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ABSTRACT

Traffic is one of the most important aspects of modern life, both in the developed world and in the
developing world. Analysis of traffic systems through modeling and simulation is an essential tool for
city planners to optimize traffic flow. Microscopic discrete-event simulation is a natural and powerful
method for such analysis. Characteristics of traffic systems that need to be modeled include inter-arrival
times, car-following behavior, lane-changing, turning, road structure, intersection structure, and traffic light
timing. There are many challenges that must be confronted as well, including the calibration and validation
of traffic models, scaling models to larger traffic systems, modeling the continuous nature of traffic in a
discrete-event environment, and optimization of traffic system characteristics. An emerging challenge for
traffic simulation is the incorporation of autonomous vehicles into traffic systems as not only traditional
vehicles, but also as cooperative agents as well.

1 INTRODUCTION

Our busy traffic systems only continue to get more busy as the number of cars on the road increases
substantially from year to year. The challenge we all face is to create a safe and efficient road system
that can handle the ever-increasing demands we put on it. Both simulation of traffic systems and traffic
forecasting can be an essential techniques in developing such a systems, and will be needed to investigate
traffic scenarios ahead of time.

Consider the ability to use simulation to predict the consequences of major road construction before
a project is even started. With autonomous vehicles on the horizon, there is an opportunity to see the
impact of cooperative driving where vehicles are also teammates instead of simply individuals (Sichitiu and
Kihl 2008). There are several major steps involved in producing a simulation of a traffic system. For the
simulation to be useful, it must be based on real-world data of some kind. There are many types of relevant
data and how each is used to build a simulation model will be discussed (Hellinga 1998). Once the data
has been secured, processed, and analyzed, models of the various simulation components can be created.
These include arrival models, traffic flow models, and the models of the roads themselves. Discrete-event
simulations (DES) are well-suited for accurately representing traffic systems since they allow for modeling
changes as they are needed, as opposed to discrete-time simulation (DTS), which updates a model at
specified times. For instance, when vehicles are created, a DES can produce them at the exact time they
should be, while a DTS will have to use a random variable to decide how many cars were produced since
the last update, and then also calculate where they should be along their respective roads.

Short term traffic forecasting can be used to help drivers navigating through or around congestions,
accidents and other complex traffic situations (Vlahogianni, Karlaftis, and Golias 2014). Traffic parameters
of interest for forecasting include travel time, traffic volume, traffic speed, queue length, etc. Traffic apps
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such as Waze, Google Traffic and INRIX are commonly used apps for forecasting traffic. These forecasting
techniques are useful for simulation purposes for a few reasons. First, they can provide a basis for modeling
certain characteristics of a simulation such as vehicle arrivals, or likely routes through a traffic network.
Forecasting can also be used as a means to validate a simulation’s structure and results. Traffic forecasting
is therefore an indispensable tool for the successful modeling and simulation of traffic networks.

Recently advancements in mobile and wireless technologies have enabled an increased amount of
traffic data to be collected (Herrera, Work, Herring, Ban, Jacobson, and Bayen 2010). Increasing numbers
of permanent and temporary sensors are also collecting great volumes of data. The availability of large
quantities of high-resolution traffic data has greatly facilitated the improvements of both simulation of
traffic systems and short term forecasting in recent years.

Predictive modeling of traffic is inherently difficult because of variability in drivers, variability in roads,
until recently, a limited amount of data to work with, highly chaotic and dynamic systems. In addition,
many factors come into play, including weather, events, accidents, etc. Furthermore, traffic systems become
very complex very quickly as the scale of the network is enlarged.

The rest of this paper is organized as follows: Section 2 discusses various types of simulation models.
Data collection and analysis are given in Section 3. Section 4 focuses on different short-term traffic
forecasting models. Challenges and directions for future work to improve the accuracy and robustness of
traffic modeling and simulation are considered in Section 5. Finally, conclusions are in Section 6.

2 TYPES OF SIMULATION MODELS

A traffic simulation model exists in any of three paradigms: macroscopic, mesoscopic, and microscopic. A
model can also be implemented using either DTS or DES. (Buss and Al Rowaei 2010) compared the results
of discrete-time and discrete-event simulations when using differential equations to calculate changes to the
system. They found that the choice of time-step has a large effect on the accuracy of the DTS models, but
also that errors resulting from a DES approach were smaller in general than the DTS approach. However,
(Lieberman and Rathi 1997) believe that DTS systems are a better choice for large traffic systems that
require a great amount of detail. A discrete-event simulation system with thousands of vehicles will likely
process many more updates to the system than would a discrete-time simulation. As processors become
faster, and parallel and distributed computing techniques continue to improve, the efficiency of DES should
get better as well, which along with the better accuracy of such an approach, likely makes DES the better
choice for traffic simulation moving into the future.

