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ABSTRACT

In the poultry processing industry demand and supply are still growing in volume and diversity, which
requires more processing capacity, flexibility and smarter control. This paper focuses on the fillet batching
process. To minimize the giveaway of fixed-weight fillet batching the right choices on layout, buffer sizes,
batch sizes and batch allocation policies are of great importance. We develop a simulation model to support
such decisions on design and control. The model is used (i) to determine buffer and grader sizes, (ii) to
optimize batch allocation in a dedicated layout, (iii) to compare a dedicated to a flexible layout and (iv) to
assess the impact of smart allocation policies. In particular we find that significant reductions in giveaway
can be achieved by employing so-called index policies in a flexible layout.

1 INTRODUCTION

Poultry processing is the industry where live broilers are processed to finished products. Specialized
equipment is used by poultry processing plants to divide broilers into parts and package them. Naturally,
the choice for producing chicken products depends on the demand from the market, which is made up out
of supermarkets, fast food chains, restaurants and hotels amongst others. A processing plant using high-end
equipment is typically capable of processing 200.000 broilers daily over a 16 hour period. Demand for
end products ranges from whole broilers, to various types of wing, leg and fillet products and is steadily
growing and expanding. Simultaneously, the supply of broilers is diversifying in terms of breeds, feed
and living conditions. The research in this paper is conducted in close collaboration with Marel Poultry
(Marel Poultry 2017c), which is a company that produces high-end poultry processing lines for the poultry
processing industry. At Marel Poultry, the demand for more capacity, flexibility and control of these lines
is still growing. As a result, Marel Poultry has expressed the need for tools to develop and quantify the
benefits of new equipment, layouts and control strategies for poultry processing operations.

One of the products produced in a plant are batches of chicken breast fillets, which are a popular
product in US and European markets. Each batch is a package containing fillets, which are produced in
several steps using different types of equipment. Firstly, the production process starts with a continuous
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flow of whole broilers (Figure 1a) supplied by the distribution process. Secondly, the broilers are cut up
in the cut-up process to produce fronthalves (Figure 1b) or breastcaps (Figure 1c). Thirdly, the fronthalves
or breastcaps are filleted in the filleting process to produce breast fillets (Figure 1d) and lastly the fillets
are batched together in the batching process to produce batches of breast fillets.

(a) Broiler (b) Fronthalf (c) Breastcap (d) Breast fillet

Figure 1: Broiler products.

A schematic overview of the entire fillet batching process is shown in Figure 2a. The distribution line
that supplies the flow of broilers has a fixed capacity and two cut-up lines are necessary to process all
products. Similarly, two filleting lines are necessary to process all products coming from a cut-up line,
and one batching machine is necessary to process the flow from a filleting line. In the current layout, the
outflow from a filleting line is dedicated to a single batching machine. This layout will be referred to as
the dedicated layout. However, Marel Poultry wants to explore the benefits of a more flexible concept in
which all flows of fillets are merged and redistributed over the available batching machines. The schematic
process layout of this flexible layout can be found in Figure 2b.
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(a) Dedicated layout (current).
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(b) Flexible layout (concept).

Figure 2: Process overviews.

Batching machines can make two types of batches: fixed-weight and catch-weight batches. The former
requires batches to have a minimum weight each, whereas the latter requires an average weight per batch
over an entire production order. In this paper, we focus on the production of fixed-weight batches, where
additional weight over the target weight, or give-away, is not paid for by customers. This give-away is the
primary key performance indicator (KPI) in the fillet batching process.

The objective of this paper is to compare the performance of the dedicated layout to the flexible layout.
In particular we aim to address design issues such as the size of buffers and graders and operational control
issues such as the allocation of batch sizes in a dedicated layout and the dynamic allocation of fillets to
batches. To this end we develop a simulation model for both process layouts and the model is created
such that various algorithms for fillet allocation can be easily implemented and evaluated. Ultimately the
performance of both layouts will be compared in terms of giveaway.

