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ABSTRACT  

Digitalization is an ongoing revolution within manufacturing industry. 5G technology is expected to play 
an important role in ensuring connectivity. Digitalized factories set high requirements on technical 
availability, and therefore also on maintenance performance. However, it is difficult to get top-level 
decision makers to invest in maintenance, since the effects are usually deferred and difficult to verify up 
front. For quantifying long term effects, Discrete Event Simulation (DES) is identified as a powerful tool. 
In this study, DES was combined with established maintenance concepts to provide analysis of a real-
world industrial 5G pilot implementation. Maintenance concepts were used to identify relevant inputs and 
outputs to the simulation model. The model was tested on a use case, where 5G enables support for 
maintenance tasks. By applying DES and maintenance concepts on more use cases, there is a potential to 
quantify effects of maintenance and enable digitalized production in a larger scale.  

1 INTRODUCTION 

The development of manufacturing industry is moving towards digitalization. Digitalization and smart 
manufacturing has been widely discussed, and technologies such as smart sensors, Internet of Things 
(IoT), and big data are highly related to smart manufacturing and digitalization. The technologies have 
not been discussed to a large extend in the context of whole factories, since networks have not been 
available to ensure high speed transferring transfer of big data sets (Kang et al. 2016). High speed transfer 
is expected to be enabled by 5G technology, the fifth generation of mobile radio network, and will 
therefore play an important role in the digitalization development in industry. 5G is also expected to be 
more reliable, and have therefore potential to meet the connectivity requirements in sensitive industrial 
processes. In automotive manufacturing, with cycle times between 40-60 sec, temporary loss of 
connection can generate major costs, even if the stops only last for a couple of minutes (Khaleel et al. 
2015). Moreover, 5G provides the ability to transfer high volume data with low latency, enabling real 
time data analysis of equipment. Real time data analysis can provide information of current status of the 
equipment, and detect complex correlations utilizing big data analytics. This can be used for decision 
support in operations and maintenance, to increase flexibility, efficiency, and technical availability.
 Even though maintenance plays an important role in production (Ylipää et al. 2017) it has proven 
difficult to quantify the value of maintenance. The major reason is that the positive effects of maintenance 
investments are usually deferred and difficult to verify on beforehand. There are several established 
methods and concepts that can be used to plan, evaluate and quantify the effects and costs of 
maintenance. Some examples of methods and concepts are Value Driven Maintenance (VDM) (Haarman 
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and Delahay  2004), Reliability Centered Maintenance (RCM) (Rausand 1998), and Life Cycle Cost 
analysis (LCC) (Waeyenbergh and Pintelon 2002). In addition, maintenance research has been done in the 
context of profit, cost reduction, and performance. Alsyouf (2007) suggests maintenance as a profit 
generating function, based on a case study where an effective maintenance policy of a paper mill machine 
could, ideally, generate extra profit. By avoiding all unplanned stops and quality issues due to 
maintenance, extra profit corresponding to 12.5% of its yearly maintenance budget could be generated. In 
a survey study made by Swanson (2001), responses from plant managers and maintenance managers 
show a positive relationship between proactive maintenance strategies and performance. Al-Najjar and 
Alsyouf (2004) presents a case study where a model was developed to identify, monitor and improve 
economic impact of Vibration-Based Maintenance (VBM), to identify potential savings. Salonen and 
Deleryd (2011) proposes a concept for managing maintenance performance improvements within 
manufacturing industry. The concept is called Cost of Poor Maintenance (CoPM) and may help to 
identify justified maintenance costs and which costs relate to poorly performed maintenance. In contrast, 
Marais and Saleh (2009) argue that existing cost-generic models are missing the value of maintenance, 
and suggest a framework to quantify the value of maintenance activities. 
 Moreover, Discrete Event Simulation (DES) is a common tool used in industry to perform analysis to 
verify production capacity. It has also been used for maintenance related issues. With its ability to model 
complex systems, DES is a potential tool to get a view of maintenance cost depending on the dynamic 
behavior of the system (Alabdulkarim et al. 2013). Alabdulkarim et al. (2013) present a literature review, 
summarizing how simulation has been used to evaluate the ratio of preventive maintenance (PM) and 
corrective maintenance (CM), for scheduling PM, for staffing analysis, and for maintenance costs 
analysis.  