2.1 Macroscopic Models for Traffic Simulation

Most of the early work in traffic modeling was in the paradigm of macroscopic traffic models. Greenshields’
work is the starting point for the traffic flow models that would come later (van Wageningen-Kessels, Van Lint,
Vuik, and Hoogendoorn 2015). His work comparing velocity to traffic density led to some of the early
breakthroughs in the field and inspired many researchers to pursue traffic modeling.

A notable contribution was provided by (Lighthill and Whitham 1955) and (Richards 1956), with the
formulation of the Lighthill-Whitham-Richards (LWR) kinematic wave model of traffic flow. The idea
behind this application of kinematic wave theory is that changes in traffic flow propagate backwards through
traffic in a wave-like fashion, and that multiple waves can even collide forming kinematic ”shock waves”.
However, deficiencies in the basic LWR model were identified (Daganzo 1997) stemming from the fact that
the LWR model makes some unrealistic assumptions about traffic flow. First, the original model assumed
an instantaneous change of velocity, which would imply an infinite acceleration. Secondly, all vehicles in a
geographically defined neighborhood or platoon are assumed to have the same desired velocity. However,
real world data has shown that vehicles in a platoon will have their own desired speeds and this will lead
to the platoon getting spread out and eventually disentangling (Daganzo 1995).
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Figure 1: Timeline of traffic simulation models. (Gipps 1981), (Pipes 1953), (Kometani and Sasaki 1961),
(Lighthill and Whitham 1955), (Richards 1956), (Newell 1961), (Gazis, Herman, and Rothery 1961),
(Prigogine and Andrews 1960), (Buckley 1968), (Paveri-Fontana 1975), (Wiedemann 1974), (Branston
1976), (Bando, Hasebe, Nakayama, Shibata, and Sugiyama 1995), (Daganzo 1994), (Treiber, Hennecke,
and Helbing 2000), (Daganzo 2002), (Wong and Wong 2002), (Leclercq 2007), (Mahnke and Kühne 2007).

2.2 Mesoscopic Models for Traffic Simulation

Mesoscopic models utilize elements of both the macroscopic and microscopic paradigms of traffic flow
modeling. Specifically, individual vehicles are considered and modeled, but the overall flow is controlled by
macroscopic features (Zhou and Taylor 2014). (Buckley 1968) proposed a traffic flow model based on arrival
modeling using a semi-Poisson distribution. (Branston 1976) also discussed a traffic flow model based on
an arrival model. (Prigogine and Andrews 1960) proposed gas-kinetic traffic models with (Paveri-Fontana
1975) improving on the concepts later. (Helbing 1997) created a multilane version of this model. Later, a
generic gas-kinetic model was introduced by (Hoogendoorn and Bovy 2001). The INTEGRATION model
(Van Aerde and Yagar 1988) was originally mesoscopic in nature, though it has sen significant evolution
since the original formulation (Van Aerde, Hellinga, Baker, and Rakha 1996).

2.3 Microscopic Models for Traffic Simulation

When vehicles are in close proximity in the same lane, then one car is following another car, and must
change its own behavior as the car just in front of it also changes. These changes in behavior will result in
changes to either the acceleration or velocity of the vehicle. The reasoning behind the changes boils down
to either a general response to stimuli, or because of a desire to avoid collisions. When humans make
such decisions we either press the accelerator pedal, or the brake (decelerator) pedal. Thus, the decision
boils down to what the new acceleration of the vehicle should be. There have been many models proposed
for producing new accelerations for following vehicles. The new acceleration value is used to update the
velocity of the vehicle, which is then used to update the position of the vehicle. Many car-following models
have been proposed with most falling into the classifications below (Brackstone and McDonald 1999).