We summarize our contributions as follows. We study the real-time (on-line) variant of the bin-covering
problem with a weight distribution based on customer data, and show that using smart algorithms and a
flexible layout, a significant gain in performance can be achieved over dedicated layouts. To the best of our
knowledge, we are the first to link the real-time bin-covering decisions with index policies, and consider
an on-line problem with multiple batch sizes with realistic weights and limited available bins. Lastly, the
paper provides insight to practitioners in designing and controlling their multi-machine batching operations.
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The paper is organized as follows. In Section 2, the processes and control of a plant are described.
The simulation model is outlined in Section 3. The results of the simulation are provided in Section 4 and
our conclusions and recommendations for future work are summarized in Section 5.

2 FILLET BATCHING PROCESS

Product weight is an important factor in processing poultry and is discussed in Section 2.1. Next, the
allocation decisions between processing lines will be considered. Lastly the production steps, and the
processes leading up to them will be described in more detail.

2.1 Product Weight

Product weight is an important variable in processing lines for two reasons discussed below. Firstly, the
weights placed in a batch determine the giveaway. Secondly, because processing lines are mechanically
limited they can only handle a certain range of weight. Therefore, they are calibrated intelligently so that
all lines together cover the entire weight range. This is necessary, because if a product is too light for a
line, not all of the desired meat is cut off a carcass, which leads to lower yield. On the other hand, if a
product is too heavy for a line, bone can be cut along with the meat leading to low quality or reworked
products. Both situations lead to lost revenue. In addition to calibrated lines, buffers with a fixed size
are used to hold excess supply. Furthermore, Floating Weight Ranges (FWR) are used in the allocation
from distribution to cut-up, and cut-up to filleting lines as shown in Figure 3. An FWR is centered around
the weights which split the product flow and work as follows. Products below a FWR will be allocated
to the line with the lighter calibration, whereas products above this range will be allocated to the line
with the heavier calibration. Products within the floating-weight range are allocated to the line with the
emptiest buffer. This behavior is illustrated in Figure 3. Here, a Normal distribution of weights is used
for illustration purposes, a hatched area indicates a FWR and open squares indicate buffers. It is assumed
that a flow is balanced over its two downstream lines.

Batcher 1

Batcher 2

Batcher 3

Batcher 4

Distribution Cut-up Filleting Redistribution Batching

Figure 3: Example distribution of weight over cut-up and filleting lines.

The weight of broilers depends on a variety of factors. These include the breed of a broiler, what it has
been fed, which season it is and if a flock has had a disease amongst others. Furthermore, there are natural
differences between individual chickens. The result is that each weight range within a flock has a given
frequency, resulting in a probability distribution of weight. A customer of Marel Poultry has provided us
with information about the weight distribution of flocks they have processed, where three classes of flocks
are distinguished: light, medium and heavy. Each broiler weight is allocated to a weight bin with 50 grams
of size. The relative frequency of the combined broiler weights per weight bin of the light flock (dashed
line) is shown in Figure 4. Using the sample mean and standard deviation of the empirical distribution, a
Normal probability distribution is fitted (dotted line). One can observe that both distributions closely match,
justifying the assumption that broiler weights are Normally distributed. It is noted that these weights only
correspond to whole broiler weights, while the focus lies on breast fillets. A rule of thumb is that 25% of
this weight is breast fillet, or 12.5% of the total broiler weight per fillet.
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Figure 4: Weight distribution of light flock and fitted Normal distribution.

In conclusion we assume that the supply of broilers is Normally distributed, three weight distributions
are considered, each fillet weighs 12.5% of the total broiler weight and each broiler yields two identical
fillets. Lastly it is mentioned that a steady-state situation is assumed, where the weight distribution does
not change over time, nor do the sizes of the batches that are being produced. This is a realistic assumption
since flocks and orders are large and can take hours to process and produce.