Despite the knowledge provided by maintenance research, it is still difficult to prove and verify the 
effects and value of maintenance in industry, since the benefits (e.g. reduced failure rate and increased 
throughput) do not appear immediately. The difficulty related to verifying the effects makes it challenging 
to get top-level decision makers to invest in maintenance. This indicates a missing link between 
maintenance theory and industrial practice.  

Therefore, this paper aims to use established maintenance concepts in combination with DES to 
quantify the long term effects of maintenance. By incorporating the introduction of 5G technology and 
increased digitalization in industry, it may be possible to approach maintenance differently. This study 
has been performed in connection with a digitalization project where a manufacturing company, a 
telecom company and researches worked together to demonstrate effects of 5G enabled manufacturing. 
During the project, use cases on how to utilize 5G for maintenance decisions has been specified. The use 
cases includes real time data analysis to predict failures. This study shows how DES can be used in 
combination with established maintenance concepts to evaluate these use cases. It does also provide a 
description of how 5G enables decision support for maintenance in this specific use case.  

2 METHODOLOGY 

The following methods were used in the study to: combine DES and established maintenance concepts, 
generate scenarios for 5G enabled maintenance, and evaluate the effects of the scenarios in a DES model. 

2.1 Literature study 

A literature study has been performed to see how DES has been used for maintenance issues in prior 
research. Established maintenance concepts were also studied to find factors considered important for 
further use in the simulation model. The scientific database Scopus has been used to search for literature 
from both journals and conferences. Examples of key words used in the searches are: “Value driven 
maintenance” and manufacturing or production; Simulation and “maintenance research”. For selecting the 
most relevant literature, keywords, abstract and conclusion of literature were read.  
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2.2 Interviews 

For describing the use case and scenarios of how data analysis could be used for failure prediction, group 
interview were held with experts from the companies in the project. Semi-structured interviews were also 
conducted with process experts and maintenance experts at the case company to collect input data to the 
simulation model and to set up the experimental plan. Interviews were also used to identify parameters 
considered important for the company to evaluate in the simulation model.  

2.3 Discrete event simulation 

For this study, the project methodology suggested by Banks (2010) was followed. The model was built in 
AutoMod® and based on interviews and guided tours with observations of the manufacturing system. The 
model was validated by face validity (Sargent 2005) with process and maintenance experts at the 
company.  

2.3.1 Use case and scenario description 

The simulation model built for this study represents a real-world factory in discrete manufacturing. The 
production flow is described by Figure 1. How 5G could support maintenance decisions with data 
analysis and failure prediction were specified during a group interview in the project. 5G with its high 
bandwidth and low latency will enable more connected equipment and real-time transferring of big data 
sets. By having all equipment in a factory connected, analysis by specialized algorithms can be used to 
find complex correlations in the data. The algorithms can by the correlations further predict not only the 
failures, but also symptoms. 

 

Figure 1: Description of the use case system (production flow). 

 A worn component can cause symptoms in the equipment, for example vibrations, resistance in 
movements, or increased temperature, leading to quality issues. When trying to control the development 
of the symptoms and their impact on quality, the speed of the machine is usually reduced, resulting in 
speed losses. However, speed reduction might not prevent, but only slow down the development of the 
symptoms, and there are no indications of when, or which component will fail. The components are 
expensive to hold in storage, and some are customized and manufactured by order. A failure of these 
components can therefore cause stops lasting for several days or even weeks. Unexpected and long 
failures will have an impact of the whole system, since the buffer capacity is not enough to cover up for 
the stop time. 

With real-time data analysis, it is expected to detect deviations in the data before they appear as 
symptoms, and predict both symptoms that causes quality issues and failures of the components which, in 
turn, might cause long stops. By prediction of symptoms, the speed in the machine can be reduced before 
quality issues appear. By prediction of failure, an indication of remaining useful live is given, making it 
possible to order the spare part in time and plan the replacement to have the least possible impact of the 
whole system. 

This use case will focus on failure prediction. To evaluate the impact of failure prediction, three 
critical components were chosen to focus on; components A, B, and C. The case company divides stops 
and failures into short, medium and long failures. In this stage of the project, the failure prediction is 
expected to reduce maximum duration of a long failure caused by the current component, since prediction 
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reduces time for troubleshooting and enables preparation of repairs. For some components, time for PM is 
increased since more inspections is expected to be done. Five scenarios have been specified. Scenario 1, 
current state were no prediction is conducted; Scenario 2, failure prediction of component A; Scenario 3, 
failure prediction of component B; Scenario 4, failure prediction of component C; and Scenario 5, failure 
prediction of components A, B and C.  

