Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

LARGE-SCALE DISTRIBUTED AGENT-BASED SIMULATION FOR SHOPPING MALL AND
PERFORMANCE IMPROVEMENT WITH SHADOW AGENT PROJECTION

Hideyuki Mizuta

IBM Research
19-21 Nihonbashi Hakozaki-cho, Chuo-ku
Tokyo 103-8510, JAPAN

ABSTRACT

In this paper, we introduce the agent-based simulation of a shopping mall with walking and purchasing
behavior model and consider the performance of distributed parallel execution. To utilize the agent-based
simulation for decision support, distributed parallel execution of large-scale agent-based social simulations is
important for evaluating the complex behavior of a realistic number of people with acceptable performance.
For this purpose, today’s agent-based simulation frameworks often provide the functionality to transfer
agents from one node to another. However, intelligent social agents tend to contain a large amount of
data including demographics, preferences, and history. Hence, the transfer of such an agent incurs a heavy
communication cost that has an adverse effect on performance. To improve the performance of distributed
agent-based simulation, we introduce a shadow agent that is a lightweight entity projected among nodes
with only required information such as the position and speed required to calculate interaction between
agents.

1 INTRODUCTION

Recently, agent-based social simulations are utilized to support the decision making of city planner for
various real social issues including evacuation (Yamashita, Matsushima, and Noda 2014), intelligent
transportation (Chen and Cheng 2010) and financial market regulations (Mizuta et al. 2013). To evaluate
complex behavior with interaction among heterogeneous peoples in a large city, such a social simulation
need to manage millions of agents with various behavior models and preferences. Moreover, the computation
speed is also required to analyze enormous combination of possible situations and strategies with repeated
simulations (Reviews and roadmap are introduced in (Noda et al. 2015)). Therefore, the distributed parallel
execution of large-scale agent-based social simulations is important for evaluating the complex social
interaction of a realistic number of people and situation with acceptable performance.

For this purpose, many large-scale agent-based simulation software provide the functionality to com-
municate and transfer agents from one node to another (e.g. Repast HPC (Collier and North 2013) and
Megaffic (Suzumura et al. 2012)). On the other hand, intelligent social agents tend to contain a large
amount of data including demographics, preferences, and history, and the transfer of such an agent incurs
a heavy communication cost that has an adverse effect on performance.

To improve the performance of such a distributed agent-based simulation, we introduce a shadow agent
that is a lightweight entity projected among nodes with only required information such as the position
and speed required to calculate interaction between agents. By utilizing this novel method for distributed
simulation with a shadow agent, the number of message transactions is increased, but the communication
data size is decreased enough to reduce the total transaction cost.

Such an approach to use the lightweight shadow agent for distributed simulation is a novel idea. In
the context of distributed multi agent cooperation, (Bansal 2006) considered the copy of agents denoted as
“shadow agent”. However, their “shadow” agent contains all information of the original agent and works

978-1-5386-3428-8/17/$31.00 ©2017 IEEE 1157

Mizuta

on behalf of the original agent in the case of failure. Thus this is quite different from our shadow agent
method that contains only small set of information for interaction.

As a concrete example of the social simulation, we develop a shopping mall simulation on the distributed
agent framework and introduce the class structure and behavior models of the simulator. Then we introduce
the shadow agent method to improve the performance of the distributed parallel execution. Finally, we
evaluate the simulation execution time for the traditional method and our shadow agent method with this
application.

2 AGENT-BASED SIMULATION OF SHOPPING MALL

In this section, we introduce an agent-based shopping mall simulator as an example of distributed social
simulation. Our simulator is developed on the X10-based Agent Simulation on Distributed Infrastruc-
ture (XASDI) which uses the X10 programming language (X10) for distributed parallel execution. This
XASDI framework is published as an open source software under the Eclipse Public License (EPL).

2.1 Agent Framework and Application

XASDI is a large-scale agent-based social simulation framework with enormous number (billions) of agents
to represent citizens in cities or countries. In previous works, we utilized this framework to develop a large
scale agent-based traffic simulator for the metropolitan traffic flow (Osogami et al. 2013, Mizuta 2015).

XASDI enables distributed simulations with the X10 programming language for post-Peta Scale
machines. The X10 programming language is the APGAS (Asynchronous, Partitioned Global Address
Space) language that provides highly parallel and distributed functionalities with Java-like syntax (X10).
On the other hand, XASDI provides easy-to-use API with Java that is familiar to application programmer
of social simulations and can be developed with powerful IDE functionalities (e.g. Eclipse refactoring and
debugger).