2.2 Physical Processes

Flocks of broilers are delivered to a processing plant in trucks after which a flock is placed in the primary
process. Firstly, the broilers are slaughtered. Secondly, the broilers are hanged in shackles by their feet,
defeathered, eviscerated and cooled. After cooling down, broilers are moved to the secondary process. In
this area, the chickens (Figure 1a) are cut up into different parts and processed to become the products one
can find in supermarkets. The part that we will focus on are breast fillets (Figure 1d), which are produced
by processing fronthalves (Figure 1b) or breastcaps (Figure 1c) depending on the equipment used.

After entering the secondary process, broilers are hanged in the distribution line that divides the broilers
over two cut-up lines. This is the first step that is considered in the fillet batching process, as shown in Figure
2a. Within a cut-up line either fronthalves or breastcaps are produced, which are transported to filleting
lines by conveyor. The filleting process uses Automated Modular Filleting lines (AMFs) (Marel Poultry
2017a) or Front Half Filleting lines (FHFs) (Marel Poultry 2017b) to process breastcaps or fronthalves
respectively. However, the end result is the same: two fillets are obtained from each breastcap or fronthalf
and placed on a conveyor, which transports them to a batching machine. The capacity of two filleting lines
is necessary to process the entire flow of breastcaps or fronthalves coming from a cut-up line.

Several types of batching machines are used in practice, but our focus will be on graders as they are
commonly used to batch fillets. Graders operate as follows: fillets arrive on a conveyor, are weighed and
moved into available bins by flaps. Each bin contains a batch in progress. When a batch is completed,
the bin containing the batch is emptied so the empty bin can be used again. Each batch is packaged and
labeled before it is placed in inventory to wait for shipping. However, the scope of this paper is up and
including the emptying of bins. The reader is referred to Figures 2a and 2b for a schematic overview of
the process steps described in this section.

3 SIMULATION MODEL

In this section the implementation of the system into a simulation model is presented. The modeling of
arrivals of products, the graders and the batching process, the allocation of products to graders and the
allocation of products to bins are discussed. The software used to simulate the system is Matlab.

3819



Peeters, Martagan, Adan, and Cruysen

3.1 Product Arrivals

In Section 2 the usage of FWR and their effect on the allocation of weights in the dedicated layout was
discussed. A visualization of these ranges for a given distribution is shown in Figure 5a. In the figure, the
hatched areas indicate the FWR and the numbers indicate which filleting line a product from this would be
processed by, with 1 the lightest and 4 the heaviest calibration. The vertical dashed lines indicate where
the cumulative density of the distribution is 0.25, 0.5 and 0.75 respectively. This balances the load evenly
among the four graders. The center FWR corresponds to the allocation from distribution to cut-up lines,
and the outer FWR correspond to the allocation from cut-up to filleting lines.

1,2

2,3

3,4

1

2 3

4

(a) Illustration of floating weight ranges.

1/Rsupply

Grader 1

Grader 2

Grader 3

Grader 4

1/Rgrader

(b) Dedicated allocation weight distributions.

Figure 5: Illustration of floating weight ranges in a dedicated layout.

The arrival of products is modeled as follows for the dedicated layout. Fillets are generated in pairs from
the weight distribution, where weights are generated from a light, medium or heavy Normal distribution
N (µ, σ) with mean µ and standard deviation σ. Their parameters are N (142.1, 21.4), N (181.9, 31.0) and
N (232.3, 40.7) respectively.

If the supply line has a capacity of Rsupply products per second every 1/Rsupply seconds a pair of fillets
is generated. They are immediately placed in the buffer that corresponds to their weight if their weight falls
outside a FWR. If their weight falls within a FWR, the pair is allocated to either buffer that correspond
with the range with probability 1/2. It is assumed that the buffers in the cut-up and filleting lines are large
enough so that all products falling within a certain range will be allocated to the buffers associated with
it. Furthermore, it is assumed that in the dedicated layout, the grader buffers have infinite size.

