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ABSTRACT 

With the rapid development of semiconductor manufacturing, customers’ demand for on-time delivery rate 

(ODR) makes scheduling strategies face new challenges. In order to meet customers’ delivery requirements, 

scheduling strategies generally need to comprehensively consider remaining cycle time (CT), ODR, 

movement (MOV) speed and machine load balancing. In order to solve these problems, this paper proposed 

a scheduling strategy of semiconductor production lines with remaining cycle time prediction. Firstly, 

gather features related to performance index and then filtrate them through dimension reduction method. 

Secondly, use the above feature subset to build remaining cycle time prediction model by random forest 

algorithm. Next, design the scheduling strategy of semiconductor production lines with remaining cycle 

time prediction. Finally, make simulation experiments to verify the effectiveness of the proposed scheduling 

strategy. Simulation results show that the proposed scheduling strategy can improve the mean CT, 

throughput (TH), machine utilization time (MUT) and ODR in different extant. 

1 INTRODUCTION 

The development level of the semiconductor manufacturing has become an important symbol which can 

measure national economic development and social progress, and semiconductor manufacturing process 

has received extensive attention from academia and industrial field (Shen et al. 2003). The scheduling 

problem of semiconductor production line usually has characteristics of multi-objective, multi-constraint, 

nonlinearity, uncertainty and difficult modeling, which greatly increase the difficulty in scheduling 

problems (Li et al. 2012). CT is one of the most important performance indexes in semiconductor 

production line (Deng et al. 2014, Haizan et al. 2012), which is closely related to ODR. So, many scheduling 

strategies take remaining cycle time as one of the decision variables (Hildebrandt et al. 2014, Wu et al. 

2014). In addition, cycle time is an important decision variable of release control. Therefore, we must deeply 

study the effect of remaining cycle time on semiconductor manufacturing system. 

With the development of information increasingly deepening, large number of data was produced and 

stored. There must exist a lot of knowledge related to scheduling in those historical data (Yu et al. 2014). 

How to use those data to mine knowledge related to scheduling and assist complex manufacturing systems 

to build scheduling model and make optimization is a problem worthy of study (Chang et al. 2012). Data-

based remaining cycle time prediction can consider influences of multiple uncertain factors, dig potential 

knowledge for prediction model and use the predicted value as one of the decision variables, and then 

optimize performance indexes of production line (Yen et al. 2012). Tirkel et al. (2011) predicted cycle time 

of some specific processes using data in a manufacturing execution system (MES) through decision tree 

and neural network technology and the accuracies were 76.5% and 87.6%, respectively. Chien et al. (2005) 

comprehensively considered work in process (WIP) and TH in their scheduling strategy, predicted cycle 

time through domain knowledge and data mining and then applied the proposed strategy into a real 
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production line. Results showed that their proposed strategy played a guidance role in decision-making 

process for the production line. To reduce CT, Meidan et al. (2011) suggested and investigated a data-

driven approach that identified key factors and predicted their impacts on CT. They identified the most 

influential factors using conditional mutual information maximization, and then applied the Selective Naive 

Bayesian Classifier (SNBC) for further selection of a minimal, most discriminative key-factor set for cycle 

time prediction. Results showed their method improved the accuracy of cycle time prediction in nearly 40% 

while narrowing the list of factors from 182 to 20. Based on systematic research of related works worldwide, 

Wu et al. (2009) proposed a data-based scheduling framework composed of a data layer and a model layer 

for complex manufacturing processes. They discussed related theories, methodologies, and technologies 

for this scheduling framework as well. Based on a simulated Non-Volatile Memory (NVM) fab, Hassoun 

et al. (2013) showed that forecasting the steady state cycle time of process segments was possible using 

certain segment characteristics. They also showed that the cycle time predictability was highly dependent 

on the choice of the segmentation, with the more efficient segmentation corresponding to the product layers. 

Make comprehensive consideration, this paper proposes a scheduling strategy with remaining cycle 

time prediction (SRCTP). The proposed method mainly contains two parts: remaining cycle time prediction 

model and scheduling algorithm. 

2 PROBLEM ASSUMPTIONS AND DEFINITIONS 

2.1 Problem assumptions 

During the study on SRCTP, this paper makes the following assumptions: 

 

(1) The information related to job dispatching, e.g., job processing time, WIP in the queue and available 

time of a machine, can be obtained from Manufacturing Execution System (MES) or other information 

systems of a fab.  