XASDI software stack contains the core runtime written in the X10 language for distributed agent and
execution management and the API bridge to enable application programmers to utilize the familiar Java
language (Figure 1). By utilizing XASDI framework users can easily develop their social simulator with
Java on distributed parallel environment without studying an unfamiliar X10 language.

Social Simulation (Java)

XASDI API Bridge (Java)

XASDI Core Runtime (X10)

X10 Runtime (X10)

Java Runtime

Figure 1: XASDI software stack on X10 and Java Runtimes.

The agent in XASDI is referred to as Citizen and Citizen has corresponding CitizenProxy that is
managed in the simulation environment to exchange messages. To manage CitizenProxy, XASDI provides
a hierarchical container structure called Place, Region and World (see Figure 2). CitizenProxies belong to
a Place and Places belong to a Region. World can contain several Regions, but usually there is only one
Region in a World.

Here, we need to note that the confusing terminology of the X10 language and the XASDI framework.
The X10 language uses the term “Place”, too, but the meaning of the term is different. The Place of X10
is used to denote the distributed execution environment for multi-core or multi-node. For this meaning, we
will use “X10 Place (node)” in distinction from the Place container of agents. Only one World instance
exists in one X10 Place and manages lists of entities in the World including Region(s) and Citizens. The
World can also contain IDs of Citizens in other nodes.

1158

Mizuta

World World
Region Region
Place Place Place Place
Citizen Citizen Citizen Citizen Citizen Citizen Citizen Citizen
X10 Place (node) X10 Place (node)

Figure 2: XASDI hierarchical structure to manage agents.

Other important classes in XASDI are Message, MessageRepository and Driver. MessageRepository
manages message transaction among CitizenProxies and environment. This class also works as interface
between the Java environment and X10 environment to exchange Messages in distributed X10 Places.
Driver manages execution of the simulation with a corresponding thread. Each Driver is related to Places
(and Citizens in the Places) where it has a responsibility for execution.

By extending the classes of this framework, we develop the shopping mall simulator with Java in which
agents walk and shop around the mall. In our simulator, the Mall class extends the Region and the Zone
(and Shop, which is a variation of Zone) extends the Place. The Zone represents a shop or aisle at which
a Consumer agent is located.

Action classes are also implemented on the Driver class to perform an consumer behavior for each time
step (typically 1 second) with different threads in parallel. For the shopping mall simulation, we define
Attraction, Move, Shop, and Purchase actions. Each action is related with models possessed by a Consumer
agent to allow different behavior for each person. We implemented Attraction, Move, Shop, and Purchase
models based on Hui’s model (Hui, Bradlow, and Fader 2009) and combined them with a Walk model.

We consider a three-layer representation of the mall. One map layer is a concrete geo spatial representation
defined with 3D coordinate data and another is an abstract network representation defined with nodes and
links. The Zone is a node and the adjacency relationship between two Zones is a link. On top of these two
map layers, we also consider a third economic layer that includes marketing and purchasing activities.

Figure 3 shows the three layers of the shopping mall simulation.

Marketing P
Purchasing ™~

Network L

Geometry

Figure 3: 3-layer structure of shopping mall simulation.
For economic activities including destination decision-making in the mall, we use the network repre-

sentation. For pedestrian activities, we use the geo spatial representation. This integration of economic
behavior and moving behavior is a key factor of this agent-based simulation.

1159

Mizuta

At the beginning of the simulation, the simulator reads the Zone definition file and generates Zone objects
(including Entrance and Shop) and related GeoZones that represent geo spatial locations simultaneously.
Consumer agents enter the mall from the Entrance zone at uniform random times during the simulation.

At each time step, agents update their attraction for products and zones, as described later. The attraction
is a numeric value associated with each agent (i.e., customer), where the value represents the level of
interest of the customer to the zone, or products sold in the zone, at which the agent is located at a given
time. Each agent may or may not have a destination. A destination is a zone in the network representation.
If an agent does not have a destination, it selects a destination with the probability determined on the basis
of zone attractions.

If an agent decides to stay in the current zone, or when it reaches the destination, it walks around
the current zone using the pedestrian model described in the next section. After the agent decides to
make one of the zones its destination, the shortest path on the network is chosen as a trip by Dijkstra’s
algorithm (Dijkstra 1959) and then the agent walks toward the next zone in the trip.