2.3.1 Stimulus-Response Models

Stimulus-response models assume drivers change their behaviors based on different stimuli. If drivers
are not traveling at their own desired velocities then they will choose to either accelerate or decelerate
depending on their speeds. Drivers will also adjust their speeds depending on either the spacing between
them and the car in front of them, or the relative velocity of the car in front of them.
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Some of the earliest work on car-following models was done by (Gazis, Herman, and Rothery 1961),
creating the GHR model, which has inspired many other models. For example, Bando et al. proposed
the Optimal Velocity Model (OVM) (Bando, Hasebe, Nakayama, Shibata, and Sugiyama 1995), (Bando,
Hasebe, Nakanishi, and Nakayama 1998), and Treiber et al. designed the Intelligent Driver Model (IDM)
(Treiber, Hennecke, and Helbing 2000), (Kesting, Treiber, and Helbing 2010).

2.3.2 Collision Avoidance Models

Collision Avoidance models work based on the idea that drivers will maintain distances that will prevent
collisions with the vehicles in front of them. Some of the earliest work in collision avoidance models was
done by (Pipes 1953) and (Kometani and Sasaki 1961). (Gipps 1981) refined the ideas considerably and is
still considered to be the leading model in the collision avoidance paradigm (Ciuffo, Punzo, and Montanino
2012). Table 1 shows several models in the Stimulus-Response and Collision Avoidance paradigms.

Model Formula

GHR v̇n(t + τ) = p
ẋn−1(t)− ẋn(t)
[xn−1(t)− xn(t)]l

IDM v̇n(t + τ) = an

(
1−

(
vn(t)
Vn

)δ

−
(

s∗(vn(t),∆vn(t))
sn(t)

))2

where s∗(vn(t),∆vn(t)) = s0 + vn(t)T + vn(t)∆vn(t)
2
√

anbn

OVM v̇n(t) = γ (v∗ (sn(t))− vn(t))
v∗(s) = vmax (tanh(s− c1)+ c2)

Gipps vn(t + τ) = min
{

vn(t)+2.5anτ(1− vn(t)/Vn)(0.025+ vn(t)/Vn)
1/2,

bnτ +
(
b2

nτ2−bn[2[xn−1(t)− sn−1− xn(t)]− vn(t)τ− vn−1(t)2/b]
)1/2

}
Table 1: τ represents a reaction time, p and l, δ , γ , c1, and c2 are sensitivity parameters used to fit the
models to data, an and bn are the maximum acceleration and deceleration for the nth vehicle, respectively,
T is the minimum allowable time to the car in front, s0 is the minimum allowable spacing between cars,
sn is the current spacing between the nth and (n−1)th car, and Vn is the desired velocity of the nth car.

2.3.3 Cellular Automata Models

Cellular Automata (CA) models are microscopic models because individual vehicles are created for the
simulation, but space is no longer continuous, and vehicles move between “cells” that model individual
locations on the road, with a small length to allow a single vehicle to occupy a cell at any given point
in time. (Nagel and Schreckenberg 1992) showed that the CA approach results in behavior predicted by
macroscopic models. Another expansion of the idea was proposed in (Helbing and Schreckenberg 1999)
in which the CA model is combined with the Optimal Velocity Model.

3 DATA COLLECTION AND ANALYSIS

Traffic systems produce large volumes of data and it is crucial to know the relevant types, their availability,
and how they can be used for traffic modeling (Hellinga 1998). Below are some of these relevant data
types.
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• Vehicle Count Data: Most states provide public access to vehicle count data, usually through a
web interface. The frequency of the counts is important for accurate arrival models. Hourly traffic
data is very common to find, but is not nearly as accurate as five minute intervals.

• Speed Limit Data: Speed limit data can be hard to find, but there are sources available for
estimates of the correct values. The Google maps API provides a function for retrieval of speed
limits for a particular road segment. Google does not guarantee that these speed limits are accurate.
OpenStreetMap can also be used to estimate speed limits, but some advanced work must be done.
Each state publishes the maximum speed limit for each type of road they have.

• Geo-Spatial Data: Traffic flow is heavily influenced by the shape of the road, especially if collisions
are a part of the simulation study. Blind curves, steep hills, narrow lanes, etc. all have an impact
on traffic. Much of this data is publicly available, and can be processed using GIS software.

• Travel Time Data: Typically, these data provide travel times between two locations. Some
governments provide such data, e.g., UK (data.gov.uk), Ireland (data.gov.ie) and Australia (data.
qld.gov.au, data.vic.gov.au).

• Accident Data: An online system would require accident data to efficiently reroute vehicles. These
data are available through web interfaces of state governments or through traffic apps such as Waze.

• Event Scheduling Data: In cities, events such as sports, concerts, celebrations, graduations, etc.
are usually available ahead of time.