 (2) When making dispatching decisions for batch processing machines (BPMs), there are two main 

steps. The first one is to batch the jobs. There are two important constraints: 1) only jobs using the same 

recipe can be processed together as a batch and 2) the batch size should be no greater than the capacity of 

a BPM. In addition, good tradeoff between the wasted time and wasted capacity of a BPM should be made. 

The second step is to determine the priorities of the batches. The main concerns are the same as those in 

assumption 2 for non-BPMs.   

(3) Once processing begins on one batch, no job can be removed from or added to the machine until 

the present one is done.  

2.2 Definitions of Parameters and Variables 

The proposed SRCTP is described in the form of a new workflow involving both BPMs and non-BPMs. 

To do so we first define variables and parameters in it.  

a: the input vector 

b: the output vector 

i: index of the available machine 

j: the index of vectors 

id: index of the downstream machine 

im: index of the recipes of machine i 

m: the number of features 

n: index of the jobs in the queue of machine i 

t: dispatching decision point, i.e., dispatching time 

D: database 

F: the original feature set 

L: category label 

X: a random variable 

Y: a random variable 

(𝛼, 𝛽, 𝛾, 𝜎): random indexes which can measure 

the relative importance of each information 

𝛽𝑘: an independent identically distributed random 

vector 

Bi: capacity of machine i of type BPM 

Dn: due date of job n 

fi: feature 

ℎ(𝑎, 𝛽𝑘): meta classifier 

H(X): the information entropy of variable X 

H(Y): the information entropy of variable Y 
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H(X|Y): the new information entropy of variable X 

after observing variable Y 

IG(X|Y): the information gain between variable X 

and variable Y 

Mi: number of the recipes on machine i 

Nim: number of the jobs in the queue of machine i 

using recipe im 

𝑁𝑖𝑑
𝑘 : the maximum workload of downstream 

machine id 

𝑁𝑖𝑘
ℎ : the number of hot lot in the batch ik 

pn: the dispatching priority of job n 

𝑝𝑖
𝑘 : the required processing time of batch k on 

machine i 

𝑝𝑛
𝑖𝑑: occupation time of job n on 

P(x): the prior probability of variable X 

P(y): the prior probability of variable Y 

P(x|y): the new prior probability of variable X after 

observing variable Y 

SU(X,Y): the new information gain after 

normalization 

Tid: available time of machine id in one day 

tim: the processing time of recipe im 

𝑡𝑖𝑑
𝑚 : the processing time of recipe m on the 

downstream machine id 

𝑡𝑛
𝑝𝑜𝑖𝑛𝑡

: the last time to  make remaining cycle time 

prediction 

𝑡𝑛
𝑝𝑟𝑒

: the predicted value of remaining cycle time 

WTin: the dwell time of job n on machine i 

𝑥𝑖
𝐵: a binary variable. If machine i is a bottleneck 

at time t, 𝑥𝑖
𝐵 = 1; and otherwise, 𝑥𝑖

𝐵 = 0. 

𝑥𝑖𝑑
𝐼 : a binary variable. If machine id is idelat time 

t, 𝑥𝑖𝑑
𝐼 = 1; and otherwise, 𝑥𝑖𝑑

𝐼 = 0. 

𝑥𝑛
𝑖𝑚: a binary variable. If job n uses recipe im on 

machine i, 𝑥𝑛
𝑖𝑚 = 1; and otherwise,  𝑥𝑛

𝑖𝑚 = 0. 

𝑥𝑛
𝐻: a binary variable. If job n is a hot lot at time t, 

𝑥𝑛
𝐻 = 1; and otherwise, 𝑥𝑛

𝐻 = 0. 

𝑥𝑛
𝑝𝑟𝑒

: a binary variable. If need to predict the 

remaining cycle time, 𝑥𝑛
𝑝𝑟𝑒

= 1 ; and otherwise, 

𝑥𝑛
𝑝𝑟𝑒

= 0. 

𝜏𝑖
𝑛(𝑡): urgency degree for job n to be processed on 

machine i at time t 

𝜏𝑖𝑑
𝑛 (𝑡): urgency degree for job n to be processed 

on downstream machine id at time t 

3 DATA-BASED REMAINING CYCLE TIME PREDICTION MODEL 

3.1 Framework of SRCTP 

By fully considering the aforementioned problems, the scheduling framework is designed as shown in Fig.1. 

