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ABSTRACT 

In this work a multicriteria simulation optimization method previously developed in our research group 
was applied to the experimental optimization of a 3D printed prototype. Both, simulation and prototyping, 
share the objective of providing as much information as possible about a product before its actual 
manufacturing. The prototype is an interlocking device that can be assembled without fastening devices 
or substances and reassembled into different planar assemblies. The design of the prototype considers two 
conflicting criteria simultaneously: maximal flexural strength and minimal mass. Multicriteria simulation 
optimization allows to manipulate a set of design variables to identify configurations with the best 
possible balances among both criteria. This method consists of an iterative framework based on 
experimental design and Pareto efficiency conditions. The aim of this work is to show the potential of the 
method beyond its initial intended use in simulation to approach truly experimental work.  

1 INTRODUCTION 

3D printing technology has evolved in the past few years to take an important role in manufacturing 
processes, not only in the early stages of the product design, but also in the making of final parts, molds, 
and tools (Rayna and Striukova 2016). The use of 3D printing in manufacturing became attractive for its 
flexibility and precision to create parts with complex geometries, low fabrication cost, and the ability to 
easily implement changes in the design as a result of the linked concept in which it works, better known 
as computer-aided design (CAD) (Mearian 2014; Gibson et al. 2015; Ransikarbum et al. 2017).  This last 
property makes feasible and convenient  (i) the manipulation of multiple design variables and (ii) the 
assessment of multiple performance measures simultaneously for the design and manufacturing of a part. 
An optimization procedure with (i) and (ii) as key capabilities,  greatly enhances the quality of 
information that can be obtained from a 3D printed prototype or an actual product. 

In the literature, several works address the problem of multicriteria optimization in manufacturing 
processes developing algorithms and heuristic methods for the decision-making process involving design 
variables (Cabrera-Ríos et al. 2002; Castro et al. 2003; Cabrera-Ríos et al. 2004; Castro et al. 2004; 
Castro et al. 2005; Pohlak et al. 2010; Rodríguez-Yañez et al. 2014; Ransikarbum et al. 2017; Schatz et al. 
2017). However, in most of the cases, the incorporation of these methods is demonstrated using 
simulation scenarios and do not show the implementation of the method in a physical experimental 
scenario where additional sources of non-controllable variability are present (Pohlak 2010; Rodríguez-
Yañez et al. 2014; Ransikarbum et al. 2017; Schatz et al. 2017).  

In this work, the design and manufacturing of an interlocking device is addressed using 3D printing 
technology and a novel multicriteria optimization (MCO) method proposed in a previous work of our 
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group (Niño-Pérez et al. 2017). The referenced optimization method was used for the setup of the design 
variables, considering two performance measures as objective functions: maximization of flexural 
strength and minimization of the total mass of the part. Maximization of the first objective  would allow 
withstanding load, while minimization of the second one would make fabrication feasible with little 
material –for example as little as that available in a single PET water bottle to be recycled. With the 
implementation of the method, the Pareto-efficient frontier was obtained, which represents the set of 
candidate configurations with the best balances for the defined conflicting performance measures. The 
part to be 3D printed is an interlocking device that can be assembled without the use of fastening 
devices/substances and that can be reassembled and reconfigured for different planar parts –for instance, 
to create a stepping stone for the garden. The details of the part design, experimental design, and results 
of the optimization implementation will be discussed in the following parts of this manuscript.  

The remaining sections of this work are organized as follows: Section 2 presents a literature review 
focused on the implementation of multicriteria optimization methods for the design and manufacturing 
process of prototypes using 3D printing technology in physical experimental scenarios; Section 3 
describes the theoretical background and terminology associated to the method implemented in this study; 
Section 4 presents the description of the case study and the results of the application of the MCO method; 
Finally,  conclusions and future work are discussed in Section 5.  

2 LITERATURE REVIEW 

MCO has been a long-standing topic of interest in the field of engineering design. Its significance lies in 
the fact that virtually all real manufacturing problems are multicriteria in nature, calling for their 
simultaneous consideration and compliance in the presence of conflict. This type of problems can be 
approached through the identification of the best compromising set of solutions that form the so-called 
Pareto-efficient frontier (Marler and Arora 2004; Rodríguez-Yañez et al. 2014; Niño-Pérez et al. 2017). 
Pareto-efficient solutions found in this frontier contain the settings of the decision variables that can be 
applied onto the manufacturing process/system/product.  (Marler and Arora 2004; Rodríguez-Yañez et al. 
2014). 

