIES 

In order to compensate for the described drawbacks of quality control charts, this section proposes an 

extension of the classical quality control charts. Therefore, a prediction component is added to the chart, 

substituting the statistically based rules (Rippel et al. 2015). As a result, possible defects can be detected 

in advance, while the charts high reactivity to failures is maintained. Furthermore, the extension only 

requires limited process knowledge to deliver good results. 

4.1 Prediction Based Extension of Quality Control Charts 

As with the original quality control charts, the prediction based extension uses a desired value for the 

assigned quality criterion, as well as defined tolerances. However, the intervention boundaries are 

replaced by a quality target, describing the probability of a work piece exceeding the tolerances. The aim 

is to predict at which point in time, the first work piece will exceed the tolerances with respect to the 

quality targets probability. In order to compensate for different measurement techniques, the prediction 

uses the notion of production batches. For example, the simulation study described in section 4.2 uses two 

different measurement techniques which require different measurement times. While the first technique 

can only measure one of every 120 pieces (batch size of 120) the other one can measure every single 

work piece (batch size 1).  

As with the classical approach, each measurement is noted within the chart. As a result of the 

processes own variances as well the measurement uncertainties, each point is associated with a combined 

uncertainty with respect to its precision. In order to smooth these values, the prediction component uses 

regression methods to estimate the systematic shift within the mean or expected values over the 

measurements. Moreover, it characterizes the variance of the sample’s measurements by calculating the 

residuals between the measurements and the regression curve. Using the regression curve as mean 

estimator and the calculated variance, the prediction component can derive an estimated distribution of 

possible values for each future measurement or work piece. At each time step, the prediction component 

uses these distributions to determine the first work piece that will exceed the tolerances with a probability 

equal or greater to the quality target (Figure 4). Particularly concerning batch wise productions, the 

component can decide if a batch can be manufactured, or if maintenance activities are required earlier. 

 

Figure 4: Prediction based quality control chart. 
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While the predictive quality control charts can use an arbitrary regression method, this article uses a 

simple polynomial least-square regression with different degrees of freedoms as mean estimator for the 

simulation studies described in sections 4.2 and 4.3. Thereby, a single degree of freedom tries to fit a 

linear function 𝑓(𝑥) = 𝑎𝑥 + 𝑏 while a second degree polynomial regression tries to fit a parabolic shaped 

function 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐. 

4.2 Simulation Study: Production Efficiency 

In order to evaluate the proposed approach, a simulation study was conducted. As the quality of the 

prediction relies on the frequency of the measurements, the variance induced by the process as well as on 

the uncertainty associated with the used measurement technique, the simulation study uses a linear 

regression based on the following assumptions: 

 

 The variance of the real values induced by the process follows a normal distribution and remains 

constant over time. 

 The variance induced by measurement uncertainties follows a normal distribution and remains 

constant over time. 

 The systematic shift of the real values induced by tool wear can be approximated by a linear 

function. 

 

The simulation scenario consists of a single production process which is directly followed by the 

quality inspection process. The scenario assumes a constant production rate whereby the speed of the 

quality inspection varies. As a result, the differently sized batches are formed, depending on the selected 

measurement technique. For each batch, the respective measurement is considered as a surrogate for all 

work pieces contained. The scenario’s order release strategy is selected to guarantee a consistent, full 

utilization of the production machine.  

With respect to the quality control, two functions are implemented. First, after retrieving the 

measurements from the quality inspection process, the corresponding batch is either classified as good or 

bad. In case of a rejection, the batch is discarded and the appropriate amount of work pieces is queued for 

re-production. The second function is the triggering of maintenance activities. Therefore, two different 

scenarios are used. The first scenario uses the predictive quality control charts described earlier, in order 

to decide if another batch can be manufactured or if maintenance activities are required. The second 

scenario uses a time based maintenance strategy. The described production system was simulated using 

the discrete-event simulation jasima (https://bitbucket.org/jasimaSolutions/jasima).  