• Construction Data: Road construction data are typically posted by state and local governments.

Figure 2: Vehicle counts vs. a polynomial fit

Vehicle counts can be used to determine interarrival times for the system and its sources. Figure 2
shows the vehicle counts on Mondays for 17 weeks and polynomial regression is fit using the data. Speed
limit data can be used to estimate the range of speeds at which vehicles would operate. Geo-spatial data
could even be incorporated to model accelerations and decelerations due to changes in the physical shape
of the road. For instance, severe curves in a road would necessitate decelerations. (Wilkie, Sewall, and
Lin 2012) use GIS data to create three dimensional models for used in traffic simulations. (Wang 2005)
discussed the integration of GIS methods and data with simulation models and visualization techniques.

The most conventional way to collect traffic data is through inductive loop detectors that are already
deployed on many roads (Leduc 2008). Magnetic fields are generated by the loop detectors in order to
detect vehicles, which are mostly made of metals. When vehicles pass through loop detectors, traffic count
data can be recorded. If two loop detectors are very close to each other, they can also calculate the speeds
of the vehicles that pass by.

Traffic data may also be collected by probe vehicles, which can be vehicles specifically deployed on
the roads for the purpose of real-time traffic data collection or commercial vehicles like taxi equipped with
GPS chips (Leduc 2008). Typically satellites and cellular networks can be used to transmit information
such as locations and speeds of probe vehicles. The CarWeb system proposed by (Lo, Peng, Chen, Lin,
and Lin 2008) utilizes GPS and Mobile networks to obtain position and speed data on non-freeway roads,
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which are less likely to have a comprehensive system of in-road sensors. With the relatively recent drastic
increase in the number of smartphones, the amount of data that can potentially be collected has also sharply
increased. Popular traffic apps such as Waze, Google Traffic and INRIX may collect anonymous data from
users who are using the apps while driving.

Other ways to collect traffic data may include using automated toll collection stations to collect travel
times data (El Faouzi, Klein, and De Mouzon 2009); (Hoogendoorn, Van Zuylen, Schreuder, Gorte, and
Vosselman 2003) discussed using aerial images to extract more detailed data from road systems, specifically
for use with microscopic traffic simulations; recently, in (Bhaskar and Chung 2013), the use of Bluetooth
scanners to collect traffic data was suggested.

4 TYPES OF FORECASTING MODELS

Many forecasting models have been developed for forecasting time course data. These models may include
statistical time series models and machine learning models. The applications of forecasting traffic variables
or metrics using different models have been an area of growing research interests. Our interest in the field
results from the idea that traffic forecast models can be used to drive elements of traffic simulations. For
example, an accurate forecast of traffic volume can be used to simulate vehicle arrivals to the network.

4.1 ARIMA Family of Models

One of the most intuitive approaches to forecast traffic variables or metrics of interest such as traffic volume
or travel time is to use the data from the recent past to predict the value of the variable in the immediate
future. It would be reasonable to assume that the traffic volume on a particular road fifteen minutes later
would be highly correlated to the current traffic volume. The univariate autoregressive integrated moving
average (ARIMA) family of models (Box and Jenkins 1970) commonly used in time series analysis can
be a good candidate for such a task.

The autoregressive (AR) portion relates the current variable of interest (e.g., travel time) to the same
variable at the last p time points. Let Zt represent the travel time at time t between two Traffic Control Sites,
define Yt = Zt−µZ , where µZ is the mean of the Z time series. In particular, the pth order autoregressive
model for Yt , AR(p), may be expressed as

Yt = φ1Yt−1 +φ2Yt−2 + · · ·+φpYt−p + εt

where φi is the parameter/coefficient associated with the ith lag Yt−i and εt is the white noise process.
As an example, the SCALATION project may be download from http://www.cs.uga.edu/∼jam/scalation 1.

3/README.html. The dataset used contains minute-by-minute travel time data from midnight to 1:00pm
from Traffic Control Site 2127 to 175 in Dublin, Ireland (Council 2016). This simple test creates an AR(1)
model to forecast travel times 15 minutes into the future. By using the “rolling forecast orgin” technique
(Hyndman and Athanasopoulos 2014) commonly used to validate time series models, only the most recent
n (in our case n = 60) instances are used as training data to produce 15-step ahead forecast on the n+15-th
time point. To run this test, simply type “run-main apps.analytics.Traffic AR” in the sbt console. An R2

value of 54.2% can be obtained. The forecasted (red) and actual (black) travels times are shown in Figure
3.