It mainly consists of two parts: (1) Feature selection; (2) Building prediction model based on RF. Feature 

selection is performed to select the production attributes that are the most relevant to the formulation of a 

production scheduling strategy, remove redundant and invalid production attributes, reduce modeling time, 

and increase the prediction model’s accuracy. The prediction model based on RF can compute the 

theoretical remaining cycle time according to current status of the production line. As a result, the 

scheduling strategy can respond to the changes in remaining cycle time. The specific flowchart will be 

shown in section 3.4. 

Simulation Model of A 

Semiconductor Production Line

Sample 

Database
(1)  Feature Selection

(2) Random Forests 

Algorithm

Prediction Model for 

Remaining Cycle Time

Algorithm

Parameters

Scheduling Rule

Real-Time Status of 

Production Line

Generate

Generate

Generate

Embed into

Update

Input

 

Figure 1: Scheduling Framework. 
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3.2 Feature Selection 

This research object has dozens of features related to remaining cycle time. If use all these features to build 

prediction model directly, it will waste computation resources and reduce prediction accuracy. So we must 

reduce feature dimensions firstly. Here we adopt correlation analysis to make feature selection and then 

obtain the target feature subset. 

In this paper, we adopt information gain as the correlation measure of characteristics and category 

labels. Select a set of features with strong classification ability according to information gain and then 

obtain the downsized feature subset (Kivijarvi et al. 2003). The definition of information gain is as below: 

Set 𝑋 as a random variable, the information entropy of 𝑋 is defined as (1): 

 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)𝑖 log2(𝑃(𝑥𝑖))                                                          (1) 

 

By observing random variable 𝑌, the information entropy of 𝑋 changes to 𝐻(𝑋|𝑌), defined as (2): 

 

𝐻(𝑋|𝑌) = − ∑ 𝑃(𝑦𝑗)𝑗 ∑ 𝑃(𝑥𝑖|𝑦𝑗)𝑖 log2(𝑃(𝑥𝑖|𝑦𝑗))                                       (2) 

 

After introducing random variable 𝑌, the new information entropy of 𝑋 is smaller than 𝐻(𝑋), i.e., after 

introducing 𝑌, the uncertainty degree of 𝑋 will become smaller or remain unchanged. If 𝑌 is uncorrelated 

with 𝑋 , 𝐻(𝑋|𝑌) = 𝐻(𝑋); else, 𝐻(𝑋|𝑌) < 𝐻(𝑋). The larger the (𝐻(𝑋) − 𝐻(𝑋|𝑌)) is, the stronger the 

correlation between 𝑋 and 𝑌 will be. Set information entropy 𝐼𝐺(𝑋|𝑌) as the difference value between 

𝐻(𝑋) and 𝐻(𝑋|𝑌), defined as (3): 

 

𝐼𝐺(𝑋|𝑌)＝𝐻(𝑋) − 𝐻(𝑋|𝑌)                                                 （3） 

 

Normalize information gains according to (4): 

 

𝑆𝑈(𝑋, 𝑌) = 2[𝐼𝐺(𝑋|𝑌) (𝐻(𝑋) + 𝐻(𝑌)⁄ ]                                    （4） 

 

On account of these definitions about dependence measures, make features sorting and filtering based 

on the correlation between feature 𝑓𝑖 and category label 𝐿. Then select several features with the strongest 

correlation to form the objective feature subset. The algorithm flow is shown in Algorithm 1: 

 

Algorithm 1: Features Filtering(D, F, m) 

Input： database D with category label, original feature set F, the number of features m 

Output： simplified feature subset 

Steps： 1） compute information entropies 𝑆𝑈𝑖 between every feature 𝑓𝑖 and category label 

according to (1)~(4); 

2） sort these features in descending order according to 𝑆𝑈𝑖; 

3） select the first m features as the simplified feature subset.  

3.3 Build Remaining Cycle Time Prediction Model Based on Random Forest Algorithm 

Random Forest (RF) is an ensemble learning technique to improve the accuracy of methods using 

classification and regression trees by combining a large set of decision trees. It uses Classification 

and Regression Trees (CART) as the meta classifier and generates different training sample sets through 

Bagging. RF is suitable for high-dimensional and small sample data, does not need complex parameter 

selection process. 

3682



Li and Yu 

 

RF is a set of tree classifiers {h(a, βk), k = 1,2, ⋯ , ntree} . Where, meta classifier h(a, βk)  is a 

classification and regression tree generated from CART algorithm without pruning. a is the input vector. 