2.3.2 Experimental plan 

The experimental plan was set up with process and maintenance experts according to the use case and 
the scenario descriptions in 2.3.1. Prediction of failures is expected to reduce their maximum durations. 
The scenarios and their effects on parameters are described in Table 1. The input parameters were 
changed for each resource individually, since component failure durations and probability vary 
independently between different machines. 

Table 1: Description of the scenarios and parameters. 
 

Scenario Effects on input parameters 
Scenario 1 – Current State As is with current manufacturing setting 
Scenario 2  
– Prediction Component A 

Time for PM increased 
Maximum duration for long failure component A decreased 

Scenario 3  
– Prediction Component B 

Time for PM increased 
Maximum duration for long failure component B decreased 

Scenario 4  
– Prediction Component C 

Maximum duration for long failure component C decreased 

Scenario 5  
– Prediction Component A, B & C 

Time for PM increased, Maximum duration for long failure 
component A, B, C decreased 

2.3.3 Data collection  

Data related to the manufacturing processes (for example cycle times, buffer capacity etc.) were estimated 
by the company and based on data from the process. Data related to maintenance; number of failures, PM, 
and mean time to repair (MTTR) were based on interviews with maintenance experts and process experts. 
Further, input data for the future scenarios were estimated by the experts based on their experience of the 
production system and expected effects of failure prediction. 

2.3.4 Delimitations 

Delimitations and assumptions in the simulation model: 
 Due to the novelty of the simulation model and the created scenarios, the input data is based on 

experts’ experiences and expectations. Thus, no validation with quantitative data has been made. 
 Not all identified parameters from the referred maintenance concepts (Table 2) has been used.  
 Personnel not included in model – assumptions made that staff is available when needed. 
 Performance and quality (in overall equipment effectiveness, OEE) were assumed not to be 

affected between the scenarios. 

3 FRAME OF REFERENCES 

The following sections will describe common concepts and methods related to maintenance, and describe 
how simulation has been used for maintenance related problems and questions before. It also includes a 
section describing 5G in industry.  
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3.1 Digitalization and 5G  

Digitalization is an ongoing transformation in the whole society. 5G has mostly been discussed in 
connection to end-customer applications, such as autonomous vehicles. This is due to the direct impact on 
society and people’s everyday life. But 5G is also expected to play an important role in the digitalization 
of industry, as more connected equipment and more data transferring will require higher bandwidth. 
Moreover, real-time remote monitoring and control of equipment require fast transferring of data with 
resilient and secured connectivity. 5G, with its low latency, ability to handle big data sets and reliable 
connectivity is therefore the potential future communication platform in factories (Arthur D. Little 2017). 
Another key advantage of 5G is the elimination of wiring, which enables flexible production line 
configuration. Some specific aims of 5G systems compared to previous generations are (5G PPP 2015): 
1000 times higher data volumes, 100 times higher data rates, 10 times lower energy consumption, 5 times 
lower end-to-end latency, and at least 99.999% service reliability for mission critical services. 
 Examples of potential applications of using 5G network in manufacturing industry are remote 
monitoring of stationary and mobile equipment, remote control of stationary and mobile equipment, 
machine-to-machine communication, intra/inter-enterprise communication, and increased reality support 
in design, maintenance and repair. 

