
Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

TOWARD RELIABLE VALIDATION OF HPC NETWORK SIMULATION MODELS

Misbah Mubarak

Mathematics and Computer Science Division
Argonne National Laboratory

9700 South Cass Ave. Lemont, IL 60439, USA

Nikhil Jain

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

7000 East Ave. Livermore, CA 94550, USA

Jens Domke

Matsuoka Laboratory
Tokyo Institute of Technology

Tokyo, Japan

Noah Wolfe

Computer Science Department
Rensselaer Polytechnic Institute

110 8th St, Troy NY 12180, USA

Caitlin Ross

Computer Science Department
Rensselaer Polytechnic Institute

110 8th St, Troy NY 12180, USA

Kelvin Li

Computer Science Department
University of California, Davis

1 Shields Ave., Davis, CA 95616

Abhinav Bhatele

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

7000 East Ave. Livermore, CA 94550, USA

Christopher D. Carothers

Computer Science Department
Rensselaer Polytechnic Institute

110 8th St, Troy NY 12180, USA

Kwan-Liu Ma

Computer Science Department
University of California, Davis

1 Shields Ave., Davis, CA 95616

Robert B. Ross

Mathematics and Computer Science Division
Argonne National Laboratory

9700 South Cass Ave. Lemont, IL 60439, USA

ABSTRACT

While the high performance computing (HPC) community is relying on simulations increasingly to co-design
and optimize HPC interconnects, the simulation community lacks a coherent set of practices to be followed
when validating the simulators and network models. Validation of HPC network simulation models is a
multi-step process starting with the selection of representative communication patterns, configuring the
network model, followed by designing the set of experiments, and finally, documenting the outcome for
reproducibility. In this paper, we present a set of recommended practices for each of these steps in the

659978-1-5386-3428-8/17/$31.00 ©2017 IEEE



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

Node
EP

EP
EP

NIC Router
Memory

Links to other 
routers

Different job-to-node mappings, 
communication patterns, MPI 

protocols and algorithms

Message flows, ordering, 
packetization, interaction 

with memory

Network connectivity, routing, 
flow control, virtual channels, 

congestion management

Figure 1: Factors impacting communication on HPC systems (EP - communication end-point).

validation process. If the recommendations are followed, the end result should be a validated network
model that can make reasonably accurate predictions and convince the community about the correctness
of the model.

1 INTRODUCTION

High-performance computing (HPC) interconnect simulations are being increasingly used to drive important
design decisions for HPC systems such as structure of the topology, choice of routing algorithms, and
packet flow control (Won et al. 2015, Kim et al. 2008, Adiga et al. 2005). Additionally, HPC facilities are
exploring the use of these interconnect simulations for future system procurements. This situation poses
a critical concern for the simulation developers and their users as to whether the model is correct and
whether is has been validated. The term “validation” may have different interpretations in the context of
HPC network simulation models for different people. In the majority of cases, if specific metrics from the
simulation agree with the metrics for a corresponding experiment on the target system (e.g., the predicted
runtime matches with the observed runtime), the model is assumed to be validated. However, different
metrics may be used in different scenarios. While a group of simulation developers may be interested in
validating details of what data is being transmitted at what time and capturing data dependencies, others
may be interested in validating predicted runtime only. In this paper, we focus on metrics that can be
measured on real HPC systems.

As observed in (Sargent 2005), it is not feasible to validate a model for all of its possible applications
throughout its lifetime. However, Sargent emphasizes performing evaluations to validate simulators or
models for their intended application or purpose. In the context of HPC networks, for example, if an
interconnect simulator is intended to predict the performance of HPC applications for different routing
policies or resource allocation policies, then it is important to perform a detailed validation of the simulator
against the existing system first before using it for making any policy decisions. However, the simulation
community currently lacks a set of general practices that should be followed when validating HPC network
simulation models.

This paper presents a set of recommended practices to follow when validating HPC simulators for a
particular network topology. We present a four step approach to validate interconnect simulation models
by selecting the right combination of benchmarks, configuring the network model, designing validation
experiments and simulations, and reporting the results. The methodology is described for validating network
models against real systems but it is also applicable when validating against existing simulation frameworks
or a prototype of a future system.

2 BACKGROUND

The flow of traffic on networks and its impact on metrics of interest, such as the execution time of an
application, depend on a wide range of factors. Thus, it is critical for simulations to mimic the effects
of these factors in order to reproduce the targeted real-world scenarios. Figure 1 presents some of the

660



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

well-known factors modeled in existing network simulations, which we loosely categorize based on their
point of origin in the life cycle of data communication.

Multiple applications are expected to run simultaneously on production HPC systems. These applications
may have significantly different communication graphs and thus may generate different types of traffic flow
on the system (Klenk and Fröning 2017). For example, some applications produce a uniform traffic pattern
in which each process in the application behaves similarly, while in other applications the presence of a
master entity results in an all-to-one traffic pattern. From the point of view of an end user (e.g., a scientist
or application developer), the network communication is with respect to the nodes allocated to the user’s
job. Thus, the scheme used for allocating nodes to various jobs (job-to-node mapping) and applications
running in the job are critical to the characteristics of the traffic originating and ending at different nodes
in the system (Agarwal et al. 2006). Further, the number of end points (e.g., MPI processes) that produce
and consume traffic on a node may also depend on the application.

Implementations of the MPI standard (MPI Forum 2015) are the prevalent libraries used for commu-
nication in HPC. In order to improve functionality and performance, these libraries often support multiple
protocols, different error-checking mechanisms, and algorithms for collective operations. These implemen-
tation details are important because they affect the observed traffic patterns on a system. For example, the
MPI eager protocol may result in an early send of data when MPI Send is invoked, whereas the rendezvous
protocol may require explicit synchronization among communicating processes (Brightwell and Underwood
2003).