2.2 Walk Model

In this subsection, we introduce our walk model of agents with collision avoidance in a crowded mall.

For collision avoidance, we utilize a combined method of agents obstacle avoidance behavior: those
of (Zanlungo, lkeda, and Kanda 2011) and (Reynolds 1999). In a shopping mall, there are a variety of
situations that influence shoppers’ behaviors, such as passing through overcrowded places and changing
routes to avoid collision with other customers.

Zanlungo utilizes a social force model that can estimate future collisions. This works even in crowded
places, and as a result, agents can penetrate the gap between agents smoothly. Reynolds proposed an
approach that is also applicable to situations where other agents are approaching from the front directly
by using a steering force that negates the lateral side-up projection of the obstacle’s center. As a result,
agents can avoid direct approaches of other agents from the front.

We utilize these mixed models in the shopping mall simulation to handle both situations. The mixed
social force based on two models are calculated by the closest opponent. We estimate the future position
where a collision occurs at time ¢ and calculate the force of circular specification (Zanlungo, Ikeda, and
Kanda 2011) between agent i and agent j at that time.

The force F1 is calculated based on Zanlugo’s model (Equation 1). A and B denote the strength and
the range of interaction force, respectively. In our simulation, A and B is set to 2.0 and 1.5. The circular
specification assumes the force to depend on the only distance d;;(¢) between agent i and agent j at time ¢.

In addition, F2 shown in Equation 2 represents an evade force working only on the y axis (traverse
direction) at the local space of agent i. We define the local space as a specific agent’s local coordinate
system that can describe the relative position and orientation of other agents from the viewpoint of the
specific agent. C denotes the strength of the force that can be adjusted. In our simulation, the value of C
is 2.0. Each r; and y; represents approaching agent j’s radius and position at y axis at the local space of
agent i based on the current time.

d;;()

, 1
|dij (1) W
F2 = C(rj—y,)). (2)

F1 = Aexp(—|di(t)|/B)

The Consumer agents update their speed vector and position with the mixed force F' = F'1+4 F2.

2.3 Purchase Model

For shopping behavior, we consider the agent behavior model that are developed by extending the Hui’s
model (Hui, Bradlow, and Fader 2009). The parameters for the original model by Hui (Hui, Bradlow, and

1160

Mizuta

Fader 2009) is determined and verified with large amount of consumer tracking data at a super market. We
use similar parameters for shopping mall with modification due to shop size and time scale, but currently
do not verified with real data. The estimation and verification of the model parameters for a real shopping
mall remains as future work. In general, it is difficult to obtain detailed tracking data at a large shopping
mall. Hence we may need to simplify the model with reduced parameter set according to the available
observation data at a mall.

We do not use the geometric distribution for sojourn time used in Hui’s model, but rather check an
exit action with a given probability at each time step so that the surrounding environment can affect the
behavior of agents dynamically. This probability can be changed according to contact with the agents.
Hui’s model gives utilities and probabilities using attraction of products and zones in a supermarket based
on detailed tracking data. With these attraction values and other factors (e.g., sojourn time), the model for
moving to zones, the shop model at the destination zone, and the purchase model for products are defined.

At each time step ¢, attraction values a;;, of agent i for product k and A;j; for zone j are updated as

Aigr+1) = ik + DpiBie + Asil {k € C(xir) } (3)
k # checkout,
Aik(e+1) = ikt T OiSit 4)
k = checkout,
Ay = log (Z exp(aik,)) 5
keC(j)

where S;; denotes the sojourn time after the agent has entered the mall. The parameter w,; denotes the
weight for time pressure. All agents need to keep the attraction values for all products and zones in the
mall that can be large amount of data to be transferred between distributed nodes.

Relative rate R, to select destination zone j is the exponential of the move utility exp(«™°"¢), which
is given by

u™ = Zi+%ipj+ KiGi it (6)
Gijr = A+ Z A (7
=y l—{—d“)

where Z; denotes a baseline utility of zone j and pj, denotes the congestion of zone j. The parameter
% denotes the weight for social influence. G;j; represents the attraction of the destination zone j under
the influence from nearby zones ;' with distance d;;. The destination is determined by the probabilities
proportional to the relative rate. Though only the adjoining zones are considered in the Hui’s model, we
consider all zones in the mall as the candidates for the destination so that agent can travel to a far-flung
zone with the appropriate (shortest) path.