For a given distribution and FWR, all products falling within an FWR are allocated to either downstream
line with probability 1/2 on average. Using Figure 5a as a reference where a FWR of ±0.075 of the
distributions cumulative density function is used, the expected input per grader is illustrated in Figure 5b.
Here the dashed lines correspond to the shape of the original distribution.

For the flexible layout, fillets are again generated in pairs from the weight distribution, but can be
allocated individually and freely over the buffers of the graders. However, we want to use a finite buffer
size here. If the allocation algorithm attempts to send many products to the same grader, the other graders
may be starved and a limited buffer size naturally controls this behavior.

3.2 Graders and Batching

All graders allocate products in the same manner, have the same capacity, the same number of bins (8) and
the same buffer size. The reasoning for the number of bins can be found in Section 4.1. The combined
capacities of all graders is equal or greater to the arrival rate of products to ensure stability. As soon as
there is a product in a buffer, the corresponding grader can allocate it to a bin immediately. In order to
incorporate the grader capacity of Rgrader products per second, the grader will wait 1/Rgrader seconds before
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being able to allocate the next product. All bins within a grader have the same target weight B and are
cleared immediately when this weight is reached or surpassed.

A grader makes use of an algorithm to decide in which bin to place each arriving fillet. It is continuously
trying to minimize the giveaway of each bin produced. This type of problem is known as the bin-covering
problem.
Definition 1 The bin-covering problem is defined as follows. For a given list L = (a1, . . . , an) of items
(where ak denotes the item size and k is the item index), with ak ∈ (0, 1],∀k ∈ {1, . . . , n}, the goal is to
pack all items into a maximum number of bins of size 1, such that each bin is at least filled to 1.

The bin-covering problem is considered off-line if all arriving items can be sorted and are known in
advance, or on-line if the items arrive in some given order and must be allocated to a bin in that order.
Next, a literature review is provided on the on- and off-line variants of the bin-covering problem, as well
as index policies. The off-line variant of the bin-covering problem is reviewed first. Assmann et al. (1984)
is the first to analyze this problem, and considers Parametrized First-Fit Decreasing (FFD(r)), where the
parameter r ∈ (1, 2) is the modified bin size. After packing, bins below size 1 are combined. Their Iterated
Lowest-Fit Decreasing algorithm maximizes the minimum bin level for a given set of items and bins. Csirik
et al. (1991) modifies the Pairing algorithm from Knödel (1981) to obtain the Pairing Heuristic. Runarsson
et al. (1996) use a genetic algorithm to solve the bin-covering problem.

On-line bin-covering has received less attention than the off-line variant. Assmann et al. (1984)
considers the simple Next-Fit (NF) algorithm, which was adopted directly from its bin-packing counterpart.
Arriving items are placed into a single bin until its target weight is reached, then closed, after which a
new bin is opened. Csirik et al. (2001) extend the Sum-of-Squares (SS) bin-packing algorithm from Csirik
et al. (1999) to bin-covering. More recent efforts include Asgeirsson and Stein (2006) and Asgeirsson and
Stein (2009), who use Markov chains to model the bin-covering problem for a given distribution of items.
Lastly we mention Ásgeirsson (2014) who introduces the Prospect (PR) algorithm, which uses information
on the item distribution to estimate how easy it will be to fill a bin with small giveaway, as a function of
the empty space left in it. We note that not all algorithms can be translated to a K-bounded variant, deal
with multiple bin sizes at the same time, or achieve good performance when a subset of the item range
(0, 1] is used.

Index policies, also known as Gittins index policies play an important role in the theory of Multi-armed
bandit problems. The Gittins index introduced by Gittins (1979), gives an optimal policy for maximizing
the expected discounted reward. An index is a direct measure of the expected reward that can be achieved
from one machine, and choosing the maximum index at each period corresponds to the optimal policy.
The PR algorithm is an example of an index policy, where the prospect (index) of a given bin gives a direct
measure of the expected giveaway.