On most current systems, the task of reading data from the memory and pushing it onto the network is
delegated to the Network Interface Controller (NIC). NICs operate in parallel with the computation units
in the nodes (such as cores), they can decide the ordering in which messages are packetized and pushed
onto the network. As they access memory, they may also contend with computation units for memory
bandwidth. Thus, the working of NICs and overheads induced by it can have a significant impact on traffic
flows on current systems.

From NICs, the packets are typically transferred to a router or a switch. Depending on their destinations,
these packets are then forwarded from one router to another, until they reach their destination NIC. As
one would expect, the hardware and schemes responsible for the packet forwarding are significant for the
overall communication flow. A majority of simulators focus on these aspects that include the network
topology, the delay and bandwidth of the hardware, the routing policies, and the flow-control and congestion
control mechanisms. Among the many network topologies that have been proposed and studied for HPC
interconnects, three network topologies have been widely used in recent systems: torus (Adiga et al. 2005),
fat-tree (Petrini and Vanneschi 1997), and dragonfly (Kim et al. 2008).

To demonstrate the use and impact of the validation methodology presented, we present results. Detailed
validation process and results are available as a technical report at http://www.ipd.anl.gov/anlpubs/2017/05/
135666.pdf. collected with the CODES network simulation framework (Mubarak et al. 2017). CODES is
a general-purpose toolkit for packet-level simulations of traffic flows on HPC networks. CODES is built on
top of ROSS (Carothers, Bauer, and Pearce 2002), a parallel discrete event simulation engine. CODES has
been successfully deployed for studying various scenarios for HPC networks (Jain et al. 2016, Yang et al.
2016). The results presented in this paper are generated by using either synthetic patterns or CODES’s
MPI trace replay layer. The purpose of these results is not to validate CODES itself but to exemplify the
best practices in validating HPC network simulations.

3 OVERVIEW OF THE VALIDATION METHODOLOGY

In Section 2, we discussed several distinct and often unrelated factors that affect the observed behavior on
a network. As a result, a robust validation study requires enumeration and selection of several parameters.
One possible workflow, which has been used in recent work (Jain et al. 2016), for systematically designing
simulation experiments is presented in Figure 2. In this workflow, the first step is to select communication
patterns of interest. This step includes identifying benchmarks and their inputs for simulation. Next, a

661



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

Selecting
Communication 

Patterns

 Configuring 
the Network 

Model

Designing
Experiments and

Simulations
Documenting
the Outcome

Figure 2: Workflow for conducting validation studies.

prototype for the target system is designed in the simulation framework. Parameters configured in this step
include network topology, routing schemes, bandwidth, and overheads of various network components.

Based on the benchmarks and prototype system, experiments that should be conducted are decided;
parametric choices here include the jobs to be run, job-to-node mappings, length of the jobs, and environment
settings such as interference and MPI protocols. Experiments enumerated in this step are then executed
as simulations and real runs as required. Finally, the outcome from the experiment executions is reported
after post-processing.

We find the workflow of Figure 2 adequate for conducting validation studies. The first three steps in the
workflow are geared to enumerating various factors that affect traffic on HPC networks and can be mapped
to different categories shown in Figure 1. The third and fourth steps can be defined to systematically
conduct the experiments and report the results. In Sections 4–7, we elaborate on these steps from the point
of view of conducting a validation study, and we describe the tasks that should be performed. We highlight
the practices that should be followed for a reliable validation study, and we discuss the common pitfalls.

4 SELECTING COMMUNICATION PATTERNS

One of the recurring challenges encountered in a validation study is identification of benchmarks with various
communication patterns to be used for validation. In order to do reliable validation, one should select a set of
benchmarks that can test different aspects of the simulation framework. For example, relying only on a basic
pairwise point-to-point communication pattern is unlikely to reveal the performance differences that can
surface when many end points communicate simultaneously. Moreover, to build confidence in applicability
of simulations for practical scenarios, the communication patterns selected should be representative of real
HPC applications. In this section, we first discuss the different point-to-point and collective communication
benchmarks that model developers can use for validation. We then discuss common pitfalls when selecting
benchmarks for network model validation.

4.1 Pattern Categories

Communication patterns and benchmarks can be categorized in several ways, e.g. based on the number of
communicating partners assigned to each end point or the ordering of communication among sets of end
points. We discuss two categorizations, which can be applied to select benchmarks for validating different
aspects of network simulation models.
Latency-bound and Bandwidth-bound: Our first categorization of patterns is based on the bottleneck(s) that
determine a benchmark’s performance. The most common division in this category w.r.t to communication
is a binary assignment between latency-bound and bandwidth-bound. We call a benchmark latency-bound
if constant, startup, or one-time overheads such as router delay, wire delay, etc. determine the performance
of a benchmark. The simplest example of this case is a ping-pong benchmark for small messages. On the
other hand, if bandwidth of network resources such as NIC or link determines the performance, we identify
a benchmark as bandwidth-bound. A ping-pong benchmark with large messages falls in this category.
Coverage along this categorization is important because it validates functioning of distinct aspects of a
network simulation models of critical important in practical scenarios.

662



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

Simple and Adversarial: Our next categorization is focused on distribution of traffic flow induced by a
pattern and the network mechanisms that are critical to the performance in presence of such flows. We
categorize a pattern as a simple pattern if it results in a somewhat uniform flow throughout the network. For
example, consider a uniformly random pattern; in this pattern, all nodes repeatedly perform the following
steps: (1) randomly select the next destination according to a uniform random distribution, and (2) send a
message to this destination. This is likely to result in similar traffic flow throughout the network, and tests
network functioning under high throughput. Often, simple patterns are either manually tractable or their
outcome can be predicted with simple models.

Adversarial patterns are designed to create network hot-spots that stress the flow-control and congestion-
control mechanisms in the system. Thus, in simulations, these patterns are good candidates for testing
the validity of models used for the same purposes. Many-to-one pattern in which several end points
communicate with the same end point is an example of adversarial pattern that applies to several network
topologies. Network specific adversarial patterns can also be created to further stress test the simulation
models for individual networks (Besta and Hoefler 2014).