βk is an independent identically distributed random vector which can determine the growth progress of 

single trees. For regression problems, the final output is obtained by calculating an average of all tree 

predictions. The algorithm flow of RF is shown in Algorithm 2: 

 

Algorithm 2: Random Forest 

Input

： 
1.training set 𝑆 = {(𝑎𝑗, 𝑏𝑗), 𝑗 = 1,2, ⋯ , 𝑛}, (𝐴, 𝐵) ∈ 𝑅𝑑 × 𝑅 

2. testing set 𝑎𝑗 ∈ 𝑅𝑑 

for 𝑗 = 1,2, ⋯ , 𝑁𝑡𝑟𝑒𝑒 

(1) carry on sample in original training set 𝑆 Bootstrap, obtain the training set 𝑆𝑗 

(2) generate a tree ℎ𝑗 without pruning by using 𝑆𝑗 

 a. randomly select 𝑀𝑡𝑟𝑦 features from 𝑑 features 

 b. for every node, select the best feature from 𝑀𝑡𝑟𝑦 features by Gini index  

 c. make mitosis until grow to the biggest one 

end 
Output

： 

1. trees set {ℎ𝑗, 𝑗 = 1,2, ⋯ , 𝑁𝑡𝑟𝑒𝑒} 

2. for testing sample 𝑎𝑗, the decision tree export ℎ𝑗(𝑎𝑗) 

regression: 𝑓(𝑎𝑗) =
1

𝑁𝑡𝑟𝑒𝑒
∑ ℎ𝑗(𝑥𝑗)

𝑁𝑡𝑟𝑒𝑒
𝑗=1  

classification: 𝑓(𝑎𝑗) = majority vote{ℎ𝑗(𝑎𝑗)}𝑗=1
𝑁𝑡𝑟𝑒𝑒 

 

There are two factors which may affect the accuracy of RF: the quantity of decision trees and the 

minimum quantity of node samples. This paper selects the error of outside bag as the index to evaluate 

whether the parameters of RF is good. Select these historical data of remaining cycle time as the learning 

sample when WIP is 6500, 7000, 7500, and 8000 pieces. By setting different leaf-node thresholds and 

decision trees quantities, we can  obtain the statistical results (shown in table 1): 

Table 1: Prediction Accuracy of Remaining Cycle Time with Different WIP, Leaf-Node Threshold, and 

Trees’ Quantity. 

WIP 
Leaf-Node 

Threshold 

Quantity of Trees  

10 20 30 40 50 

6500 

1 3.36 1.03 0.91 0.88 0.84 

2 3.94 1.28 1.11 0.98 0.89 

3 3.22 1.11 0.96 0.89 0.89 

5 3.36 1.51 1.30 1.15 1.11 

7 3.73 1.42 1.21 1.09 1.08 

9 3.51 1.53 1.32 1.26 1.24 

7000 

1 4.74 2.66 2.53 2.46 2.43 

2 5.52 2.71 2.60 2.54 2.49 

3 5.94 3.11 2.80 2.66 2.55 

5 5.76 2.94 2.75 2.68 2.61 

7 5.67 3.05 2.86 2.86 2.85 

9 5.89 3.24 2.99 3.00 2.96 

7500 
1 5.92 3.08 2.86 2.82 2.75 

2 6.22 3.26 3.02 2.95 2.91 
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3 6.02 3.12 2.97 2.95 2.88 

5 6.50 3.35 3.16 3.05 2.98 

7 7.09 3.85 3.53 3.45 3.35 

9 6.53 3.72 3.48 3.43 3.36 

8000 

1 6.64 3.64 3.40 3.36 3.28 

2 7.04 3.73 3.44 3.41 3.32 

3 6.54 3.76 3.63 3.55 3.52 

5 7.35 4.04 3.78 3.63 3.52 

7 7.35 3.90 3.80 3.75 3.66 

9 6.98 4.24 3.91 3.83 3.76 

 

We can conclude from table 1 that when the quantity of decision tree is less than 20, the main factor 

which affect the prediction accuracy is the quantity of decision tree; when the quantity of decision tree is 

more than 40, the main factor which affect the prediction accuracy is the leaf-node threshold; with the 

reduction of sample quantity, the error becomes smaller. Make overall consideration, this paper set the 

quantity of decision tree to 40 and set the leaf-node threshold to 2. 

3.4 Flowchart of SRCTP 

SRCTP considered multiple characteristics of a semiconductor production line, such as machine load 

balancing, dispatching of hot lot, and dispatching of batch workpiece, and it took the prediction value of 

remaining cycle time as one of the decision variables. The proposed SRCTP is described in the form of a 

new work-flow involving both BPMs and non-BPMs. The decision flow is shown in Fig.2. 