At the destination zone, transition into shop mode (consideration for purchase) occurs with the following
probability:

PP = exp(u™®) /(1 4 exp(u™P)), ®)
yhor O + BsiAiji + O3S + YsiPje + M)

where o; and 7); denote the baseline utility of agent i and zone ;.
Similarly, the probability PP"Y = ¢*/(14-€") to purchase a product is given by

U™ = oy + Bpicike + Oy Ty + WiPje, k € C(xir) (10)

1161

Mizuta

under the condition that the agent is in the shop mode and product category k exists in the current zone
Jj. Ty, denotes the duration after the agent has entered the current shop. We can see similar parameters for
time pressure and social influence in shop behavior and purchase behavior. However, the social influence
has a positive value for shop model 7; > 0 and a negative value for purchase model 7; < 0 according to
the estimation results by (Hui, Bradlow, and Fader 2009).

Though the model seems like a system dynamic model rather than an autonomous agent model,
but the microscopic behavior models and attraction values are assigned to each agent and can represent
heterogeneous preferences and perception as usual agent-based model.

2.4 Integration of Walk Model and Purchase Model

We now describe the integration of the geo-spatial walking behavior model and the purchasing behavior
model in a zone (shop).

Although the trip path between zones is defined on the network layer, consumer agents move around
a zone or toward the border with the next zone on the geospatial layer using the walk model described
before. With the walk model, agents avoid each other by the combined force model. However, the personal
space of a consumer agent may come into collision with another agent if there are many agents in a zone.
We consider this invasion count of the personal space (CPS) to modify purchase behavior with two steps.
First, we dynamically decrease the purchase probability by changing social pressure with accumulated CPS
since the agent stays in the current zone. In addition, we increase the probability for a consumer to depart
from a shop with a CPS logarithm.

The probability PP = ¢*/(1+¢*) to purchase a product is given by the modified utility

U™ = o + Britie + Opi Tt + Voi(Pje + Ws) CPS) &9

under the condition that the agent is in the shop mode and product category k exists in the current zone ;.
T, denotes the duration after the agent has entered the current shop. The departure probability is given by

PMOve — pbase 4y, log(14-CPS). (12)

With these behavior model, consumer agents interact with each other. In the next section, we describe
a new method for interacting agents in the distributed environment.

3 MULTI NODE EXECUTION OF AGENT-BASED SIMULATION

In this section, we describe the multi-node execution of an agent-based simulation and introduce our
proposed method with shadow agent projection.

In one node, there is one Mall instance that manages the execution of the simulator. The core
framework written using X10 manages the Regions and MessageRepositories of distributed nodes. The
MessageRepository supports several kinds of messages such as individual, broadcast, and move. An
individual message is a standard message from one agent to another. A broadcast message is sent to all
nodes and received by the Mall or agents corresponding to the type of message. A move message is a
control message to trigger the transfer of an agent from one node to another. The data for a shadow agent
is aggregated by Zones and distributed by the Mall to other nodes with a broadcast message.

Multi-node execution of the simulation is possible by using the XASDI framework with X10-based
activity and message management. The actions defined for simulation described in the previous section
were executed and synchronized in parallel by using X10 activity for a multi-node environment. A message
can be sent during the execution of actions from agents or a Region to others even if they are located in
different nodes.

The framework also supports the traditional agent transfer between nodes using a control message
including the necessary data of the agent as a deep copied field to restore the agent in the destination node.

1162

Mizuta

The arrangement of agents with the traditional method is processed as follows. Each X10 Place (node)
has one region instance and each region generates an agent at the same Place with a predefined schedule
or distribution in the simulation duration. For the shopping mall simulation, entrance zones manage the
schedule of entering consumer agents and a region where an entrance is located generates an agent at the
entering time given in the schedule. During the simulation, agents move among zones. If an agent moving
between zones belongs to different regions (X10 Places or nodes), the transfer of the agent occurs. The
source region sends a control message to move the agent through the framework and delete the agent from
the region. By using the serialized data of the agent in the control message, the framework restores the
agent at the destination node with the same data as before. In the simulation, each agent determines an
action based on a behavior model (e.g. walk and purchase models) and interacts with other agents in the
same zone. In the shopping mall simulation, the main interactions of agents are avoidance of the walk
model and probability changes in the purchase model that depend on the relative position and speed of
other agents.