In practice, it is anticipated that individual patterns may represent combinations of above categories. For
a reliable validation, benchmarks that represent all meaningful combinations should be used. In addition,
depending on the use case for the simulation models, careful selection of benchmarks used for representing
these patterns is also needed. For example, consider the scenario in which simulations are to be used for
comparing performance of collective-heavy applications on different networks. Collective communication
operations, such as barriers and broadcasts, entail complex dependencies among messages exchanged
among a group of nodes. As a result, their performance can depend heavily on the algorithms used in their
implementations and how the traffic associated with individual messages flows on the network. Hence,
validation using benchmarks with collective operations may expose shortcomings in simulators that are
not captured by using point-to-point benchmarks only. In particular, these tests can identify whether the
collective algorithms modeled in the simulators match the algorithms used on the real systems.

Another important use case of network simulations can be performance prediction for production
applications. Communication patterns in applications typically consist of both point-to-point and collective
patterns. Thus, in order to match the observed performance of applications on real systems, in addition to
accurately simulating individual patterns, a simulator needs to account for inter-pattern dependence. As a
result, in this case, reliable validation would also include production applications as benchmarks to test if
higher-level dependence among operations performed in an application are correctly captured. Note that if
a simulator is only focused on evaluating best- or worst-case communication characteristics of a network,
then validation using applications is not required.

4.2 Common Pitfalls

Benchmark selection is the source of origin for several problems encountered in interconnect simulation
validation. Having discussed the benchmark categories that should be used, we now list the common pitfalls
when selecting benchmarks.

Infinite messages – Synthetic traffic benchmarks, such as uniform random injection, are helpful in
determining the generic network characteristics (e.g., throughput). However, flooding the network while
ignoring message dependencies, coupled with independent processing capabilities of the network through
network redundancy or virtual channels, may hide bottlenecks or deadlocks in subsections of the network
caused by an incorrect model. In order to alleviate the possibility of these issues going unnoticed, tests
should also be conducted either by using a scaled back injection rate or by using patterns whose performance
is impacted by message dependencies. Dropping the injection rate to a fraction of the node injection link
speed can help shed light on incorrect model functionality that can be overshadowed by high message
volume congestion in the network.

Computation-intensive benchmark – Using benchmarks in which the majority of the runtime is
spent in computation and a small percentage is spent in communication does not reveal the performance

663



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

differences between the real architecture and the simulation. These benchmarks typically result in low
network utilization and fail to stress the limits of network performance capabilities. Instead, benchmarks
in which a large portion of runtime is spent in communication makes it much easier to identify differences
between the real scenarios and simulations.

Allocating time to develop a complete understanding of available benchmarks as well as testing with
multiple different benchmarks helps avoid these common benchmark pitfalls and prevent non-system-related
issues from propagating into the next step of the workflow.

5 CONFIGURING THE NETWORK MODEL

The network topology and its wide range of configurable parameters have a significant impact on the flow
of traffic over the network. For instance, it is vital to choose network structural parameters that accurately
represent real world system values to provide useful validation of simulation network results with real-world
system runs. Further, overheads of various components, e.g. NIC and router, need to be modeled as closely
as possible in the simulation to their real world counterparts. As a result, the primary focus for the model
designer is establishing an accurate and consistent validation sub-system for comparing results between
simulation and real hardware.

5.1 Accounting for Topology Structure

In most cases, the network system size established for validation studies is much more modest in scale as
compared to the size of production systems. The use of smaller scale configurations is partly driven by
logistical constraints such as the physical unavailability of large/futuristic systems to generate real results
for comparison with simulation. The desire to keep the studies tractable for manual analysis can also be a
driving factor for the use of smaller networks in validation. A very common issue resulting from the use of
excessively small or simplified system configurations for validation is the failure to capture the complexities
associated with the large-scale system counterpart. For example, validating a dragonfly model meant for
simulating large multi-group systems using a setup comprising only one group can be misleading since it
fails to capture the effect of inter-group communication.

For a reliable validation study, we suggest running experiments on a system that is proportionately
smaller and still maintains functional similarity to the full-scale production system. The smaller system
should exhibit characteristics of the larger network and should not be devoid of properties that define the
larger network (e.g. number of connection hierarchies). Since many of the network topologies used in
HPC are regular in shape, it is relatively easy to identify smaller systems that are suitable representatives
of larger systems. We list a few examples below.
Dragonfly Networks: In a dragonfly network, routers are divided into groups and connected in a hierarchical
manner (Kim et al. 2008). An example dragonfly network is shown in 3a consisting of five groups with
four routers per group. Communication within groups traverses intra-group links (shown in black), while
inter-group communication can utilize both intra-group and inter-group links (shown in blue), depending
on the system connectivity and the location of the source and destination nodes. As shown in Figure 3d,
validation using a reduced dragonfly network containing only one router group fails to include the influence
of inter-group connections on network performance. Instead, a strong validation of the dragonfly network
requires the utilization of a system composed of multiple groups enabling the study of both inter-group and
intra-group link connections. Using two groups, as shown in figure 3c, incorporates the inter-group links
but increases the impact of those links as both of the inter-group connections from each router connect
to the same group, doubling the router-to-group bandwidth compared to the larger five group dragonfly
configuration. Overall, the best small scale validation setup is shown in Figure 3b where a minimum of three
groups are needed to observe both inter-group link activity and performance that mimics the performance
of the larger scale five group system.

664



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

(a) Full Five group dragonfly
network

(b) Three group representa-
tion

(c) Two group represen-
tation

(d) One group
representation

Figure 3: Example small scale representations for validation of a full five group dragonfly network with
five routers per group and two global connections per router. Black lines indicate intra-group connections
and blue lines indicate inter-group connections.