3.2 Maintenance concepts 

Established maintenance concepts were studied in order to determine relevant input and output 
parameters to the simulation model. Following paragraphs will provide a general description of the 
concepts, and the related input parameters identified can be found in section 4.1.  
 RCM is a planning approach of maintenance activities by focusing on the functions in a system 
(Rausand 1998). The functions are classified into different categories depending on how the function 
failures affects the system. The aim is to identify the required functions in the system, to identify the ways 
the system can fail, and plan the preventive maintenance tasks with objectives to prevent the most critical 
functions to fail. RCM can both be used to develop a maintenance program from scratch, but also to 
improve an existing by removing inefficient PM tasks. There are 4 principles characterizing RCM; 
preserve functions, identify failure modes that can disrupt the functions, prioritize the functions and select 
effective PM task according to it (Smith and Hinchcliffe 2004). 
 VDM is a maintenance management methodology with the aim to add value and profit to the 
company. It is a method for improving the cost effectiveness, rather than planning maintenance activities 
(like RCM). Haarman and Delahay (2004) describe the value drivers in maintenance as utilization, 
resource allocation, cost control, and safety, health, and environment (HSE). Stenström et al. (2013) 
presents a study where indicators from EN 15341 standards (CEN 2007) for measuring maintenance 
performance were used to identify indicators related to the value drivers in value driven maintenance and 
calculation of net present value.  
 Cost deployment has the objective to map the losses in a system, in order to reduce the cost of them 
(Yamashina and Kubo 2002). The different steps in the method is to, first investigating production losses 
and categorize them, then identify relationship among the losses and their costs and if there is a known 
way to reduce the loss. The last step is to estimate the cost reduction and prioritize the reduction of losses 
accordingly. Breakdown loss, short stoppage loss, and speed down loss are some losses related to 
maintenance. 
 The purchase cost does often only cover a small amount of the total cost of equipment (Waeyenbergh 
and Pintelon 2002). LCC analysis is an approach which considers this, by estimating the overall life cycle 
cost from cradle to grave. In manufacturing it plays an important part for decisions and planning related to 
reliability and maintainability (Reina et al. 2016). The cost of maintenance varies according to strategy 
and policy, and the aim of LCC is to choose the most cost effective approach to gain benefits in a long 
term perspective. The cost calculations are based on the cost of corrective maintenance and preventive 
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maintenance respectively. LCC can also include to evaluate however the maintenance work should be 
performed internally, externally, or by contracting.  
 Total productive maintenance (TPM) is an approach that focuses on improving the performance-
effectiveness in maintenance (Waeyenbergh and Pintelon 2002). The objectives of TPM is to maximize 
the equipment effectiveness and as a measure, OEE (availability, speed, and quality) is used. However, 
costs and profit are not taken into account, and the approach does not provide any strategy/rules regarding 
the use of different maintenance policies (failure based, condition based etc.).  

3.3 Simulation and maintenance 

Alabdulkarim et al. (2013) presents a literature review to examine how simulation has been used for 
mainenance research. One common application presented was maintenance policies - evaluation of PM 
and CM, and their impat on resource allocation, performance and cost. Planning and scheduling of PM 
are other common applications, and staffing are well used in simulation. Maintenance cost is major 
research area. Simulation has the potential to calculate maintenance operation cost depending on system 
dynamics and behaviour. However, studies have not focused on how to use simulation combined with 
established mainteancne concepts to facilitate communication of decision support for maintenance. 

4 RESULTS 
This chapter will present how simulation can be used to evaluate the effects of using 5G for maintenance 
decision support. It will present the identified possible input and output parameters based on established 
maintenance concepts and parameters used in the model, and the results from the simulation model.  

4.1 Mapping of input and output parameters from maintenance concepts 

Important model parameters to combine the benefits of DES and established maintenance concepts were 
identified by interpretation of the concepts presented in section 3.2 and from the project use case. Based 
on simulation experience of the authors, the parameters where divided into inputs and outputs (Table 2). 

Table 2: Input and output identified based on the established maintenance concepts.  

Concept Input Output 
RCM Mean time to failure (MTTF) 

Mean time to repair (MTTR) 
Failure rate function 

Ratio CM and PM,  
Criticality (safety, environmental impact, production 
availability, material loss) 

VDM Number of maintenance personnel 
 

Maintenance personnel cost, Cost of CM, Cost of PM, 
Production output, Production uptime, Tot. time planned 
maintenance, Tot. maintenance downtime, Tot. failure 
downtime, Tot. time to repair, Tot. waiting time, Maintenance 
overtime, Tot. no. of maintenance injuries, Tot. no. of failure 
injuries, Tot. no. of failures causing environmental damage 

Cost 
Depl. 

MTTF, MTTR, Performance 
Defected products per stop 

Total downtime, Total defect products due to stops 
Total cost of stop 

LCC Operator cost, Downtime,  
Spare part cost, Time for PM 

Cost of PM 
Cost of CM 

TPM  Overall equipment effectiveness (OEE)  
Project Time for PM per PM-stop, MTTR 

Number of stops and failures 
Production output, Utilization of resources, OEE, Efficiency, 
Flexibility, Traceability, Sustainability 

Inputs and outputs to the simulation model were selected from Table 2 in order to be in line with this 
specific use case and the goal of the project. The selection of parameters were also limited by the 
accessibility of data from the company. The inputs and outputs used in the simulation model are described 
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by Table 3. Number of failures were divided into three categories; short, medium and long failures. For 
these categories, different MTTR were used.  

Table 3: Input and output used in the simulation model.  