Table 1: Scenario configuration 

 Parameter Value 

Scenario Number of intact parts 100 000 

Target Value / Tolerance 500µm ± 10µm 

Repeated simulation runs 25 

Production Diameter N(µ=500µm, std.dev= 2µm) 

Average shift of the expected 

value 

10µm after 43 200 pieces (3 hours of 

production) 

Process duration 0.25 sec (240 pieces/min) 

Downtime for maintenance 1 hour 

Quality  Laser microscope Plenoptic camera 
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Inspection Process duration [s] 30 sec 0.1 sec 

Resulting batch size 120 pieces 1 piece 

Measurement uncertainty [µm] ±0,8 (±3std.dev) ±3 (±3std.dev) 

Quality target max. 1% rejected parts 

 

The simulation’s target values are production time for 100 000 good parts, as well as the rejection 

rate. The simulation assumes that the production machine produces work pieces with a normally 

distributed diameter of 500µm with a standard deviation of 2µm. Tool wear causes the mean value of this 

distribution to shift by 10µm after three hours of production at full capacity (43 200 produced work 

pieces), resulting in more than 50% of the produced work pieces to exceed the tolerances after this time. 

Performing maintenance at the production machine resets these values back to their origins. The only 

parameter to select for the predictive quality control charts is the quality target. This value describes the 

highest allowed probability for a work piece to be defect. For this simulation study the quality target was 

set to 1%. In terms of the quality inspection, two different measurement techniques have been selected 

exemplarily referring to (Weimer et al. 2014). Thereby, the laser microscope delivers highly precise 

measurements at a comparably slow measurement speed (one of each 120 work pieces), while the 

plenoptic camera is capable to measure every work piece at the cost of precision. The parametrization for 

the simulations is summarized in Table 1. Due to the different measurement speeds, batches of work 

pieces are constructed, whereby the last piece’s measurement is considered representative for the overall 

batch. Thereby, the plenoptic camera is fast enough to measure every single work piece resulting in a 

batch size of one. In contrast, the laser microscope can only measure one of every 120 work pieces, 

resulting in a batch size of 120. 

In order to evaluate the performance of the predictive quality control charts, a series of simulation 

runs of the described scenarios were conducted using a time based maintenance strategy with fixed 

intervals. Thereby, the production machine underwent maintenance after producing e.g. 5 000 or 10 000 

work pieces. The results for these simulation runs can be seen in Figure 5a.  For each of these simulation 

scenarios, the production time as well as the rejection rate were recorded. Using the settings in Table 1 

(mean, standard deviation, shift, tolerances and quality target) an optimal maintenance interval of 23 101 

work pieces was calculated and used as a benchmark. At this point the highest probability for a work 

piece to exceed the tolerances is at 1%. As can be seen in Figure 5, the overall rejection rate still remains 

far below the set quality target. This can be accounted to the fact, that the quality target limits the 

maximum probability of a work piece to exceed the tolerances. Previous work pieces retain lower 

probabilities due to the continuous shift assumed for these simulations. 

Figure 5b summarizes the results of all simulation runs, including the predictive quality control charts 

using the laser microscope as well as the plenoptic camera as a reference. All provided numbers represent 

the average over all 25 repetitions for the corresponding simulation scenario. At this, the predictive 

strategy sometimes triggers 5 maintenance activities, resulting in the uneven results provided in the table. 

Compared to the optimal benchmark, the predictive approach achieves to sustain the quality target with 

only a slight increase in performed maintenance activities. Thereby, the overall production time increases 

by less than 2%. Comparing the measurement techniques, the faster technique results in a reduced 

rejection rate compared to the slower one. This can be accounted to the fact, that each single piece was 

measured and discarded compared to complete batches. Nevertheless, both measurement techniques only 

result in very small differences when it comes to the number of maintenances performed and the rejection 

rate.  
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(a)                                                                                  (b) 

Figure 5:(a) Results for constant intervals. (b) Simulation results. 