 

Step 1: if machine 𝑖 is available at time 𝑡, judge whether the machine is a BPM. If yes, turn to step 8. 

Otherwise, turn to step 2. 

 

Step 2: judge whether need to predict the remaining cycle time of the current workpiece according to 

(5).  

𝐼𝑓 ∑ 𝑁𝑖𝑚𝑖𝑚 ≥ (24 min(𝑡𝑖𝑚)⁄ )𝑜𝑟 (𝑡 − 𝑡𝑛
𝑝𝑜𝑖𝑛𝑡

) > 24ℎ𝑜𝑢𝑟, 𝑡ℎ𝑒𝑛 𝑥𝑛
𝑝𝑟𝑒

= 1                   (5) 

 

Step 3: gather related data from the production line, predict the remaining cycle time according to the 

RF algorithm mentioned in section 3.3 and update it. 

 

Step 4: compute the emergency degree of workpiece in the queue according to (6). 

𝜏𝑖
𝑛(𝑡) = {

𝑀𝐴𝑋,                                                      𝑡𝑛
𝑝𝑟𝑒

≥ 𝐷𝑛 − 𝑡

𝑡𝑛
𝑝𝑟𝑒

(𝐷𝑛 − 𝑡 + 1)⁄ − 𝑃𝑛
𝑖 ∑ 𝑝𝑛

𝑖
𝑛⁄ ,    𝑡𝑛

𝑝𝑟𝑒
< 𝐷𝑛 − 𝑡

                                 (6) 

 

Step 5: compute the workload degree of machine according to (7). 

𝜏𝑖𝑑
𝑛 (𝑡) = ∑ 𝑃𝑛

𝑖𝑑
𝑛 𝑇𝑖𝑑⁄                                                                 (7) 

 

Step 6: compute the dispatching priority of workpiece in the queue according to (8). 

𝑝𝑛＝ {
𝑊𝑇𝑖

𝑛,                             𝜏𝑖
𝑛(𝑡) = 𝑀𝐴𝑋

𝛼1𝜏𝑖
𝑛(𝑡) − 𝛽1𝜏𝑖𝑑

𝑛 (𝑡),   𝜏𝑖
𝑛(𝑡) ≠ 𝑀𝐴𝑋

                                             (8) 

 

Step 7: sort the priorities of workpiece in the queue and select the workpiece with the highest priority 

to process on machine 𝑖. 
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Step 8: judge whether need to predict the remaining cycle time of the current workpiece according to 

(9). 

𝐼𝑓 ∑ 𝑁𝑖𝑚𝑖𝑚 ≥ (24𝐵𝑖 min(𝑡𝑖𝑚)⁄ )𝑜𝑟 (𝑡 − 𝑡𝑛
𝑝𝑜𝑖𝑛𝑡

) > 24ℎ𝑜𝑢𝑟, 𝑡ℎ𝑒𝑛 𝑥𝑛
𝑝𝑟𝑒

= 1                  (9) 

 

Step 9: gather related data from the production line, predict the remaining cycle time according to the 

RF algorithm mentioned in section 2.2 and update the predicted value 𝑡𝑛
𝑝𝑟𝑒

. 

 

Step 10: compute the emergency degree of workpiece in the queue according to (6). 

 

Step 11: traverse all workpieces in the queue before machine 𝑖, check whether exist hot lot. 

equipment is available?

batch-processing equipment?

judge whether to predict the 

remaining CT according to (5)

predict the remaining CT

 compute the emergency 

degree according to (6)

compute the load degree 

according to (7)

compute dispatching priority 

according to (8)

select a workpiece with the 

highest priority to be processed

judge whether to predict the 

remaining CT according to (9)

predict the remaining CT

 compute the emergency degree 

according to (6)

exist hot lot?

batch workpieces 

according to (10)

is bottleneck equipment?

judge whether 

downstream equipment is 

idle according to (13)

 wait for new 

workpieces 

batch workpieces 

according to (10)

batch workpieces 

according to (12)

compute priorities according to (14)

select a workpiece with the highest priority to be processed

Step1

Step2

Step3

Step4

Step5

Step6

Step7

Step8

Step9

Step10

Step11
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Step15
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N
Y