On the other hand, additive manufacturing has been one of the manufacturing processes that has 
significantly benefited from the theory of the MCO. Additive Manufacturing includes 3D printing, which 
has revolutionized the manufacturing field by allowing the design and testing of complex parts at lower 
cost than the traditional prototyping methods (Peacock 2014; Lu et al. 2015).  Given the advantages that 
3D printing offers, it has taken prominence in manufacturing from early stages of the design process of a 
part –as prototyping- through the final one of it –as production- (Mearian 2014; Peacock 2014; Lu et al. 
2015; Asadi-Eydivand et al. 2016a; Asadi-Eydivand et al. 2016b). 

Several works have been developed in the literature to address the decision-making process of 
product design involving 3D printers and considering multiple performance measures simultaneously 
(Irisarri et al. 2010; Ancau and Caizar 2014; Clark et al. 2014; Stankovic et al. 2015; Asadi-Eydivand et 
al. 2016a; Asadi-Eydivand et al. 2016b; Marinić-Kragić et al. 2016). However, only few of them 
transcend from the simulation application to the physical experimental implementation (Ancau and Caizar 
2014; Clark et al. 2014; Asadi-Eydivand et al. 2016b). Knowledge related to the physical implementation 
of multicriteria optimization methods for the design and manufacturing of a prototype is scarce, which is 
part of the aim of this manuscript: show the applicability of the method for truly experimental work and 
the performance of the method under physical experimental conditions. 

3 METHOD 

The optimization strategy used in this work integrates the use of experimental design and metamodeling 
techniques to address the design and manufacturing of a prototype as a multicriteria optimization problem 
(Niño-Pérez et al. 2017). Figure 1 shows the scheme of the implemented algorithm in its original fashion 
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focused on simulation-optimization. The main details of the method adapted to a physical experimental 
scenario are explained below following the steps listed in Figure 1 (labels number): 
 The method starts with the development of an experimental design (DOE) used to setup the design 
and processing variables of the prototype. A prototype was 3D printed for each design point (1-2) and an 
initial incumbent solution is obtained (3). The incumbent solution corresponds to the Pareto-efficient 
frontier that represents the set of best compromises between all performance measures (PMs) in the 
experiment. With the experimental runs at hand, one metamodel per performance measure is obtained (4) 
and used to make predictions in the discretized experimental region (5). Potentially Pareto-efficient points 
are detected (6-8). These predicted points are then simulated and joined with the incumbent solution to 
determine if a new Pareto-efficient frontier has been found (9). If the Pareto-efficient frontier does not 
change, then the incumbent solution is reported and no more iterations are performed.  Otherwise the 
incumbent solution is updated and the newly-simulated points are added to the set of available points and 
a new iteration begins with the constructions of new metamodels (4). In detailed fashion, the method is as 
follows: 
 

Initialization 
• Set 𝑘   =   0  
• Initial DOE: Run a first design of experiment 𝐷!  with 𝑛  simulation runs considering all 𝐿 

variables and all 𝐽 performance measures (PMs). Each controllable variable and performance 
measure must be scaled to fall between -1 and 1 to avoid dimensionality problems.  

• Select incumbent: Analyze 𝐷! to determine which of its points are Pareto-efficient. The Pareto-
efficient solution 𝐼! contains all Pareto-efficient points of 𝐷!.  
 

A Pareto-efficient solution will be found when, in the full pairwise comparison 
with the rest of the solutions, there is no other solution that dominates it in all 
PMs simultaneously.  
 

• Set 𝐷!!"!#$!%$&   =   𝐷! 
 

Main Iteration 
• Update counter 𝑘 = 𝑘 + 1 
• Use 𝐷!!!!"!#$!%$&   to fit all 𝐽 metamodels, 𝑦!  [𝑘]. 
• Use metamodels to predict the values of all 𝐽  objective functions using a grid of n!= [𝐺! × 𝐺! × 

…× 𝐺!× …𝐺!] points, where 𝐺! is the number of equidistant discrete points for the l!"variable. 
Store these points in a matrix 𝑃! with dimensions [𝑛! × (𝐿 + 𝐽)], where 𝑃  stands for predicted. 