Torus Networks: In the case of a torus network, the structure of the topology stays the same throughout the
system. The nodes connect to one another in a uniform n-dimensional manner such as the 5-dimensional
tori of IBMs Blue Gene systems (Adiga et al. 2005). Thus, a smaller n-dimensional grid is a good
representative of the expected behavior of a much larger grid.
Fat-tree Networks: Fat-trees are highly regular topologies which can be grown either horizontally by
utilizing free switch ports or vertically by adding additional layers (Petrini and Vanneschi 1997). Validation
performed between real and simulated systems that have different numbers of tree layers is likely to influence
the reliability of the comparison, since more layers may result in congestion characteristics that cannot be
reproduced with few layers. In contrast, horizontal contraction of large systems (either by reducing the
number of leaf-level groups or size of the groups) is unlikely to restrict the traffic flow characteristics that
can be produced with a large system.

5.2 Accounting for Routing Algorithms

The routing algorithm plays a critical role while performing reliable network model validation. The chosen
algorithm varies from system to system depending on the preferences of the administrator, supported
algorithms of the deployed networking technology, as well as the topology used to connect the nodes.
For example, on the Blue Gene torus systems, both dimension-order (static) routing and dynamic routing
protocols are available (Adiga et al. 2005). Similarly, dragonfly-based systems support multiple routing
algorithms, such as minimal, non-minimal, adaptive, and progressive adaptive routings (Jiang, Kim, and
Dally 2009). Unlike these systems, most InfiniBand-based configurations use a fat-tree topology and are
limited to the choice between a few static routing algorithms (Domke, Hoefler, and Matsuoka 2014).

Often, any optimizations to the routing algorithms are hidden from the users of HPC systems which
makes the validation process challenging. In this case, the simulation framework needs to use the closest
known routing protocol, and a discussion of the routing algorithm utilized during validation needs to be
reported. Additionally, if there are significant performance differences due to the routing algorithm, it is
useful to perform additional simulated experiments to isolate the problem and ensure that the differences
are due to the routing.

5.3 Accounting for General Parameters

Finalizing the validation framework requires establishing a complete set of precise system metrics across
both the simulation and real system. These metrics describe the speeds, latencies, buffer sizes and other
components of the network system that are vital to replicating the performance of physical systems with

665



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

simulation models. Many of these parameters such as link bandwidth and router delay are determined
according to the deployed network technology. For example, with InfiniBand networks, product specifications
for physical switches provide link speeds, buffer sizes, switch traversal latencies, and more needed to validate
the simulation model with a real system accurately. Other metrics, such as max packet size, number of virtual
channels, and eager/rendezvous protocol thresholds can often be configured by the system administrator
or with environment variables. Finally, metrics that cannot be determined from written specifications
need to be collected experimentally. For instance, delays associated with MPI and NIC overheads can be
extrapolated by measuring the round trip time of small message transfers between MPI processes on the
same node. Finally, any and all differences or potential sources of error must be reported. In this case,
experiments should also be performed to measure the effect of the error.

5.4 Common Pitfall

The large quantity and typically hidden nature of parameters relating to system interconnection networks
translates to increased chances of error in validation. Here we discus one such setback associated with the
system design process.

System Dependencies – Caution is advised with respect to the simulated network topology. Especially
for statically routed networks, any minor discrepancy between the actual HPC system and the simulated
topology and routing combination may yield heavily diverging results, as reported by (Domke, Hoefler,
and Matsuoka 2014). For example, only two link failures in an HPC system with a few hundred nodes
interconnected by a two-level fat-tree can show significant performance degradation (up to 30% in overall
throughput) compared to the simulation which assumes a fault-free configuration. Hence, if possible, then
the validation should be based on the exact same topology configuration as the real system.

The system design component of the validation workflow can be a tedious process. There are a
number of network parameters to quantify and replicate, resulting in a number of possible sources of error
within the model. However, constructing a proper system configuration is a fundamental component for
instilling confidence and establishing accuracy necessary to move on to designing successful experimental
simulations.

6 DESIGNING EXPERIMENTS AND SIMULATIONS

The validation of network simulation with a real system or another simulation framework often constitutes
a small part of the study being conducted, and therefore commonly insufficient information is reported
on the experimental design of the validation experiments. For example, whether network interference was
taken into account, which MPI protocols were being simulated, and which ones were supported by the
system. We discuss the techniques to design the experiments, including the elements that should be covered
so that the validation process leads to plausible conclusions.

6.1 Benchmark Parameters and Placement

The selected benchmarks must be configured so that they can test various aspects of the simulated network
system such as varying distance between source and destination nodes, various message sizes etc. We
demonstrate with an example using a ping-pong benchmark for evaluating the CODES dragonfly network
model against the MPI performance measurements on the Theta Cray XC system (Faanes et al. 2012).
The performance measurements on the Cray XC system are done by using the mpptest (Gropp and Lusk
1999) performance benchmark, which measures the performance of MPI operations in various scenarios
such as ping pong, bisection pairing, and ghost cell.

The dragonfly network topology of the Cray XC system is a hierarchical network with groups connected
to each other via all-to-all global links. Within each group, the routers are spread out in a two-dimensional
6x16 mesh, and four compute nodes are attached to each router. Because of this multilevel structure, the
validation tests should record performance overheads in different placement scenarios, for example where

666



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

 0

 5

 10

 15

 20

 25

 30

 0  10000  20000  30000  40000  50000  60000A
v
g
 t
im

e
 t
o
 c

o
m

p
le

te
 m

e
s
s
a
g
e
s
 (

u
s
)

Message size (bytes)

codes
mpptest

(a) Same router

 0

 5

 10

 15

 20

 25

 30

 0  10000  20000  30000  40000  50000  60000A
v
g
 t
im

e
 t
o
 c

o
m

p
le

te
 m

e
s
s
a
g
e
s
 (

u
s
)

Message size (bytes)

codes
mpptest

(b) Different router, same chassis

 0

 5

 10

 15

 20

 25

 30

 0  10000  20000  30000  40000  50000  60000A
v
g
 t
im

e
 t
o
 c

o
m

p
le

te
 m

e
s
s
a
g
e
s
 (

u
s
)

Message size (bytes)

codes
mpptest

(c) Different router and chassis, but same
group

 0

 5

 10

 15

 20

 25

 30

 0  10000  20000  30000  40000  50000  60000A
v
g
 t
im

e
 t
o
 c

o
m

p
le

te
 m

e
s
s
a
g
e
s
 (

u
s
)

Message size (bytes)

codes
mpptest

(d) Different groups

Figure 4: Validation of CODES dragonfly network model against Theta Cray XC system using the ping-pong
benchmark. The tests on Cray XC were done on a quiet system with no other jobs running on the system.