As a result, the simulation study shows that the predictive quality control charts can deliver 

comparable results to an optimized maintenance strategy. Nevertheless, for the charts, only a quality 

target has to be selected. In contrast, the deduction of optimal maintenance intervals requires a very 

detailed knowledge about the processes and measurement techniques, which can rarely be acquired in an 

industrial environment. 

4.3 Simulation Study: Forewarning Times and Prediction Behavior 

The simulation study described in the last section focused on benchmarking the proposed predictive 

approach in terms of production efficiency. Nevertheless, it assumed a simplified linear trend to describe 

tool wear and as a result used a linear regression method. Moreover, the simulation study only used the 

predictive approach to decide if the next batch can be manufactured safely. 

In order to assess the approaches behavior with respect to forewarning times and prediction 

accuracies for more realistic wear behaviors, a different simulation study is presented in this section. A 

high forewarning time is required to enable an appropriate planning and integration of maintenance 

activities into the production schedule. Thereby, the predictive quality control charts use the provided 

measurements to predict when (in how many measurement cycles) the quality target will be exceeded and 

thus, when maintenance is required. A higher forewarning time enables a more efficient scheduling of 

appropriate maintenance activities, while shorter forewarning times can result in more unsuitable 

schedules, leading to increasing machine down times. In contrast to the first study, this one only focuses 

on the measurements itself and the corresponding predictions of required maintenance activities. 

Therefore, the simulation generates normally distributed measurement values, following a predefined 

trend with a set standard deviation (including process variations and measurement uncertainties). To 

increase the prediction accuracy for commonly found “saw-tooth” shaped curves, a quadratic polynomial 

regression (two degrees of freedom) method is used for the predictive quality control charts and compared 

to a linear polynomial regression (only one degree of freedom). Each simulation was repeated 20 times to 

compensate for random effects. The overall simulation values were set to a target value of zero with a 

tolerance of ± 10 and a quality target 1%. With each additional simulated measurement, the quality 

control chart estimates at which measurement the tolerances will be exceeded. In general, sixteen 

different scenarios are simulated. Thereby, two linear and two non-linear (quadratic) trends are used to 

simulate tool wear, either as a simplified linear trend or as a “saw-tooth” shape, commonly found in 

practice as a result of tool wear (compare Figure 6 for an example on the curve shape). Each of these 

functions is simulated with two different values for the variance (standard deviation) of the corresponding 

normal distribution. Thereby, the standard deviation always corresponds to 5% and 10% of the tolerance 

to represent different levels of process stability and/or measurement precisions. 
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Figure 6: Exemplary simulation result for 𝑁(0.001 𝑥2; 0.5): Measurements (Dots), expected values (blue 

line), confidence interval (green lines). 

 Table 2 summarizes the simulation results for these configurations. Thereby, the simulation assumes a 

constant timeframe between each measurement so that the measurements index corresponds to a fixed 

point in time. The table depicts the measurement at which the tolerance intervals are exceeded the first 

time and the quality target is violated (Maintenance at). The second column (predicted at) contains the 

index of first measurement, after which the maintenance activity is predicted steadily. Thereby, the 

prediction is considered steady, if no more than two consecutive predictions vary strongly (±2 

Measurements) from the required maintenance. The forewarning columns depict the number of 

measurements between the first prediction and the required maintenance, as well as the percentage of 

(life-)time that remains when the forewarning was issued. At this, a forewarning issued at measurement 6 

of 10 would result in a percentage of 40%. 

Table 2: Simulation Results 

Function Sigma 
Maintenance 

at 

Predicted 

at (average) 

Prediction 

Std.-Dev. 