In our study, we show that certain bin-covering algorithms can be characterized as index policies.
Additionally, most research focuses on the standardized bin-covering problem with a uniform weight
distribution, a single batch size and unlimited bins. Instead, we address the bin-covering problem in
a multi-batch size setting with product weights seen in practice and limited bins, for which there exist
few results. Insight is provided into the effectiveness of two different bin-covering index policies and a
benchmark policy. By comparing a dynamic and a dedicated layout, we show the added value of a dynamic
layout, and demonstrate how different algorithms can make use of the added flexibility. Lastly, the effect
of batch size and weight distribution is analyzed in a simulation study.

3.3 Index Policy

Let us now describe an index batching algorithm for the on-line K-bounded bin-covering problem that is
applicable to graders. Consider a probability distribution that characterizes the weight of fillets. The minimum
weight encountered is denoted by wmin and the maximum weight encountered by wmax. Weights can only
take on discrete values and the entire set of weights encountered is denoted by W = {wmin, . . . , wmax}.
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The probability that some weight is encountered is denoted by p(w) for all w ∈ W . It is noted that∑
w∈W p(w) = 1.

Clearly, when a batch is completed and its target weight B is reached or surpassed, the giveaway is
the weight in the batch minus the target weight. We define an index c(v,B) for each batch. The index
indicates the expected give-away, given that its current content is v. Given that all full bins are closed
instantaneously when they reach a weight of B or above, Equation (1) gives the giveaway of a completed
bin.

c(v,B) = v −B, v > B − 1. (1)

Let w denote the random weight of an arriving item and consider a batch with index c(v,B) that is not
yet completed (v < B). The index for this batch can be computed by c(v,B) = E(c(v + w,B)) to
obtain the expected giveaway given a random arrival. In fact, all indexes can be computed recursively for
v = B − 1, B − 2, . . . , 0 by using Equation (2).

c(v,B) = E(c(v + w,B)) =

wmax∑
w=wmin

p(w)c(v + w,B), for v = B − 1, B − 2, . . . , 0. (2)

It is noted that c(0, B) immediately yields the expected giveaway for a bin of size B given a random
allocation of products. In fact, c(0, B) corresponds directly with the expected giveaway if a NF algorithm
were used (i.e. arbitrary allocation). The expected costs have now been defined for any weight in a bin.
Suppose a grader is equipped with bins K = {1, 2, . . .}, and an item with weight w ∈ W arrives at this
grader. Furthermore, the weight in a bin is denoted by vk for all k ∈ K. Using this information the
expected giveaway for all bins after allocating w weight to it. This observation leads us to the Index Policy
(IP) algorithm as defined by Algorithm 1. The expected giveaway can be calculated for any batch size and
any item weight distribution.
Algorithm 1 The Index Policy (IP) for K-bounded on-line bin-covering consists of the following steps.

1. Using Equations (1) and (2), recursively calculate the indexes c(v,B) for all possible weights in a
bin v with target weight B. Go to step 2.

2. When an item with weight w arrives to a grader with K bins, that contain some weight vk each,
calculate the indexes for all bins c(vk + w,B). Go to step 3.

3. Allocate the item to the bin that yields the minimal index c(vk + w,B). Return to step 2.

As noted before, the PR algorithm can also be viewed as an index policy. The main difference with
the above algorithm is that the index function c(v,B) is replaced by a more advanced one.

3.4 Allocation to Graders

In the flexible layout it must be decided to which bin and to which grader to allocate an arriving fillet.
Again the allocation should be such that it minimizes giveaway. Simple policies such as round robin or
emptiest buffer allocation can be used, but are not expected to yield good performance as they do not
utilize any information from the weight distribution or fullness of bins. Instead, we propose an extension
of the IP algorithm, where multiple batch sizes are considered in parallel. This is the case when products
can be allocated to graders that are producing different batch sizes. Let G = {1, 2, . . .} denote the graders
to which we can allocate an arriving product, Bg the batch size each grader g ∈ G is producing, and vg,k
the weight contained in bin k of grader g. Next, an Index Policy for Multiple bin sizes (IPM) is defined in
Algorithm 2. Within the IPM algorithm fillets are allocated directly to a bin, rather than a grader.
Algorithm 2 The Index Policy for Multiple bin sizes (IPM) for K-bounded on-line bin-covering consists
of the following steps.
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1. Using Equations (1) and (2), recursively calculate the indexes c(v,Bg) for all possible weights in
a bin v for target weights Bg for all g ∈ G. Go to step 2.