Input Output 
Time for PM per PM-stop, 
Number of failures, 
Failure rate function, MTTR 

Production output, Utilization of resources,  
Total time planned maintenance, Total failure time, 
Total maintenance downtime, OEE (for bottleneck) 

4.2 Results from simulation study 

This section will present the results from the simulation model in terms of above specified output.  

4.2.1 Production output 

Production output from the different scenarios is described by Figure 2 and Table 4. The production 
output in Scenario 1 has been normalized to 100%, and all subsequent results (Scenarios 2-5) are relative 
to this. All future scenarios (Scenarios 2-5) shows an increased production output. The results in Table 4 
indicates that predicting failures of one component (Scenario 2, 3 and 4) increases the production output 
by 2%. Failure prediction of all components increases the production output by 3%. Moreover, the 
standard deviation in Scenario 5 is lower than in all other scenarios, indicating that prediction of failures 
will contribute to a more robust production output.  

 

Figure 2: The figure presents relative number of production output in the five different scenarios. 

Table 4: Average value and standard deviation of production output. 

Scenario 
Production Output 

Average value Standard deviation 
Scenario 1 100% 3.1% 
Scenario 2 102% 2.1% 
Scenario 3 102% 2.3% 
Scenario 4 102% 2.1% 
Scenario 5 103% 1.7% 

4.2.2 Utilization  

Figure 3 shows the utilization of all resources in Scenario 1. From the graph it is possible to obtain the 
working time for each resource, as well as total time for PM, total failure time and total maintenance 
downtime. Total maintenance downtime is the sum of failure time and time for PM. By looking at the 
active period (working, failure, PM), Cell 6 is determined to be the bottleneck. The active period of Cell 6 

3970



Lundgren, Skoogh, Johansson, Stahre, and Friis 
 

has been normalized to 100% and the results presented in Figure 3 and Table 5 are relative to this. For 
example, the working time in Cell 6 in Scenario 5 is 83.8% of the active period of the cell in Scenario 1. 

 

Figure 3: The figure summarize the utilization of all resources. 

 Table 5 describes the different states working, failure and PM, as well as total time for maintenance 
and increase of active period in Cell 6. By looking at the working time between Scenario 2, 3 and 4, 
failure prediction of component A, B and C respectively, it seems like component B have the greatest 
impact of improvement of working time in Cell 6. However, the results shows that failure prediction of 
component C is most important from a systems perspective. The active period of Cell 6 increased by 
0.2% from Scenario 1 to Scenario 4. This means that the idle time, time spent on waiting for other 
resources due to starvation or blocking, was decreased. Scenario 5 with failure prediction of all 
components, enables the most efficient usage of Cell 6. Compared to Scenario 1, the working time 
increased from 81.7% to 83.8%. The increased working time could not only be explained by the reduction 
in total maintenance downtime (from 18.3% to 16.5%), but also by the increase of active period (reduced 
idle time). The active period increased by 0.3%.  

Table 5: Utilization results of Cell 6 from the simulation model. 

Scenario 
Cell 6 

Work Failure PM Tot. maint Increase of active period  
Scenario 1 81.7% 15.1% 3.2% 18.3% 0.0% 
Scenario 2 83.5% 13.4% 3.3% 16.6% 0.1% 
Scenario 3 83.6% 13.1% 3.3% 16.4% 0.0% 
Scenario 4 83.6% 13.4% 3.2% 16.6% 0.2% 
Scenario 5 83.8% 13.2% 3.3% 16.5% 0.3% 

The average value of working time per resource slightly increased from Scenario 1 to Scenario 5, from 
22.2% to 22.8% relative the active period of Cell 6 in Scenario 1. The small increase, compared to the 
increase in working time of the single bottleneck, indicates that the bottleneck is highly utilized compared 
to the other resources, which is also shown in Figure 3. In this specific case, the improvements of the 
system is almost limited to the improvement of the bottleneck. However, the average value of total 
downtime for maintenance per resource was decreased from 10.7% to 10.0%, indicating a potential to 
reduce direct maintenance costs. 

4.2.3 OEE  

OEE of the bottleneck resource, Cell 6, can be obtained by Figure 4. The OEE in Scenario 1 has been 
normalized to 100%, and all subsequent results (Scenarios 2-5) are relative to this. In the figure it is 
possible to obtain a slightly increase of OEE, but the most clear improvement is the reduction of the 
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standard deviation. Between Scenario 1 and Scenario 5, the average value increased from 100% to 102%, 
and the standard deviation decreased from 17% to 11%. This indicates a more robust OEE of Cell 6.  