 1

 10

 100

 1000

 10000

 100000

 0  10000  20000  30000  40000  50000  60000A
v
g
 t
im

e
 t
o
 c

o
m

p
le

te
 m

e
s
s
a
g
e
s
 (

u
s
)

Message size (bytes)

mpptest

(a) With network interference

 1

 10

 100

 1000

 10000

 100000

 0  10000  20000  30000  40000  50000A
v
g
 t
im

e
 t
o
 c

o
m

p
le

te
 m

e
s
s
a
g
e
s
 (

u
s
)

Message size (bytes)

mpptest

(b) Without network interference

Figure 5: Interference effects as recorded by the mpptest benchmark on the Cray XC system.

(i) processes on different nodes and same router communicate, (ii) processes on different nodes, different
routers but same group communicate with each other, and (iii) processes in different groups communicate
with each other.

In the ping-pong benchmark used on Cray XC, the performance of MPI blocking messages was recorded
with message sizes varying from 0 bytes to 65,536 bytes in increments of 1,024 bytes. Figure 4 shows the
validation results of the dragonfly model against the Theta Cray XC platform. Note that the MPI software
overhead and NIC delays are significant in this case as compared with the network traversal delays, which
is why a small difference is observed when comparing cases that traverse multiple network hops. For most
of the message sizes, the simulation results match the performance recorded on Theta. In some cases,
however, the simulator slightly underpredicts the results; we conjecture this is due to the operating system
noise and memory interference on the real system, which were not captured in the simulation framework.

6.2 Accounting for Network Interference

Network interference can be a source of considerable performance jitter and leads to nondeterministic
results (Petrini, Kerbyson, and Pakin 2003). Validation studies often tend to ignore the effect of interference

667



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

and its impact on the simulation performance being reported. Specifically, the studies do not report whether
the experiments were performed on a quiet system or whether other jobs were running on the system.
Hence, network interference may be misinterpreted for unintended model behavior, or severe model errors
may be written off merely as background noise in the network.

To illustrate how much effect interference can have on performance, we present MPI performance
measurements on a Cray XC system with and without network noise. Figure 5a shows the case when
performance was recorded while other jobs were running in the system, while Figure 5b shows the case
when the performance measurements were done on a quiet system with no other job running. In addition
to the performance difference, one can see the spikes that are present only when there is interference in
the system.

Hence, comparing measurements on an HPC system that executes multiple jobs simultaneously, with
the simulations that run a job in a controlled environment while disregarding background noise from unused
network nodes, unavoidably results in an apples-to-oranges comparison. However, multiple workarounds
exist to manage the interference effect in the validation experiments. One simple solution is to run the
experiment to measure the system performance on a quiet system when no other jobs are running. We have
followed this strategy for reporting the Cray XC performance data in this paper. Another approach to deal
with the problem is to quantify the interference on the target system and reproduce the interference effects
in the simulation by artificially creating background noise. This would ensure that an adequate comparison
is performed since the simulated system will not have idle network nodes.

6.3 Accounting for MPI Eager and Rendezvous Protocols

Most of the simulation frameworks use benchmarks to measure the MPI performance on the target systems,
but the validation data does not provide details on the MPI protocols that were modeled in the simulation.
Furthermore, HPC systems tend to send small messages eagerly, and large messages are typically sent
by using a rendezvous protocol (Brightwell and Underwood 2003). In case of the rendezvous protocol, a
handshake occurs prior to the actual data transfer, and it does not have the buffer copying overheads that
are present in the eager protocol. The threshold at which the transition from the MPI eager protocol to the
MPI rendezvous protocol occurs varies from system to system (Adiga et al. 2005), thus raising several
questions in the validation process. For example, were the MPI protocols being modeled in the simulation
the same as those on the target system? If different MPI message sizes were being used in the validation,
what was the transition point between the MPI eager and rendezvous protocols?

 0

 5

 10

 15

 20

 25

 30

 0  10000  20000  30000  40000  50000  60000A
v
g
 t
im

e
 t
o
 c

o
m

p
le

te
 m

e
s
s
a
g
e
s
 (

u
s
)

Message size (bytes)

codes
mpptest

(a) For 64 nodes, protocol change occurs
at 8 KiB (simulator is configured accord-
ingly).

 0

 5

 10

 15

 20

 25

 30

 0  10000  20000  30000  40000  50000  60000A
v
g
 t
im

e
 t
o
 c

o
m

p
le

te
 m

e
s
s
a
g
e
s
 (

u
s
)

Message size (bytes)

codes
mpptest

(b) For 1.024 nodes, protocol change oc-
curs at 2 KiB (simulator is configured
accordingly).

Figure 6: Validation experiments accounting for transition from the eager to the rendezvous protocol. The
CODES dragonfly model is compared with MPI performance measurements with the mpptest bisection
pairing benchmark on the Theta Cray XC system while no other jobs were running on the system.

Figure 6 shows how the protocol transition varies for different node counts on the Cray XC system.
For smaller node counts (e.g., 64 nodes, as shown in Figure 6a) the transition occurs at 8 KiB, whereas
for larger node counts the transition occurs at 2 KiB; as shown in Figure 6b. This figure showcases how

668



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

 0

 5

 10

 15

 20

 25

 30

 0  10000  20000  30000  40000  50000  60000A
v
g
 t
im

e
 t
o
 c

o
m

p
le

te
 m

e
s
s
a
g
e
s
 (

u
s
)

Message size (bytes)

codes
mpptest

(a) Protocol change in simulation at
8 KiB.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  10000  20000  30000  40000  50000  60000A
v
g
 t
im

e
 t
o
 c

o
m

p
le

te
 m

e
s
s
a
g
e
s
 (

u
s
)

Message size (bytes)

codes-eager
mpptest

(b) No protocol change.