2. When an item with weight w arrives to be allocated to a bin in any grader g ∈ G, that contain some
weight vg,k each, calculate the indexes for all bins in all graders c(vg,k + w,Bg). Go to step 3.

3. Allocate the item to the bin that yields the minimal index c(vg,k + w,Bg). Return to step 2.

Both the IP and IPM algorithms can be used on-line and require the calculation of the indexes beforehand.
In the order of B · (wmax − wmin) calculations are needed to obtain all indexes for bin size B.

The described model and algorithm can be applied to more general settings. While four graders are
considered, the problem can easily be adapted to an arbitrary number of graders with an arbitrary number of
bins. Furthermore, even though the problem is described in the context of the poultry processing industry,
it is common in the food processing industry as a whole, where fixed-weight packages play an increasingly
dominant role. On the other hand, a bin-packing adaptation will find applications in other industries, such
as the the postal & parcel industry, where sorting facilities allocate randomly sized packages to a fixed
number of trucks.

4 RESULTS

In this section the research questions posed in the introduction will be answered using the simulation model
introduced in Section 3. First, a suitable grader size will be determined. Secondly, for the dedicated layout
it will be answered which batch size should be produced by which grader. Thirdly, a suitable buffer size
for the flexible layout will be determined. Lastly, the performance of both layouts will be compared using
the NF, IP and PR algorithms.

In this section, the performance of the system will be evaluated through four batch size combinations,
or scenarios. Let B = (B1, B2, B3, B4) denote the list of batch sizes that have to be produced on one
of four graders. The four scenarios considered are given below in Table 1, where batch sizes are values
typically encountered in practice. The first and third scenarios have a large spread in batch sizes with a
low and high average weight respectively, whereas the second and fourth scenarios have a small spread
with a small and large average weight respectively.

Table 1: Batch size combinations.

Scenario B1 B2 B3 B4

1 400 600 800 1000
2 400 400 600 600
3 1000 1500 2000 2500
4 2000 2000 2500 2500

4.1 Grader Size

Graders come in different shapes and sizes. Graders with more bins are capable of creating more batches
simultaneously so that the batching algorithm has more freedom of choice. In order to select a suitable
grader size, the system is simulated to evaluate its performance. Scenario 1 is used in the simulation runs.
In addition, the heavy weight distribution is used, the flexible layout is considered and the IP algorithm
is used. 100.000 batches per simulation run are generated of which the results can be found in Table 2,
where all digits shown are correct.

Table 2: Percentage giveaway for scenario 1 and the heavy distribution using IP.

Grader Size 1 2 4 6 8
Giveaway (%) 9.25 8.24 8.02 8.00 8.00
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One can observe a strong decrease from 1 to 2 bins, another decrease from 2 to 4 bins and a small
decrease from 4 to 6 bins. For the IP algorithm it would suffice to use 6 bins per grader. However,
Ásgeirsson (2014) recommends using 8 bins to optimize the performance of the PR algorithm. Therefore,
in order to obtain a fair comparison 8 bins per grader are used in all following simulation runs.

4.2 Order Allocation

When considering the dedicated layout, we have to determine which grader should produce which batch
size to minimize giveaway. Let N1, N2, N3 and N4 denote the expected weight distributions on the four
lines due to FWR (see Section 3). The indexes c(0, Bi) for i = 1, 2, 3, 4 for each of these distributions
immediately yield the expected giveaway if the NF algorithm were used. However, it is necessary to use
simulation to compute expected giveaway values for other algorithms. Therefore, we obtain the expected
giveaway for the IP and PR algorithms by means of simulation of a single grader. The PR algorithm will
serve as a benchmark algorithm.