 

Figure 4: The figure shows how the relative OEE value was changes between the scenarios.  

4.2.4  Summary results  

The results indicate a potential of more efficient resource utilization and increased production output by 
using 5G enabled data analysis and failure prediction. The failure prediction is expected to reduce the 
maximum duration of long failures. This specific case shows a potential to increase production output by 
3% and lower its variation from 3.1% to 1.7%. The active period of the bottleneck increased by 0.3%, 
which means that time spent on waiting for other resources due to starvation or blocking, was decreased. 
 However, the variation of production output and OEE in Scenario 1 is bigger than the potential 
improvement in Scenario 5, meaning that the results are not statistically significant. The results shows an 
uneven utilization of the resources, where improvements of the system is almost limited to the reduction 
of failure time of the bottleneck. But the indication of lower variation means that failure prediction can 
contribute to more robust production output. Moreover, the results shows a decreased average value of 
total maintenance downtime per resource, from 10.7% in Scenario 1 to 10.0% in Scenario 5. Reduction in 
total maintenance downtime means a potential to decrease direct maintenance costs. 
 Even though the results were not statistically significant in this specific study, simulation results can 
visualize the effects of maintenance. Results based on suggested maintenance concepts can be used to 
build business cases and justify improvements for stakeholder. 

5 DISCUSSION 

Maintenance organizations must take a key role in enabling industrial digitalization by securing the 
necessary system dependability (Ylipää et al. 2017). However, a big problem and paradox is that 
maintenance investments are commonly difficult to justify because the benefits (e.g. reduced failure 
frequency) cannot be immediately proved and verified. Given this situation, DES can be a key enabler 
with its ability to simulate future scenarios and provide valuable insights before the investments are 
decided. However, to increase the understanding and level of trust to decision makers, it is important to 
integrate DES to established maintenance models and current procedures around building business cases 
for investments. Established maintenance concepts can be used to choose relevant parameters to focus on 
with respect to the current question, to facilitate understanding and communication of the value of 
maintenance.  
 This study is part of a larger project targeting one of the first industrial 5G projects in the world 
focusing on the manufacturing industry. Understanding challenges and opportunities with digitalization in 
general, and 5G connectivity specifically, is important for the simulation community. In this way the 
community can define its role in contributing optimally to the digital transformation of manufacturing 
industry. Therefore, example cases as presented in this paper are necessary complements to general 
literature on industrial digitalization. 
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 There are few unexpected simulation inputs and outputs identified from the established maintenance 
concepts selected in this study. Many of the parameters are needed in studies summarized by 
Alabdulkarim et al. (2013). The simulation environment as such is therefore familiar to the simulation 
community. However, the most important take-away from this study is the explicit combination of DES 
and maintenance concepts such as RCM, VDM, LCC, Cost Deployment and TPM (Rausand 1998; 
Haarman and Delahay 2004; Yamashina and Kubo 2002; Reina et al. 2016; Wayenbergh and Pintelon 
2002). This combination creates internal validity towards maintenance decision makers.  

The experimental plan was set up in order to quantify the effects of using 5G enabled decision 
support in this specific use case. The use case included description of failure prediction of three critical 
components, with expectations of reduced maximum duration of a long failure. It is not unexpected that 
the results indicate shorter failure time and maintenance downtime for the resources. The results are not 
statistical significant, but this study demonstrates how simulation can be used to evaluate the effects of 
maintenance.  