• Analyze 𝑃! to determine which of its points are Pareto-efficient. Store the efficient points in 
𝑃!!(where 𝑃  stands for predicted and 𝐸  stands for Efficient). 

• Simulate all points in 𝑃!! . Store the simulated results in a matrix 𝐷!. 
• Set  𝐶!!  =𝐼!!! ∪ 𝐷! , where C stands for candidates and I for incumbent. 
• Analyze 𝐶!!  to determine which of the points are Pareto-efficient. Store the efficient points in  𝐼!. 

 
Termination 
• Evaluate the stopping criteria. If  𝐼! = 𝐼!!!  , then terminate the algorithm and present the 

incumbent solution 𝐼!  . Otherwise, update 𝐷!!"!#$!%$& =𝐷!!!   ∪   𝐷!  and reiterate. 
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Figure 1: Proposed Multicriteria Simulation Optimization Method. (from Niño-Pérez et al. 2017)  
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4 EMPIRICAL CASE STUDY: 3D PRINTER PROTOTYPE  

In order to obtain a design that considers the performance measures of interest, minimum mass and max-
flexural resistance, a DOE was generated as an initial step (Table 1). For the current study a Box-Behnken 
design with 16 experimental runs was used. The proposed DOE considered three controllable variables 
(Table 1): (i) cylinder depth –which controls the position of the three protruding cylinders (see Figure 2), 
(ii) cylinder diameter, and (iii) part thickness. These three were expected to affect flexural strength and 
overall mass of the part. For each experimental run defined in the proposed DOE, a prototype was 
produced. The time to 3D print and assemble an entire prototype was about 1 hour.  

Table 1: Initial experimental design. 

Controllable 
Variables 

Levels 

Cylinder depth 

Cylinder diameter 

Thickness 

{0.230, 0.345, 0.460} in 

{0.018, 0.030, 0.041} in 

{0.092, 0.161, 0.230} in 

 
Figure 2 shows the representation of the system for the physical experiment considered in this work. 

The process consists of the actual 3D printing. Finally, the outputs represent the two selected performance 
measures for the optimization procedure, flexural strength and mass. 

Once the initial DOE was executed and the respective data was collected, the next step was the 
development of a model for each response based on the information gathered during experimentation. 
Finally, the proposed optimization method previously described was applied to determine suitable 
variable settings aiming to maximize the  flexural strength and minimize the total mass. The details of 
each phase are described below. 

 

 
Figure 2: Interlocking device design system representation.  

Initialization: A flexural test was performed in each of the produced units to determine the max load 
(measured in lbf). The measures were made using a Universal Testing Instruments Machine / 5940 Series 
Single Column Table Top Systems for Low-Force Mechanical Testing / INSTRON. For the evaluation of 
the max load using the equipment previously described a distributed load was applied as is shown in 
Figure 3. After the max load was measured, the interlocking device was weighted to determine its mass 
(measured in g), as shown in Figure 4. The natural variables and the experimental values of the PMs were 
coded using a linear transformation to make them fall in the range of [-1, 1] as to avoid dimensionality 

485



Niño-Pérez, Rivera, Méndez-Vázquez, and Cabrera-Ríos 
 

problems (Figure 5). With these coded values the efficient frontier was found, using a MATLAB code 
presented in Camacho-Cáceres et al. (2015). This efficient frontier became the initial incumbent solution 
(I0) as shown in Figure 6.  Do notice that, for representation purposes, both PMs are shown as 
minimization cases. Indeed, any maximization case can be turned into an equivalent minimization case 
through a suitable linear transformation. 
 

  
Figure 3: Interlocking device flexural test. 

 
Figure 4: Interlocking device mass measuring process. 

 
Figure 5: Linear transformation in the range [-1, 1], (a) controllable variables (CV) and (b) performance 
measures (PMs).  

(a) (b) 
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Figure 6: Initial pairwise comparison for the incumbent solution (I0), (a) controllable variables and (b) 
performance measures. 