Next, we describe the procedure for scenario 1 and the light distribution. Each combination of batch
size, algorithm and quarter of the weight distribution resulting from the application of FWR is simulated
for 50.000 bins for the NF and IP algorithms and for 10.000 bins each for the PR algorithm. The giveaway
as a percentage of total processed weight is given in Table 3. The reason that less bins have been generated
for the PR algorithm is that the algorithm requires computationally-intensive tuning. We can observe that
for most combinations the average giveaway decreases for larger batch sizes. The reason is that the item
size relative to the batch size decreases. Additionally, the giveaway can be very sensitive to the distribution
used. For example, the giveaway when using the PR algorithm on a batch size of 400 yields a giveaway
ranging from 1.81% to 19.36%.

Table 3: Percentage giveaway for the dedicated layout using the light distribution in scenario 1.

Batch size NF IP PR
N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4

400 17.35 14.08 12.16 25.08 14.25 6.30 10.85 19.88 12.64 1.81 10.87 19.36
600 10.73 12.06 13.05 11.21 4.13 10.74 7.30 10.02 3.38 10.70 1.84 10.02
800 6.33 6.94 12.10 6.46 3.09 3.58 9.99 4.04 3.15 1.17 6.48 4.05
1000 6.01 7.55 4.91 8.44 3.00 6.04 4.47 4.21 0.60 3.77 4.50 0.68

Next, the batch size must be allocated such that the average giveaway is minimized. This turns out to
be an assignment problem.
Definition 2 The assignment problem is defined as follows. Suppose there are n workers that can perform
one of n different tasks. Let C(i, j) denote the cost of worker i performing task j. The goal is to allocate
workers so that the total cost of performing all tasks is minimized.

In our case the workers are the graders, and the tasks are processing the four dedicated weight
distributions. This problem can be solved by brute-force search, or by using the Munkres algorithm
developed by Munkres (1957) for large problem instances. The optimal ordering of batches produced
from distributions [N1, N2, N3, N4] are [600, 400, 1000, 800] for NF, [600, 400, 1000, 800] for IP and
[800, 400, 600, 1000] for PR. These values have can be found in bold in Table 3. This procedure can
be applied to any distribution and any combination of batches.

4.3 Flexible Layout Buffer Size

In the flexible layout, buffers can be used to hold overflow to each grader. By simulating the flexible layout
with different buffer sizes, a suitable buffer size can be determined. Scenario 1, the light distribution and
the IP algorithm are used and 100.000 batches are completed per simulation run. A grader size of 8 bins
is used (see Section 4.1). The results are shown in Table 4, where all shown digits are correct.
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Table 4: Percentage giveaway for scenario 1 and the light distribution using IP.

Buffer Size 1 2 3 50
Giveaway (%) 4.64 4.57 4.56 4.56

One can observe that the influence of the buffer size on the total percentage giveaway is minimal.
There is a slight decrease from a buffer size of 1 to 2, from 2 to 3 and from 3 onward the giveaway remains
constant. Therefore, in the remainder of the paper a buffer size of 3 is used. We note that a buffer size of
1 is identical to not using a buffer, and depending on the costs of including such a buffer it may be more
economical to exclude a buffer entirely.

4.4 Layout Comparison

In Section 3 the IPM algorithm has been introduced, which can be used to allocate fillets directly to bins,
rather than graders in a flexible layout. In a similar way the PR algorithm can be employed and is used
as a benchmark algorithm. A simple allocation alternative here is round robin for allocating products to
graders, and NF within the grader.