The results shows a potentially increased, more robust production output and OEE, and decreased 
maintenance downtime. Moreover, failure prediction can potentially contribute to additional value which 
is not considered in this simulation study. Planning, customers and delivery precision were discussed by 
experts at the manufacturing company during the experimental planning. Increased robustness by failure 
prediction can reduce the uncertainty, and increase the ability to plan and deliver the products to the 
customers in time.  
 The simulation model is built to analyze a new system and possible investments in new technologies. 
Therefore, there has naturally been a lack of validated input data, and input data has been collected from 
similar equipment and assumptions made by process experts. It is worth mentioned that this study was 
made in an early stage of the project, and assumptions made regarding the effects of failure prediction 
could be considered as conservative. Real time data analysis is expected to detect deviation in the data 
before they appear as symptoms which causes quality issues, speed reduction, failures or other 
maintenance related issues. But in this specific case, failure prediction was assumed to only reduce the 
maximum duration of long failures, and not eliminate, or even reduce the number of them. A future vision 
should be to remove such failures, and only do repairs during planned stop with minimum, or no, effect of 
the whole system. The simulation model is built to be used in an iterative process, to be updated with new 
input data and features based on learnings along the project.  
 It should also be mentioned that this is a single case study and the authors have no intention to claim 
generalizability. Instead, the most important contribution of this paper is to add to interesting case 
descriptions inspiring further use of DES to enable industrial digitalization as well as the development 
and use of 5G connectivity. The bottom line is that DES can take a key role in enabling the digital 
transformation of manufacturing industry and facilitate investments in 5G connectivity and modern 
maintenance solutions. More digitalization cases are desirable to inspire further implementations. This 
paper proposes that that DES should be combined with established maintenance concepts to increase 
validity towards decision makers and thereby mitigate current problems with limited dissemination of 
DES. 

6 CONCLUSION 

This paper proposes the use of DES to be e key enabler of implementing 5G connectivity in 
manufacturing plants. Expected scenarios with 5G enabled manufacturing were presented based on a real-
world digitalization project with manufacturing and telecom companies collaborating with researchers. 
This specific case focuses on the implementation of modern maintenance solutions to reach the necessary 
levels of productivity and availability. By combining DES with established maintenance concepts (for 
example VDM, RCM, LCC), a list of relevant input and output to the model was suggested. A selection 
of these inputs and outputs have been tested in a simulation model, based on the scenarios expected with 
5G connectivity. This case-specific simulation model indicates a positive impact of implementing 5G 
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enabled maintenance solutions with positive effects such as increased production output, improved 
robustness and reduced total maintenance downtime. These results can be used as decision support for 
investments in modern maintenance solutions. Extending the proposed approach, of combining DES with 
established maintenance concepts, is expected to facilitate positive investment decisions in modern 
maintenance solutions, and thus, enable digitalization of manufacturing industry. Finally, the results and 
experiences of this study will serve as inputs to the requirement specification of 5G networks and 
additional services offered by network providers, such as mission critical clouds and analytics services. 

ACKNOWLEDGMENTS 

The authors are deeply grateful to experts at the manufacturing and telecom industries participating in the 
study – thanks for collaboration and learning exchanges! Thanks to ÅF Industry in Gothenburg for 
sharing their user interface for AutoMod®, for easier experiments. This research is also partly funded by 
VINNOVA (Swedish Agency for Innovation Systems). This work has been carried out within the 
Sustainable Production Initiative and the Production Area of Advance at Chalmers University of 
Technology. The support is gratefully acknowledged. 

REFERENCES 

Al-Najjar, B., and I. Alsyouf. 2004. “Enhancing a Company's Profitability and Competitiveness Using 
Integrated Vibration-based Maintenance: A case Study”. European Journal of Operational Research, 
157:643-657. 

Alabdulkarim, A.A., P.D. Ball, and A. Tiwari. 2013. “Applications of Simulation in Maintenance 
Research”. World Journal of Modelling and Simulation, 14-37. 

Alsyouf, I. 2007. “The role of Maintenance in Improving Companies’ Productivity and Profitability”. 
International Journal of Production Economics, 10:70-78. 

Arthur D. Little. 2017. Creating a Gigabit Society – The role of 5G. 
http://www.adlittle.se/uploads/tx_extthoughtleadership/_Vodafone-and-ArthurDLittle-Gigabit-
Society-5G-Final_01.pdf  

Banks, J. 2010. Discrete-event System Simulation, Upper Saddle River, N.J, Pearson Education. 
CEN 2007. Maintenance – Maintenance Key Performance Indicators, EN 15341 CEN – European 

Committee for Standardization, Brussels. 
Haarman, M., and G. Delahay. 2004. Value Driven Maintenance – New Faith in Maintenance: 

Mainnovation, Mainnoviation, Dordrecht. 
Kang, H.S., J.Y. Lee, S. Choi, H. Kim, J.H. Park, J.Y. Son, B.H. Kim, and S. Do Noh. 2016. “Smart 

Manufacturing: Past Research, Present Findings, and Future Directions”. International Journal of 
Precision Engineering and Manufacturing-Green Technology, 3:111-128. 