Forewarning  

[# Measure-

ments ] 

Forewarning 

[% of time] 

Degrees of Freedom: 2 (Polynomial/Quadratic Regression) 

0.001 𝑥2 
0,5 92 51,2 8,51 40,8 44,35% 

1 82 54,7 11,93 27,3 33,39% 

0.005 𝑥2 
0,5 41,5 19,7 3,79 21,8 52,59% 

1 37,5 22,85 3,76 14,65 39,05% 

0.1 𝑥 
0,5 84 56,55 8,82 27,45 32,69% 

1 69 59 6,93 10 14,44% 

0.05 𝑥 
0,5 167 123,75 18,22 43,25 25,90% 

1 135 115,3 13,28 19,7 14,64% 

Degrees of Freedom: 1 (Linear Regression) 

0.001 𝑥2 
0,5 97,50 86,35 2,06 11,15 11,44% 

1 92,00 83,90 3,74 8,10 8,80% 

0.005 𝑥2 
0,5 44,50 36,25 1,66 8,25 18,53% 

1 41,50 33,60 4,22 7,90 19,00% 

0.1 𝑥 
0,5 86,00 33,25 9,06 52,75 61,34% 

1 70,50 40,15 9,51 30,35 43,11% 

0.05 𝑥 
0,5 170,00 69,15 11,17 100,85 59,34% 

1 141,00 96,40 13,93 44,60 31,63% 
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As it can be seen in Table 2, the predictive approach results in relatively high forewarning times if the 

correct regression technique is used (quadratic for the non-linear functions, linear for the linear functions). 

Thereby, the wrong assumption reduces forewarning times to less than half or even further. Nevertheless, 

a forewarning was triggered for every simulation run. As a result, the wrong assumption will strongly 

decrease the advantage of long forewarnings required for efficient maintenance planning, but will still 

prevent violations of the quality target. In general, the forewarning time strongly depends on the selected 

standard deviation (sigma). Thus, a more stable process can be predicted more easily.  

5 CONCLUSION AND FUTURE WORK 

This article described and evaluated a prediction based adaptation of quality control charts for the 

deduction of required maintenance activities in micro manufacturing. The approach uses measurements of 

the manufactured products in order to predict at which measurement, work piece or batch of work pieces 

the selected tolerances will be exceeded with a predefined probability. Thereby, the approach only 

requires very limited knowledge about the underlying processes. In a first simulation study, the approach 

is evaluated in terms of production efficiency and benchmarked against an optimized, interval based 

maintenance strategy. The second simulation study aims at evaluating other characteristics of the 

approach, in particular the forewarning time. As shown by these studies, the approach performs quite well 

in terms of the rejection rate and the number of maintenance activities issued. In terms of the forewarning 

time, the performance strongly depends on the selection of a suitable regression method, as well as on the 

processes stability.  

Although the scenarios presented in this article depict artificial scenarios and do not represent real 

world applications, they cover a broad range of possible scenarios applicable to real world applications. In 

particular the variation of batch sizes (e.g. due to different measurement systems), process variances 

(induced by more or less stable manufacturing processes and measurement systems), and trends 

(particularly the different extends of “saw-tooth” curves) provide a good insight on the charts behavior in 

real world applications. As can be concluded from the results in Table 2, the predictive approach performs 

best, if the underlying process is relatively stable with a suitable tolerance field. If either the tolerances 

decrease or the variance increases, the uncertainty within the prediction can lead to additional, 

unnecessary maintenance activities. In such “unstable” cases, it can be advantageous to introduce 

additional quality controls or quality control strategies and trigger these based on the prediction results 

instead of concrete maintenance activities. In addition, increasing batch sizes can result in increasingly 

high rejection rates or defect work pieces as complete batches are discarded or classified as good parts. In 

such cases, additional quality controls of single work pieces can prove advantageous if the probability for 

defects nears the tolerance. Therefore, the approach can easily extended to issue such activities when 

reaching predefined thresholds. Future work will focus on the evaluation of this approach under real 

conditions. Furthermore, additional techniques for the regression and the estimation of the confidence 

intervals will be evaluated. 
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