The ARIMA family of models has been used for short term traffic forecasting for almost four decades
(Ahmed and Cook 1979), (Levin and Tsao 1980). However, a major shortcoming of the ARIMA family
of models is its inability to quickly respond to sudden changes in the traffic condition such as congestion
caused by an accident or sharp increase and decrease in traffic volumes (Vlahogianni, Golias, and Karlaftis
2004). In recent years, the ARIMA family of models has mostly either been used as a baseline comparison
or a component of a hybrid or more generalized model.

An extension to ARIMA with seasonal components is called the SARIMA model. Seasonality typically
denotes similar or repeated patterns in the univariate time series for every fixed period of time, such as
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Figure 3: Travel Times: Forecasted (red) vs. Actual (black)

the daily traffic volume patterns on workdays. SARIMA was first used to forecast traffic flow of urban
freeways in (Williams, Durvasula, and Brown 1998). A recent study in (Kumar and Vanajakshi 2015)
demonstrated the potentials of SARIMA models fitted with only a limited amount of input data for traffic
flow forecasting when comparing with non-seasonal ARIMA models.

4.2 State-Space Models and Kalman Filter

Suppose one desires to study the relationship between a traffic metric or variable of interest and other
relevant traffic variables, the univariate ARIMA family of models may not be sufficient for such a task.
For example, information on departure times and past travel times can give valuable insights on forecasting
future travel times, but the univariate ARIMA family models are not able to take advantage of the extra
information for prediction. One solution would be to use multivariate generalizations of the ARIMA
models, such as in (Schimbinschi, Moreira-Matias, Nguyen, and Bailey 2017), which showed that a vector
autoregressive (VAR) based model can outperform baseline ARIMA models in traffic flow predictions.
Another solution would be to use the Kalman Filter (Kalman et al. 1960), a widely applied algorithm in
multivariate time series analysis.

In essence, the Kalman Filter (Kalman et al. 1960) attempts to use the estimate of the state of a system
(e.g., state may consist of traffic volume and velocity) and the degree of uncertainty of the estimate of the
state (to account for noise and measurement errors) at time t, and produces an estimate or forecast of the
state and its degree of uncertainty at time t +1. Any relevant measurements of some external influences
on the state (e.g., weather condition) at time t +1 (with its own degree of uncertainty) can also be used to
adjust the estimate of the state of the system at time t+1. A model that utilizes the Kalman filter algorithm
falls into a more general category of state-space models.

The Kalman Filter was first used to forecast traffic volume in (Okutani and Stephanedes 1984).
Application of travel time forecasting using the Kalman Filter was done in (Chien and Kuchipudi 2003).
In (Stathopoulos and Karlaftis 2003), the state-space models using the Kalman Filter outperforms simple
ARIMA model in traffic volumne forecasting. The difference in performance, in terms of the mean absolute
percent error (MAPE) is as high as 8%. A more recent study in (Guo, Huang, and Williams 2014) combined
Kalman filter with univariate time series models in order to produce better forecasts of traffic flow rate
than the individual models.
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4.3 Regression

Aside from multivariate time series analysis, another way to forecast a traffic variable using other traffic
or traffic-related variables is regression, a very common technique in predictive analytics. The goal of
regression is to find a function that best describes a given dataset. In other words, the differences between
the observed values of the traffic variable of interest and the fitted values (the predicted values of the traffic
parameter of interest given by the function) must be minimized. Typically, the function maps multiple
predictors (traffic-related variables) to a single response (the traffic variable of interest). A major class of
regression techniques is known as parametric regression, in which the forms of the function (e.g., linear,
quadratic, higher-order polynomials, generalized linear models, etc.) is pre-determined and therefore the
goal is to find the coefficients (parameters) on the predictors so that the function may best describe the
dataset. A widely used yet simple parametric regression model is the linear regression model

Y = b0 +b1X1 +b2X2 + · · ·+bnXn + ε

where Y is the response variable; X j is the jth predictor, j = 1,2, . . .n, where n is the total number of
predictors; b0,b1, . . .bn are the coefficients/parameters that need to be fit; and the ε random variable is used
to represent residuals or errors. This model may also be generalized to polynomial regression models by
including non-linear predictors (e.g., squared values of predictors).