Figure 7: Validation experiments comparing the effect of a MPI protocol change on the Theta Cray XC
system on 16 nodes using the mpptest bisection pairing benchmark. No other jobs were present on the
Theta system during the benchmarking.

our simulator implements both the eager and rendezvous protocols and illustrates the point at which the
transition occurs is configurable. Therefore, to accurately mimic the protocol transition of the system,
we configured the simulations accordingly by analyzing and identifying the right transition points from
the collected system performance data. The importance of supporting both protocols becomes clear when
analyzing Figure 7, which shows the noticeable performance differences in the simulation when the protocol
is not switched to rendezvous at 8 KiB for the dragonfly model. In this case, the buffer copying overhead
of the eager protocol increases the overall cost for the message transfer, resulting in much higher latency
for large messages; see Figure 7b.

6.4 Estimating System Overheads

Another component of validation involves estimating various network overheads accurately and then
representing them in the simulation. We discuss the overheads that should be taken into account when
performing validation, and we describe the ways these overheads can be measured on a real system.
MPI software-level overhead, NIC delays, and router processing overheads: On a real system, these
overheads can be derived by sending messages of zero bytes to a destination process mapped to the
neighboring node. In order to discount the impact of operating system interference, multiple messages
should be sent, and the resulting mean latency for these messages should be used in the simulation. Ideally,
the deviation from the mean value should also be reported, which will give an idea of the degree of noise
on the target system. On a torus network that has one router per compute node, the message will also
include the sender/receiver router processing overhead. On a dragonfly network, this overhead will include
only a single router overhead since routers are shared resources on high-radix networks.
Copy per byte overhead: This represents the copying cost for eager messages. It increases on a per byte
basis, and it can be derived by eagerly sending messages in the range of zero to several kilobytes (possibly
to a neighboring node for avoiding interference by other jobs).
Energy-saving features and wake-up delay: Modern HPC interconnection technologies, such as Infini-
Band, contain multiple energy-saving features, for example, disabling unused ports in a router, frequency
scaling, or link speed reduction (Mellanox 2013). Hence, the wake-up delay—the time between throttled
performance and the full performance after the first packet arrives—adds additional overhead, not only
in the local NIC, but potentially also in the rest of the network between the source and destination. This
overhead can be estimated in a manner similar to that for the general NIC overhead. When sending multiple
messages, however, the delay between the messages must be large enough to trigger the energy saving.
Alternatively, the provider of the networking technology must be consulted to inquire about estimated
delays.

669



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

Data locality for applications: When applications on the real system and application traces for the simulator
are being compared for the validation study, an important yet mostly overlooked influence is caching effects
and data locality. This issue is discussed in the next section.

6.5 Accounting for Memory and Caching Effects

Using application traces for network model validation can be an important part of the validation process;
but comparing actual application performance to simulated runs, which are based on idealized/optimal MPI
latencies for certain messages size, can show significant variance. For real benchmarks the locality of the
data that needs to be transmitted through the network actually matters. An example is the memory bypass
of the Tofu 2 interconnect, which allows the nodes/NICs to directly read and write from and into the L2
cache of the CPU (Ajima et al. 2014). Furthermore, our investigation has shown that not only the data
locality but also the cache misses, when accessing MPI-internal data structures, attribute to the increased
latency. To exemplify this behavior, we modified the latency benchmark of the Ohio State OSU benchmark
suite to enforce cache misses at the different levels of the CPU, and to report improved statistics, as shown
in Figure 8.

 0

 50

 100

 150

 200

1 4 16 64 256 1024 4096

P
in

g
-p

o
n

g
 l

at
en

cy
 s

ta
ti

st
ic

s 
(u

s)

Message size (bytes)

no flush
L1 flush

L2 flush
L3 flush

Figure 8: Influence of data locality on the ping-pong latency between nodes using IPoIB on an FDR
InfiniBand fabric (2 nodes on same router). Collected latencies are represented by whisker plots showing
the 0th to 4th quartiles for the 128 performed communications per message size. These message sizes range
from 1 byte to 4,096 bytes. Prior to sending the ping message, the MPI process flushes its CPU data caches,
resulting in different latencies depending on the flushed cache levels.

For demonstration purposes, we configured MPI to send the messages via the IP-over-InfiniBand
interface of an FDR fabric instead of the native IB interface, which highlights the problem well for small
messages in the range 1 byte to 4096 bytes—the predominant message sizes for HPC applications (Klenk and
Fröning 2017). Similar effects, while potentially less detrimental, can be observed for other interconnection
technologies and vary based on messages size, chosen MPI implementation, cache sizes and levels, and
communication protocols. If the application used for the validation shows unfortunate data locality and its
performance is latency sensitive, these cache effects may need to be accounted for in the network model.

6.6 Common Pitfalls

Having discussed the techniques for designing experiments, in this section we describe some of the common
issues associated with the experimental design phase of the validation workflow.

Restricted message sizes – Experiments done with only a few message sizes (e.g., < 1 KiB or > 1
MB) fail to validate the network model for different performance regimes in which tradeoffs between
constant delay and bandwidth determine the outcome. Thus, we recommend conducting experiments and
simulations for a wide range of message sizes and total communication volume.

Ignoring traffic interaction – Benchmarks that are restricted to two network nodes only (e.g., ping
pong) do not cover the network interference where multiple network nodes are generating traffic. Therefore,
using a ping-pong benchmark alone is not sufficient for a complete network model validation. Additional
benchmarks invoking communication on a substantial portion of nodes in the network need to be included

670



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

in the experimental design in order to enable a comprehensive comparison of network performance in
response to traffic.