In the traditional method, the transfer of agents among X10 Places requires message transaction with
deep copying of large data.

We can classify the following three types of data in an agent:

1. data for determining agent behavior (personality)
2. data for agent interaction (relationship)
3. data for logging and statistics (record)

With advances in the intelligent agent models for reproducing human society, the size of such data
becomes larger to maintain complex preferences, demographic information, and historical records required
for heterogeneous, intelligent, and learning-behavior models.

To decrease the size of the data transferred among distributed nodes and improve simulation performance,
our proposed method involves a shadow agent that has only information required to compute an interaction
(for example, position and speed). With our method, all regions have all zones. There is no transfer of
an agent but only projection of the shadow agent to other X10 Places using broadcast messages. The
relationship data in the shadow agent is much less than the total data of the substantial agent including
all personality, relationship, and record data. We project agents’ shadows into other X10 Places where
relationship data are required to calculate interactions.

The range of shadow data projection can be reduced if there is no agent to interact with in the
corresponding Zones of other nodes. Of course, if there is no agent in the current zone, no message is
needed for sending or receiving from or to the current zone.

When receiving the package of shadow information, the Mall at a node delivers the information to
corresponding zones in this node, and the agents in the zones use the information of shadow agents together
with real agents in the node to compute behavior such as avoidance or reaction regarding invasion of
personal space.

The Figure 4 and 5 show the comparison between the traditional agent transfer and a shadow agent.
There are two nodes with different colors for two zones. With the agent transfer method, each zone belongs
to only one node. When an agent changes its location from one zone to another, the transfer between two
nodes also occurs.

X10 Place0 X10 Place1

Ol ¥ 0

Q

Figure 4: Agent transfer method with two zones.

1163

Mizuta

X10 Place0

agent

NN

o

X10 Place1

Figure 5: Shadow agent method with two zones.

On the other hand, both zones belong to both nodes with our shadow agent method. In both nodes,
the agent can change its location between zones without agent transfer (stay in each node). However, the
shadow information should be updated to other nodes at each timestep of the simulation. With the shadow
agents, it looks like all agents exist in each node from the viewpoint of an agent. However, actions adapt
for behavior models to only the real agents in the zone. The shadow agent only has shadow information
to be used by the real agent for decision and does not execute actions with thread for computation. Hence,
the calculation time is not affected by the node distribution.

Both methods use message transaction to bring the information of agents to other nodes. However, the
amount of data and frequency of transactions are different and there is a trade-off. We discuss this trade
off with a simplified setting in the next section.

In addition to the communication time between nodes for such a large amount of data, copying and
restoring the whole agent instance incurs cost.

Figure 6 shows screen shot of shopping mall simulation with agent transfer method. The eight colors
of dots indicate the X10 Place where agents belongs to.

Figure 6: Screen shot of shopping mall simulation with agent transfer method.

Also, Figure 7 shows screen shot of shopping mall simulation with shadow agent method. We can see
different color of dots (agents in different X10 Places) exists in the same zone.

4 SIMPLE ESTIMATION OF TRADE-OFF

We now evaluate the trade-off of the two methods described in the previous section with a simplified
setting. For simplicity, we consider only the data size and number of message transactions with two nodes
(not considering computation time).

As the common definition for the number of agents, we denote the number of X10 Places (nodes) as
Ny and the number of agents per X10 Place as Np. Therefore, the total number of agents Ny = NxNp in
the distributed nodes.

1164

Mizuta

Figure 7: Screen shot of shopping mall simulation with shadow agent method.

We now estimate the amount of data communications with our shadow agent method.

The number of shadow agents projected from each X10 Place is Ny = Np = N4 /Nx. When we set the
data size of one shadow agent to Dgs, the amount of data transactions for our shadow agent method at each
timestep is as follows:

Ts = DgNsNy(Ny —1)
= DgNy(Ny —1). (13)

Next, we estimate the amount of data transactions with the traditional agent transfer method.

As discussed in the previous section, the data size of one agent Dy >> Dy

The number of transferred agents at each timestep is Ny = aNxNs, where we define the ratio of the
boundary area for moving into another node compared to whole geographical map used for the simulation
as o.

Agents located in the boundary area are candidates for moving agents in the next step. The total
boundary area for all nodes is smaller than the total area Ny < 1. This aNx depends on the scale of
the geographical map (for example, nation-wide area or one building) and the speed of agents (vehicle or
pedestrian).