In (Nikovski, Nishiuma, Goto, and Kumazawa 2005), linear regression was shown to be competitive with
some non-linear techniques such as neural networks and k-nearest neighbors when performing univariate
forecasting of short term travel times. The resolution of the data is 5 minutes and only data from the past
two time points (5 and 10 minutes prior) are used as predictors in linear regression. In (Zhang and Rice
2003), a linear regression based model in which the coefficients/parameters vary according to departure
time (as opposed to being constant in standard linear regression) was proposed, outperforming baseline
predictors that rely solely on current traffic information or historical averages.

4.4 Neural Networks

The regression techniques can provide simplicity with the pre-defined form of the function to be fitted, but
this may also be a disadvantage because traffic situations are often complex, involving sudden extremes due
to accident, bad weather, etc, which can be difficult to capture by using a fixed form of function. Neural
Networks, which can be understood as a form of multi-layer nonlinear regression, could be an alternative
for such a task. In recent years, Neural Networks have captured the attention of many researchers in the
field of traffic forecasting (Karlaftis and Vlahogianni 2011).

A Feedforward Neural Network is made up of interconnected layers of artificial neurons, inspired by
the structure of a brain. The incoming signals of a neuron are first aggregated, then the aggregated signal
is passed through a activation function to produce an output signal for the neuron to send forward to other
connected neurons. The strength of the connections among the neurons are learned from the input data.

Much research has been devoted to using Neural Networks for traffic forecasting since the early
90’s (Dougherty 1995). Recently, in (Schimbinschi, Nguyen, Bailey, Leckie, Vu, and Kotagiri 2015), a
comparative study of different techniques was done on short-term traffic volume forecasting techniques. The
forecasting problem was formulated as a classification problem (high traffic, low traffic). Neural Networks
were found to generally have superior performances in both forecasting accuracies and efficiencies than
RUSBoost (Seiffert, Khoshgoftaar, Van Hulse, and Napolitano 2010), Linear Discriminant Analysis (LDA),
classification trees, Support Vector Machines (SVM) using Radio Basis Functions (RBF) kernel, Naive
Bayes and k-Nearest Neighbors (kNN).

4.5 Other Forecasting Techniques

Other traffic forecasting techniques include Bayesian Networks (Sun, Zhang, and Yu 2006), functional
regression and classification (Chiou et al. 2012), among others. More comprehensive reviews on traffic
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forecasting may be found in (Vlahogianni, Golias, and Karlaftis 2004), (Vlahogianni, Karlaftis, and Golias
2014) and (Mori, Mendiburu, Álvarez, and Lozano 2015).

4.6 Traffic Apps

Some of the most popular traffic apps include Waze, Google Traffic and INRIX. Typically, those apps rely
on drivers using the apps while driving to collect real-time anonymous data through their mobile devices
that are present in vehicles. Information such as the speed of mobile devices reflecting the speed of vehicles
and the number of mobile devices moving around on different roads can be used to provide the current
traffic condition (Herring, Hofleitner, Amin, Nasr, Khalek, Abbeel, and Bayen 2010).

5 CHALLENGES AND FUTURE WORK

Problems with traffic conditions continue to plague humanity every day around the world, and the field of
traffic modeling and simulation still has much work to do to find solutions to these problems. Below are
some specific challenges that we feel need to be addressed in the future.

5.1 Discrete-Event Simulation

Many microscopic traffic simulation models use a DTS approach. (Florian, Mahut, and Tremblay 2008)
proposed that DES is more efficient, where the system would only update vehicles when it needs to. They
mention that DES will also allow for times in a continuous space instead of a discrete space, which should
improve results and reflect reality to a higher degree. They present a discrete-event system using a simplified
car-following model based only on the positions of the lead and following cars, the response time of the
driver in the following car, and the effective vehicle length of the following car. (Sumaryo, Halim, and Ramli
2013) and (Salimifard and Ansari 2013) both considered the problem of using discrete-event modeling in
traffic light simulation. (Burghout, Koutsopoulos, and Andreasson 2006) developed a mesoscopic traffic
simulation model for use with a discrete-event, hybrid mesoscopic-microscopic simulation. (Thulasidasan,
Kasiviswanathan, Eidenbenz, Galli, Mniszewski, and Romero 2009) used a parallel DES system for
large-scale microscopic traffic simulation.