On-node communication – Application traces occasionally require the execution of multiple application
processes on the same node, which potentially communicate node-internally. Hence, oversimplification
by assuming the equivalent behavior of on-node and (real) network communication or assuming the
instantaneous data transmission within a node can diminish the accuracy of the network simulations. Thus,
it is important to quantify an accurate delay per byte latency value to mitigate the effect. This can be
accomplished by establishing the cost per byte for on-node message transferring by timing the roundtrip
delay of two processes on the same node sending messages varying in size from 1 byte up to the desired
maximum message size. This delay can then be implemented in the simulation system.

Avoiding the common pitfalls will go a long way to improving the correctness of the future network
simulation results. Including all relevant aspects of the experiment such as memory/caching latencies or
on-node communication establishes a foundation for performing the final step of the validation process—
generating and reporting reasonable results from simulations.

7 DOCUMENTING THE OUTCOME

Adequate documentation and reporting of the collected validation data not only ensure repeatability for
the validation studies but also are “critical in convincing users of the ‘correctness’ of the model and its
results” (Sargent 2005). In the following, we discuss recommended practices for performing measurements
and simulations for network model validation and for reporting the acquired data. The data presented in
this paper on validating caching effects, using bisection pairing and ping-pong benchmarks, is available on
the public gitlab repository: git@xgitlab.cels.anl.gov:mubarak/validation-data.git.

For space-saving reasons, documenting the production of the results can be kept to a higher level,
such as network technology, topology type, executed benchmarks, underlying simulation framework, and
algorithms used—provided that a publicly accessible repository or long-term archive is referenced with
in-depth details, source code, and raw data (Collberg and Proebsting 2016). The in-depth information
should include the following items and any additional data potentially affecting the results.

Hardware Specification – Detailed hardware specification of network and attached nodes: switches,
links, and NICs, topology configuration, and node configurations, such as CPU and sizes of the
memory/storage levels.
Software Details – Deployed software versions and flags: operating system, CPU frequencies, network
firmware versions, compiler version and flags, MPI implementation and flags, source code of new or
patches for existing benchmarks, and execution commands.
Environment Details – Environment for the performed benchmarks: exclusive access or details about
the kind of background noise in the network through resource sharing.

Complementing this “how” information in an archive, we advocate presenting the following information
in scientific publications.

Input – Parameter configurations (even if kept at the default) should be reported for benchmarks and
simulations.
Metrics – The benchmarks and network model should measure and reports the same metrics; if
not, then the deviations—for example, omitting acknowledge messages for simulated communication
protocols—must be stated.
Repetitions – A sufficient number of runs is required to allow for statistical analysis, and potential
seeds for pseudo-random-number generators should be documented.
Result Compression – The statistical analysis and filtering methods used for the data should be
discussed.
Result Presentation – Outlier obfuscation, such as relative comparisons or logarithmic scales, should
be avoided. (Hoefler and Belli 2015)

671



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

However, extensive input data, the raw data from benchmarks and simulations, data manipulation scripts,
and any results omitted but mentioned in the research publication should be included in the public archive.
Such information improves confidence in the validation and opens up the possibility for further processing
of the data by other researchers. While this list is comprehensive and adequate for the purpose of network
model validation studies, it is certainly not complete, given the extent of this topic. For further information,
we recommend several works: (Sargent 2005, Hoefler and Belli 2015, Collberg and Proebsting 2016).

8 CONCLUSION

Widespread use of simulations in exploring next-generation HPC interconnects and procurement process
of HPC systems is contingent upon the confidence that the end users of simulations have in the outcome
predicted by the simulations. Robust and reliable validation of the simulations plays a key role in building
this confidence. To this end, we examined a workflow for conducting validation of HPC interconnect
simulations and presented ways for making it robust. For each step of the workflow, we described
simulation considerations that can improve the results and strengthen the validation study. We also used
results generated by the CODES simulation framework as examples to substantiate these claims. Further,
we highlighted common mistakes that negatively impact the reliability of validation studies. We hope that
these observations and guidelines will assist researchers in conducting convincing validation studies of
their simulations.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. Department of Energy Office of Science, Office of
Advanced Scientific Computing Research, under contract number DE- AC02-06CH11357 and Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-733848). The work
has used resources from the Argonne Leadership Computing Facility (ALCF).

REFERENCES

Adiga, N. R., M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Giampapa, P. Heidelberger, S. Singh,
B. D. Steinmacher-Burow, T. Takken, M. Tsao, and P. Vranas. 2005, March. “Blue Gene/L Torus
Interconnection Network”. IBM Journal of Research and Development 49 (2): 265–276.

Agarwal, T., A. Sharma, and L. V. Kalé. 2006, April. “Topology-Aware Task Mapping for Reducing
Communication Contention on Large Parallel Machines”. In Proceedings of IEEE International Parallel
and Distributed Processing Symposium 2006.

Ajima, Y., T. Inoue, S. Hiramoto, S. Ando, M. Maeda, T. Yoshikawa, K. Hosoe, and T. Shimizu. 2014,
August. “The Tofu Interconnect 2”. In 2014 IEEE 22nd Annual Symposium on High-Performance
Interconnects, 57–62.

Besta, M., and T. Hoefler. 2014. “Slim Fly: A Cost Effective Low-diameter Network Topology”. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), 348–359.

Brightwell, R., and K. Underwood. 2003. “Evaluation of an Eager Protocol Optimization for MPI”. In
European Parallel Virtual Machine/Message Passing Interface Users? Group Meeting, 327–334.
Springer.

Carothers, C. D., D. Bauer, and S. Pearce. 2002, November. “ROSS: A High-Performance, Low-Memory,
Modular Time Warp system”. Journal of Parallel and Distributed Computing 62 (11): 1648–1669.

Collberg, C., and T. A. Proebsting. 2016, February. “Repeatability in Computer Systems Research”.
Communications of the ACM 59 (3): 62–69.