Hence, the amount of data transferred with this traditional method 77 is as follows:

TT = OlDTNxNA. (14)
Finally, the comparison of the amount of data transactions with the two methods is shown as
Ts : Tr :Ds(NX — 1) :aD7Nx. (15)

This describes the trade-off between data size for one agent and frequency. Our method is effective
when Dg < Dy and o is not too small.

With this simple estimation, we can assume that the number of X10 Places has little effect and the
data size, and the ratio of the moving boundary to whole map determines the effectiveness of our shadow
agent method compared with the traditional agent transfer method. In the next section, we examine the
performance of the simulation by changing the data size. For the nation-wide traffic simulation, the data
size of each vehicle is small and the moving ratio (typically roads crossing the boundary of states or
prefectures) is very small. In this case, the traditional agent transfer method will be more effective than
our shadow agent method. For the crowded shopping mall simulation, the data size of a shopping agent
with preferences and carts is large and the moving ratio (typically the boundary area of shopping areas)
is relatively large. In this case, we can expect that our shadow agent method is more effective than the
traditional agent transfer method.

1165

Mizuta

S COMPARISON OF SIMULATION PERFORMANCE

To compare the performance of the traditional agent transfer method and our shadow agent method, we
evaluated the execution time (ms) of the simulation for 3,600 timesteps with 10,000 agents on 8 distributed
nodes (8 X10 Places) by changing the conditions of data size. The compute nodes are NeXtScale nx360
M4 machines connected with 10 GbE and Infiniband. The data size of agents that include preference for
products and shops and historical records can vary widely. For simple evaluation, we put dummy data array
on the agents with double values and changes the size of array up to 10,000. In the case of the shopping
mall simulation, this data size mainly corresponds to the attraction values for products (e.g. 100 products
at 100 shops requires 10,000 attraction values).
The results are shown in Figure 8.

= TRANS
= SHADOW

600000
|

550000
1

time (ms)

500000
1

0 100 1000 10000

450000
|

Dummy Data Size

Figure 8: Execution time (ms) comparison between shadow agent (SHADOW) and agent transfer method
(TRANS) with dummy data.

We can see the effect of data size as estimated in the previous simple calculation. Our shadow agent
method performed better for almost all conditions. While the execution time under the traditional approach
consistently increases with data size, the execution time for our shadow agent method has only small
fluctuation due to computing environment and does not increase with data size. This is because our method
only broadcast the fixed set of data (position and speed) required for interaction and the total size of data
including history or preference possessed by agent does not affect the execution time. Though we only
executed the simulation for 3,600 timesteps for the evaluation, it is required to simulate whole day or week
activities with various combinations of situations. Hence the difference of the performance is essential for
real use cases.

In addition to the data size of agents, we can consider that the balanced number of agents in each node
is also bring this advantage of the shadow agent method. It is difficult to balance the number of agents
among nodes with agent transfer method.

We also evaluate the scalability by using different number of nodes without dummy data (Figure 9).
Both methods show improvement up to 8 nodes, but saturate with 16 nodes. In Figure 9, the performance
of two method are almost same at each node size and the traditional method can show better performance

1166

Mizuta

than our method. The reason is that the agent does not have large data which is given at the previous
comparison (Figure 8) to concentrate the discussion on the scalability.

= TRANS
—_— = SHADOW

time (ms)
1000000 1200000 1400000
1

800000
1

600000
|

Node Size

Figure 9: Execution time (ms) comparison between shadow agent (SHADOW) and agent transfer method
(TRANS) with different node sizes.

6 CONCLUSIONS

In this paper, we introduced a shopping mall simulation with walking and purchasing behavior of consumer
agents on the distributed agent framework XASDI for an example of social simulation and implemented the
shadow agent method to improve the performance in multi nodes (X10 Place) environment. The distributed
parallel execution of large-scale agent-based social simulations is very important for evaluating the complex
social interaction of an enormous number of people and situation with acceptable performance to support
the decision making of city planners.

To evaluate complex behavior with interaction among heterogeneous peoples in a large city, such a
social simulation need to manage millions of agents with various behavior models and preferences, and the
computation speed is also required to analyze enormous combination of possible situations and strategies
with repeated simulations. But for the realistic behavior based on real data, social agents tend to contain a
large amount of data including demographics, preferences, and history, and the transfer of such an agent
incurs a heavy communication cost that has an adverse effect on performance. To improve the performance
of such a distributed large-scale social simulation with complex agents, we introduced a shadow agent
that is a lightweight entity projected among nodes with only required information such as the position and
speed required to calculate congestion and avoidance interaction between agents.