5.2 Calibration And Validation

Calibration and validation are difficult to carry out for several reasons. For instance, collecting enough
data is difficult, and there may not be enough for calibration or validation. Also, geography is important
and models are highly dependent on the location under analysis. It can also be difficult to account for
the variablitly found among drivers. It is best to use real road data to validate traffic models, but closed
courses with a controlled collection of drivers have also been used. (Henclewood, Suh, Rodgers, Hunter,
and Fujimoto 2012) argued for using real-time calibration for online traffic simulation systems. They point
out that even in the same geographic area, parameters found under through calibration can be inappropriate
at other times of the day.

5.3 Scaling

Traffic simulations are difficult to scale up as the number of vehicles and the complexity of their interactions
can explode in even a fairly small geographic area. Recently, with growth in the areas of parallel and
distributed computation, efforts have been made at improving the scale of traffic simulations. (Fujimoto
2015) presented an overview of the current state of parallel and distributed simulation, and includes traffic
simulation as a major motivator for the field. (Thulasidasan and Eidenbenz 2009) proposed FastTrans,
a parallel simulator using distributed memory techniques for traffic simulation. They also show how the
choice of search algorithm for routing can affect the overall performance of the system. (Hanai, Suzumura,
Theodoropoulos, and Perumalla 2015) discussed the problem of multiple runs of what-if scenarios for large-
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scale traffic simulations, and proposed a filtering technique to reduce the number of scenarios (Suzumura
and Kanezashi 2013), (Kanezashi and Suzumura 2015). (Zehe, Cai, Knoll, and Aydt 2015) presented a
tutorial on a cloud-based simulation service, with a specific implementation example being simulation of
urban traffic.

5.4 Autonomous Vehicles

Autonomous vehicles will open up many new avenues of research into traffic systems, and will bring about
new opportunities for traffic management. A solution could be to have inter-vehicle communication. (Sichitiu
and Kihl 2008) gave an overview of various inter-vehicle communication methods. (Suh, Henclewood,
Guin, Guensler, Hunter, and Fujimoto 2017) discussed data-driven transportation systems.

(Ishikawa and Arai 2015) considered the impact of intelligent vehicles that can relay important in-
formation to other vehicles to prevent traffic jams. (Fernandes and Nunes 2010) discussed implementing
vehicle-to-vehicle communication within the SUMO (Simulation of Urban MObility) simulation system
(Krajzewicz, Erdmann, Behrisch, and Bieker 2012). (Pereira and Rossetti 2012) proposed microscopic
traffic simulation as a testbed for theoretical aspects of autonomous vehicles. (Hasebe, Nakayama, and
Sugiyama 2003) formulated an extension to the Optimal Velocity Model in which a vehicle can look ahead
or behind some number of cars to calculate its new acceleration.

5.5 Intelligent Traffic Lights

Intelligent traffic light systems would be highly adaptive and also cooperative with other traffic lights.
Traffic data sensors can send information to the lights and the timings can be adjusted to meet the current
demand of the intersection. If the problem cannot be solved by a single traffic light, then other traffic lights
are adjusted within a specified radius (perhaps adjustable as well), to attempt to reach a solution.

(Zozaya-Gorostiza and Hendrickson 1987) and (Radwan, Elahi, and Goul 1990) both designed
knowledge-based expert systems to adjust the parameters of traffic lights at single intersections. (Hunt,
Robertson, Bretherton, and Royle 1982) created the SCOOT (Split Cycle Offset Optimisation Technique)
system which has been used extensively in England, as well as other parts of the world, for adaptive control
of traffic lights. (Semarak 1996) proposed a fuzzy-logic approach to controlling traffic lights.

6 CONCLUSIONS

There has been a tremendous amount of work in the past decades to accurately model and simulate traffic
networks, though there are still many questions and avenues of research to be worked on. In this paper we
have presented many of the most important results from the past, and given an indication of the important
issues still left to be resolved. There is a discussion on autonomous vehicles, which have attracted increasing
attention from both researchers and consumers. We have also briefly reviewed some techniques commonly
found in the field of traffic forecasting, which is an important goal of traffic simulation. It is important
to pursue research in both forecasting and simulation in order to build more reliable traffic prediction
systems. More reliable prediction and simulation systems will allow us to solve many of the problems still
plaguing our roads, such as traffic congestion and safety. They will allow, as an example, for more efficient
programming of traffic lights, which could have an immediate impact on traffic congestion. Forecasting,
modeling, and simulation will also certainly play a large role in the continued development of autonomous
vehicles, which hold the hopes of having much safer roads to travel.
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