Main Iteration: With I0 at hand, the iterative phase of the algorithm begins. To generate predictions 
within the experimental region, a second order regression metamodel per PM was constructed using D0. 
Predictions were then obtained in these 125 points for both PMs as shown in Figure 7. In turn, these 
predicted solutions were evaluated to determine the Pareto-efficient ones as shown in Figure 8. The 
solutions found represent potentially efficient candidates at this point, thus an experimentation is carried 
out at these attractive points, as shown in Figure 9. With these new points, the incumbent solution I0 must 
be revised for Pareto-efficiency. When the comparison was carried out, 3 new points added to the 
efficient frontier and 4 points of the incumbent solution I0 were now dominated points as shown in Figure 
10. Consequently, these dominated solutions were deleted from the new incumbent solution I1 as shown 
in Figure 11. The points of the candidate set D1 are added to the available points D0, and the second 
iteration of the algorithm ensued. The second iteration follows the same structure as before, with the 
creation of a new set of potential solutions D2. These combinations were then produced and compared 
with the incumbent solution I1 using the Pareto conditions. 
 
 

  
   Figure 7: Initial predicted points (P1), (a) controllable variables and (b) performance measures. 

(a) (b) 

(a) (b) 
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Figure 8: Predicted Points that are Pareto Efficient (P1

E) in the k=1, (a) controllable variables and (b) 
performance measures. 

 

 
Figure 9: Set of simulated points that are potentially efficient (D1), (a) controllable variables and (b) 
performance measures. 

 

 
Figure 10: Initial Pairwise comparison I0 ∪ D1 (a) controllable variables and (b) performance measures. 

(a) (b) 

(b) (a) 

(b) (a) 
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Figure 11: Pairwise comparison for the incumbent solution (I1).  

Termination: When the comparison was performed, no more points were added to the efficient frontier. 
Given that no other point was added to the efficient frontier, the three identified solutions by the method 
represent the best possible trade-offs between mass and strength as shown in Figure 12. The details of the 
final solution are described in Table 2.  
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Figure 12: Each of the incumbent frontiers (I0-I1-I2) of the problem under study, (a) controllable variables 
and (b) performance measures. 

Table 2: Pareto-efficient frontier. 

  Pareto-efficient frontier 

Assembly 
ID 

Position Thickness(in) Cylinder 
diameter (in) 

Cylinder 
depth (in) 

mass 
(g) 

Max Load 
(lbf) 

1 105 0.092 0.041 0.230 11.2716 139.597 
2 115 0.230 0.041 0.230 11.0938 44.333 
5 12 0.161 0.041 0.460 17.8560 147.733 

(b) (a) 
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The tradeoffs in mass and flexural strength in the Pareto-efficient solutions can be appreciated in Table 2 
and Figure 12. A total of 24 assemblies comprising 168 parts were necessary to carry out this case study. 
The method stopped automatically in two iterations, requiring only the 3D printing of eight additional 
assemblies. From Figure 12, it is noticeable how a very competitive design configuration was uncovered 
by the application of the method. This solution would have not been found solely with the initial DOE.  

 

CONCLUSIONS AND FUTURE WORK 

This work presents a case study on the application of  a multicriteria optimization method developed in a 
previous work for the design of an interlocking device. The aim of this work is to show the potential of 
the proposed method for a truly experimental endeavor. In its current state, the method is an improvement 
over single-pass methods as well as the use of Data Envelopment Analysis models as previously proposed 
by our research group. Manufacturing decisions regarding design, control and improvement of processes 
and systems can greatly benefit from using the proposed optimization strategy from the point of view of 
its capabilities -multicriteria, multifactorial- as well as its frugality in terms of the number of simulation 
runs. 
 Current efforts in our group include the devise of a recycling system for PET bottles that can result in 
parts, similar to the prototype presented in this manuscript, and that can be used to produce planar 
assemblies. The first planar assembly –still a 3D printed prototype- is a stepping stone, as shown in 
Figure 13. A PET bottle can result in up to eight parts that can be put together to add to such assembly. 
Preliminary tests indicate that the assembly can withstand a force of 250 lbs without losing integrity. The 
devise of such system will require frequent use of simulation and prototyping and, thus, multicriteria 
optimization as advocated in our work.  
 

 

 
Figure 13. A 3D printed prototype for a stepping stone (Provided by S. Villanueva-Pérez et al.) 
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