In this paper, we evaluated the execution time for the traditional agent transfer method and our shadow
agent method with changing conditions by using the shopping mall simulator. As we estimated on the trade
off of data size and transaction frequency, the advantage of the shadow agent method increased significantly
when the data size of each agent glowed. Though we used the dummy data for simplicity, it is natural
for consumer agents to have such data for heterogeneous preferences of shops and goods in a mall and
shopping record during the stay.

1167

Mizuta

ACKNOWLEDGEMENTS
This work was supported by CREST, JST.

REFERENCES

Bansal, A. K. 2006. “Incorporating Fault Tolerance in Distributed Agent Based Systems by Simulating
Bio-Computing Model of Stress Pathways”. In Proc. of SPIE Vol, Volume 6201, 620108-1.

Chen, B., and H. H. Cheng. 2010, June. “A Review of the Applications of Agent Technology in Traffic and
Transportation Systems”. I[EEE Transactions on Intelligent Transportation Systems 11 (2): 485-497.

Collier, N., and M. North. 2013. “Parallel agent-based simulation with Repast for High Performance
Computing”. Simulation 89 (10): 1215-1235.

Dijkstra, E. W. 1959. “A Note on Two Problems in Connexion with Graphs”. Numerische Mathematik 1
(1): 269-271.

Hui, S. K., E. T. Bradlow, and P. S. Fader. 2009. “Testing Behavioral Hypotheses Using an Integrated
Model of Grocery Store Shopping Path and Purchase Behavior”. Journal of consumer research 36 (3):
478-493.

Mizuta, H. 2015. “Evaluation of Metropolitan Traffic Flow with Agent-based Traffic Simulator and Ap-
proximated Vehicle Behavior Model Near Intersections”. In Proceedings of the 2015 Winter Simulation
Conference, edited by L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D.
Rossetti, 3925-3936. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Mizuta, T., K. Izumi, I. Yagi, and S. Yoshimura. 2013. “Design of Financial Market Regulations against Large
Price Fluctuations Using by Artificial Market Simulations”. Journal of Mathematical Finance 3:15-22.

Noda, I., N. Ito, K. Izumi, T. Yamashita, H. Mizuta, T. Kamada, Y. Murase, S. Yoshihama, and H. Hattori.
2015. “Roadmap for Multiagent Social Simulation on HPC”. In 2015 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Volume 3, 22-25. IEEE.

Osogami, T., T. Imamichi, H. Mizuta, T. Suzumura, and T. Ide. 2013. “Toward Simulating Entire Cities
with Behavioral Models of Traffic”. IBM Journal of Research and Development 57 (5): 6-1.

Reynolds, C. W. 1999. “Steering Behaviors for Autonomous Characters”. In Game Developers Conference,
Volume 1999, 763-782.

Suzumura, T., S. Kato, T. Imamichi, M. Takeuchi, H. Kanezashi, T. Ide, and T. Onodera. 2012. “X10-based
Massive Parallel Large-Scale Traffic Flow Simulation”. In Proceedings of the 2012 ACM SIGPLAN
X10 Workshop, 3. ACM.

X10. “The X10 Parallel Programming Language”. http://x10-lang.org/. Accessed: 2017-04-27.

XASDI. “X10-based Agent Simulation on Distributed Infrastructure (XASDI)”. https://github.com/x10-lang/
xasdi. Accessed: 2017-04-27.

Yamashita, T., H. Matsushima, and I. Noda. 2014. “Exhaustive Analysis with a Pedestrian Simulation
Environment for Assistant of Evacuation Planning”. Transportation Research Procedia 2:264 — 272.

Zanlungo, F., T. Ikeda, and T. Kanda. 2011. “Social Force Model with Explicit Collision Prediction”. EPL
(Europhysics Letters) 93 (6): 68005.

AUTHOR BIOGRAPHIES

HIDEYUKI MIZUTA is a Research Staff Member of IBM Research Tokyo. He received B.S., M.S.,
and Ph.D. degrees in Physics from the University of Tokyo. He is a member of IPSJ and ACM SIGSIM.
His research interests include dynamic economic-social systems with heterogeneous agents, SSME (Ser-
vices Science, Management and Engineering) and smarter cities. His email address is e28193 @jp.ibm.com.

1168