Domke, J., T. Hoefler, and S. Matsuoka. 2014. “Fail-in-Place Network Design: Interaction Between
Topology, Routing Algorithm and Failures”. In Proceedings of the International Conference for High

672



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

Performance Computing, Networking, Storage and Analysis, SC ’14, 597–608. Piscataway, NJ, USA:
IEEE Press.

Faanes, G., A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T. Johnson, J. Kopnick, M. Higgins,
and J. Reinhard. 2012. “Cray Cascade: A Scalable HPC System based on a Dragonfly Network”. In
Proceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’12, 103:1–103:9. Los Alamitos, CA, USA: IEEE Computer Society Press.

Gropp, W., and E. Lusk. 1999. “Reproducible Measurements of MPI Performance Characteristics”. In Proc.
of the 6th Eur. PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and
Message Passing Interface, 11–18.

Hoefler, T., and R. Belli. 2015, November. “Scientific Benchmarking of Parallel Computing Systems”. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, SC’15, 73:1–73:12: ACM.

Jain, N., A. Bhatele, S. White, T. Gamblin, and L. V. Kale. 2016. “Evaluating HPC Networks via Simulation of
Parallel Workloads”. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’16. Piscataway, NJ, USA: IEEE Press.

Jiang, N., J. Kim, and W. J. Dally. 2009. “Indirect Adaptive Routing on Large Scale Interconnection
Networks”. In Proceedings of the 36th Annual International Symposium on Computer Architecture,
ISCA ’09, 220–231. New York, NY, USA: ACM.

Kim, J., W. J. Dally, S. Scott, and D. Abts. 2008, June. “Technology-Driven, Highly-Scalable Dragonfly
Topology”. ACM SIGARCH Computing Architecture News 36 (3): 77–88.

Klenk, B., and H. Fröning. 2017. “An Overview of MPI Characteristics of Exascale Proxy Applications”.
In 32th International Conference on High Performance Computing, ISC’17: Springer International
Publishing.

Mellanox 2013. “Whitepaper: Power Saving Features in Mellanox Products”. Technical report.
MPI Forum 2015, June. “MPI: A Message-Passing Interface Standard Version 3.1”.
Mubarak, M., C. D. Carothers, R. B. Ross, and P. Carns. 2017, January. “Enabling Parallel Simulation of

Large-Scale HPC Network Systems”. IEEE Transactions on Parallel and Distributed Systems 28 (1):
87–100.

Petrini, F., D. J. Kerbyson, and S. Pakin. 2003. “The Case of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192 Processors of ASCI Q”. In Supercomputing, 2003
ACM/IEEE Conference, 55–55. IEEE.

Petrini, F., and M. Vanneschi. 1997, April. “k-ary n-trees: High Performance Networks for Massively
Parallel Architectures”. In 11th International Parallel Processing Symposium, 87–93.

Sargent, R. G. 2005. “Verification and Validation of Simulation Models”. In Proceedings of the 37th
Conference on Winter Simulation, edited by S. Jain, R. Creasey, J. Himmelspach, K. White, and M. Fu,
WSC ’05, 130–143.

Won, J., G. Kim, J. Kim, T. Jiang, M. Parker, and S. Scott. 2015. “Overcoming Far-End Congestion
in Large-Scale Networks”. In IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), 415–427. IEEE.

Yang, X., J. Jenkins, M. Mubarak, R. B. Ross, and Z. Lan. 2016. “Watch Out for the Bully!: Job Interference
Study on Dragonfly Network”. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’16, 64:1–64:11. Piscataway, NJ, USA: IEEE Press.

AUTHOR BIOGRAPHIES

Misbah Mubarak is a postdoctoral researcher in the Mathematics and Computer Science Research Division
at Argonne National Laboratory. Dr. Mubarak received her Ph.D. in computer science from Rensselaer
Polytechnic Institute in 2015. Her email address is mmubarak@anl.gov

673



Mubarak, Jain, Domke, Wolfe, Ross, Li, Bhatele, Carothers, Ma, and Ross

Nikhil Jain is a Sidney Fernbach postdoctoral fellow in the Center for Applied Scientific Computing
at Lawrence Livermore National Laboratory. Dr. Jain received his Ph.D. in computer science from the
University of Illinois at Urbana-Champaign in 2016. His email address is jain6@llnl.gov

Jens Domke is a research associate of the Matsuoka Laboratory at the Tokyo Institute of Technology. Mr.
Domke received his Diplommathematiker degree from Technische Universität in 2010. His email address
is domke.j.aa@m.titech.ac.jp

Noah Wolfe is a graduate student in the Department of Computer Science at Rensselaer Polytechnic
Institute. Mr. Wolfe received his B.S. in computer engineering from the University of New Mexico in
2012. His email address is wolfen@rpi.edu

Caitlin Ross is a graduate student in the Department of Computer Science at Rensselaer Polytechnic
Institute. Ms. Ross received her B.S. in computer science from the University of North Carolina at
Greensboro in 2014. Her email address is rossc3@rpi.edu

Kelvin Li is a graduate student in the Computer Science Department at the University of California, Davis.
Mr. Li received his B.S. in computer engineering from the University of California, Davis, in 2009. His
email address is kelli@ucdavis.edu

Abhinav Bhatele is a computer scientist in the Center for Applied Scientific Computing at Lawrence
Livermore National Laboratory. Dr. Bhatele received his Ph.D. in computer science from the University
of Illinois at Urbana-Champaign in 2010. His email address is bhatele@llnl.gov

Christopher D. Carothers is a professor of computer science at Rensselaer Polytechnic Institute. Professor
Carothers received his Ph.D. from Georgia Institute of Technology in 1997. His email address is chrisc@
cs.rpi.edu

Kwan-Liu Ma is a professor of computer science at the University of California, Davis. Professor
Ma received his Ph.D. in computer science from the University of Utah in 1993. His email address is
ma@cs.ucdavis.edu

Robert B. Ross is a senior computer scientist in the Mathematics and Computer Science Division at Argonne
National Laboratory. Dr. Ross received his Ph.D. in computer engineering from Clemson University in
2000. His email address is rross@mcs.anl.gov

674