Khaleel, H., D. Conzon, P. Kasinathan, P. Brizzi, C. Pastrone, F. Pramudianto, M. Eisenhauer, P.A. 
Cultrona, F. Rusin, G. Lukac, and M. Paralic. 2015. “Heterogeneous Applications, Tools, and 
Methodologies in the Car Manufacturing Industry Through an IoT Approach”. IEEE Systems Journal, 
99:1-1. 

Marais, K.B., and J.H. Saleh. 2009. “Beyond its cost, the Value of Maintenance: An Analytical 
Framework for Capturing its net Present Value”. Reliability Engineering & System Safety, 94:644-
657. 

Rausand, M. 1998. “Reliability Centered Maintenance”. Reliability Engineering & System Safety, 60:121-
132. 

Reina, A., Á. Kocsis, A. Merlo, I. Németh, and F. Aggogeri. 2016. “Maintenance Decision Support for 
Manufacturing Systems Based on the Minimization of the Life Cycle Cost”. Procedia CIRP, 57:674-
679. 

Salonen, A., and M. Deleryd. 2011. “Cost of poor Maintenance: A Concept for Maintenance Performance 
Improvement”. Journal of Quality in Maintenance Engineering, 17:63-73. 

3974



Lundgren, Skoogh, Johansson, Stahre, and Friis 
 

Sargent, R.G. 2005. “Verification and Validation of Simulation Models”. In Proceedings of the 2005 
Winter simulation conference, edited by M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, 
130–143. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Smith, A.M., and G.R. Hinchcliffe, I. Ebrary. 2004. RCM: Gateway to World Class Maintenance, 
Amsterdam, Elsevier. 

Stenström, C., A. Parida, U. Kumar, and D. Galar. 2013. “Performance Indicators and Terminology for 
Value Driven Maintenance”. Journal of Quality in Maintenance Engineering, 19:222-232. 

Swanson, L. 2001. “Linking Maintenance Strategies to Performance”. International journal of production 
economics, 70:237-244. 

Waeyenbergh, G., and L. Pintelon. 2002. “A Framework for Maintenance Concept Development”. 
International Journal of Production Economics, 77:299-313. 

Yamashina, H., and T. Kubo. 2002. “Manufacturing Cost Deployment”. International Journal of 
Production Research, 40:4077-4091. 

Ylipää, T., A. Skoogh, J. Bokrantz, and M. Gopalakrishnan. 2017. “Identification of Maintenance 
Improvement Potential Using OEE Assessment”. International Journal of Productivity and 
Performance Management, 66:126-143. 

5G PPP. feb 2015. 5G Vision Brochure v1. https://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-
Brochure-v1.pdf 

AUTHOR BIOGRAPHIES 

CAMILLA LUNDGREN is a PhD student at Industrial and Materials Science, Chalmers University of 
Technology. Her research focuses on the effects of maintenance, with the goal to quantify and facilitate 
communication of the value of maintenance. She has industrial experience from working with automatic 
cleaning systems in pulp and paper industry, as well as being a production and logistics consultant at ÅF 
Industry. Her email address is camilla.lundgren@chalmers.se. 
 
ANDERS SKOOGH is an Associate Professor at Industrial and Materials Science, Chalmers University 
of Technology. He is a research group leader for Production Service & Maintenance Systems. Anders is 
also the director of Chalmers’ Master’s program in Production Engineering and board member of the 
think-tank Sustainability Circle. Before starting his research career, he accumulated industrial experience 
from being a logistics developer at Volvo Cars. His email address is anders.skoogh@chalmers.se. 
 
BJÖRN JOHANSSON is a professor at Industrial and Materials Science, Chalmers University of 
Technology. His research aims at utilizing virtual applications to achieve more sustainable manufacturing 
industries. He explores methodologies and tools for analyzing material flows throughout a product 
lifecycle, analyzing social environmental and economic KPIs. His email address is 
bjorn.johannson@chalmers.se. 
 
JOHAN STAHRE is a professor at Industrial and Materials Science, Chalmers University of 
Technology, and heads the division of Production Systems. His research is on production automation and 
human factors. He has coordinated national and international projects on social sustainability, levels of 
automation and collaboration, and human supervisory control of production. His email address is 
johan.stahre@chalmers.se. 
 
MARTIN FRIIS works with initiation and management of projects at SKF, especially collaborative 
projects with other partners (the alliance part of the open innovation paradigm). He started at SKF in 
2005, and has worked in R&D and Management of Technology and Innovation since then. He holds a 
PhD in Materials Science from Lund University. His email address is martin.friis@skf.com. 

3975