In order to assess the impact of using a smart allocation strategy using the dedicated layout, the NF, IP
and PR algorithms are used in combination with the order allocation procedure described in Section 4.2.
For each algorithm and layout, the performance is evaluated for the 4 scenarios from Table 1 in combination
with the light (L), medium (M) and heavy (H) weight distributions. The performance measure used is the
percentage of giveaway of the total weight processed. The simulation results can be found in Tables 5 and
6, where the average percentage giveaway over all scenarios and distributions per algorithm can be found
at the top of each table.

Table 5: Percentage giveaway of total weight per scenario and algorithm using the dedicated layout.

Scenario NF (8.28) IP (5.61) PR (4.38)
L M H L M H L M H

1 7.93 9.91 12.02 4.81 6.71 7.36 2.51 6.66 8.48
2 10.72 13.70 18.44 8.46 10.64 15.65 7.24 9.67 14.48
3 3.59 4.38 6.72 2.05 2.47 3.16 0.23 1.26 1.23
4 2.81 3.75 5.27 1.50 2.08 2.41 0.12 0.26 0.46

Table 6: Percentage giveaway of total weight per scenario and algorithm using the flexible layout.

Scenario NF (9.65) IPM (4.92) PR (2.36)
L M H L M H L M H

1 9.86 13.82 14.89 4.56 6.16 7.93 1.65 2.02 4.98
2 12.33 17.94 17.53 5.63 7.96 12.68 2.08 4.26 11.96
3 4.39 5.64 7.17 2.10 2.70 3.38 0.15 0.29 0.54
4 3.15 4.00 5.08 1.52 1.94 2.45 0.06 0.12 0.20

Comparing the average performance of the flexible layout to the average performance the dedicated
layout per algorithm yields the following. The NF algorithm sees an overall giveaway increase of 16.69%
(8.27% to 9.65%), the IP (IPM) algorithm sees a giveaway decrease of 12.32 % (5.61% to 4.92%) and the
PR algorithm sees a giveaway decrease of 46.18 % (4.38% to 2.36%). We conclude that the NF algorithm
indeed yields the worst performance and even sees a performance decrease in the flexible layout, which
may be due to the increased variability of the inflow to each grader. However, the more sophisticated IP and
PR algorithms can both utilize the increased flexibility to reduce giveaway. The PR algorithm especially
sees a dramatic overall performance improvement.
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5 CONCLUSION

The aim of this study has been to compare a dedicated and a flexible layout of a fillet batching operation
in a poultry processing plant. To achieve this goal, a simulation study has been performed to evaluate the
performance of both layouts using the NF, IP and PR algorithms and three fillet weight distributions.

Firstly, the size (number of bins) in the grader was considered. It was shown that 6 bins was sufficient
to achieve minimal giveaway using the IP algorithm, but that 8 bins were chosen to provide a good
comparison to the PR algorithm. Secondly, for the dedicated layout the allocation of batch sizes to graders
was considered. Here, the weight distributions arriving to each graders are predetermined due to the use
of floating weight ranges. Simulating all combinations of distributions and batch sizes yields a matrix
of expected giveaway values. Solving this assignment problem yields the allocation of orders to graders
that minimize the giveaway. Thirdly, we looked at the buffer sizes in the flexible layout. Simulating the
system showed that a buffer size of 3 was sufficient to minimize the giveaway in our production setting.
Lastly, using the obtained buffer sizes for the flexible layout, derived grader sizes and batch size allocation
procedure for the dedicated layout both layouts were compared. It was shown that NF had the worst, IP
the second best and PR the best performance. Furthermore, both IP and PR that use information about
the arriving distributions, obtained an overall giveaway reduction of 12.31% and 46.18% respectively. As
a result, we recommend using the PR algorithm in combination with the flexible layout to obtain the best
performance.

Future work includes the development of (near) optimal dynamic allocation strategies, as this study has
indicated the benefits of flexible layouts paired with smart allocation control. Another direction may be
assignment policies that automatically adapt to (learn) changing weight distributions. Lastly, the considered
problem may be expanded to include deadlines of orders, order scheduling, set-up times when switching
between batch sizes and operator availability.
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