Y
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Y

Y

N

Y

N

YN

N
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Figure 2: Decision Flow of SRCTP 
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Step 12: batch workpieces according to (10). 
𝑓𝑜𝑟   𝑚 = 1   𝑡𝑜 𝑀𝑖                                                                                                  

𝑖𝑓  0 ≤ ∑ 𝑥𝑛
𝑖𝑚𝑥𝑛

𝐻 < 𝐵𝑖                                                                         

𝑡ℎ𝑒𝑛  𝑆𝑒𝑙𝑒𝑐𝑡{min {(𝐵𝑖 − 𝑥𝑛
𝑖𝑚𝑥𝑛

𝐻), (𝑁𝑖𝑚 − 𝑥𝑛
𝑖𝑚𝑥𝑛

𝐻)}}|
max (𝑊𝑇𝑖

𝑛)

𝑒𝑙𝑠𝑒 𝑖𝑓  ∑ 𝑥𝑛
𝑖𝑚𝑥𝑛

𝐻 ≥ 𝐵𝑖                                                                        

𝑡ℎ𝑒𝑛 𝑆𝑒𝑙𝑒𝑐𝑡{𝐵𝑖}|max (𝑡𝑛
𝑝𝑟𝑒

−(𝐷𝑛−𝑡))                                                     

               (10) 

 

Step 13: judge whether machine 𝑖 is a bottleneck one according to (11). 

𝐼𝑓 ∑ 𝑁𝑖𝑚𝑖𝑚 ≥ (24𝐵𝑖 min(𝑡𝑖𝑚)⁄ ), 𝑡ℎ𝑒𝑛 𝑥𝑖
𝐵 = 1                                            (11) 

 

Step 14: batch workpieces with the same process menu according to (12). 

𝑆𝑒𝑙𝑒𝑐𝑡{𝐵𝑖}|max (𝑊𝑇𝑖
𝑛)                                                                (12) 

 

Step 15: judge whether the downstream machine 𝑖𝑑 is idle according to (13). 

𝑖𝑓 ∑ 𝑁𝑖𝑑𝑖𝑚 ≤ (24𝐵𝑖 max(𝑡𝑖𝑑
𝑤 )⁄ ), 𝑡ℎ𝑒𝑛 𝑥𝑖𝑑

𝐼 = 1                                         (13) 

 

Step 16: batch workpieces according to (10). 

 

Step 17: wait for the new coming of workpieces and turn to step 8. 

 

Step 18: compute the priority of each batch according to (14). 

𝑝𝑘＝𝛼
𝑁𝑖𝑘

ℎ

𝐵𝑖
＋𝛽

𝐵𝑖

max (𝐵𝑖)
− 𝛾

𝑝𝑖
𝑘

max (𝑝𝑖
𝑘)

− 𝜎
𝑁𝑖𝑑

𝑘

∑ 𝑁𝑖𝑑
𝑘

𝑘 +1
                                            (14) 

 

Step 19: sort all workpieces in the queue according to its priority and select a workpiece with the 

highest priority to process. 

4 SIMULATION AND VERIFICATION 

Take an actual 6" wafer production line of a wafer manufacturer in Shanghai as the object, we built a 

corresponding simulation model in our previous work. The production line has 11 processing areas 

including oxidation, diffusion, injection, epitaxial growth, photolithography, dry etching, deposition, 

sputtering and wet cleaning and another three non-processing areas, i.e., the virtual machine, testing and 

outsourcing. In addition, its machines can be divided into five different types: single-processing machines, 

batch-processing machines, multi-wafer processing machines, cluster tools and tanks.  

The simulation system is built by using Tecnomatix Plant Simulation and selecting SQL Server 2008 

as the DATA PaaS, and is mainly composed by two layers: simulation model and database. The former 

includes show layer of model and control layer of simulation, the latter stores information related to the 

production system and the simulation results.  

4.1 Performance Comparison among Different Scheduling Strategies 

Firstly, study the influence of remaining cycle time prediction on the system. Set these parameters 

(𝛼, 𝛽, 𝛾, 𝜎) as 0.5. Make simulations with different scheduling strategies under 6500, 7000, 7500, and 8000 

pieces WIP level, results are shown in table 2. Where, SRCTP-NB represents applying SRCTP only on 

non-BPMs; SRCTP-B represents applying SRCTP only on BPMs; DDR is a Dynamic Dispatching Rule 

(DDR) presented by Li Li et al. in 2012 (Li et al. 2012); FIFO represents a scheduling strategy named First 

in First out (FIFO); EDD represents a scheduling strategy named Earliest Due Date (EDD). MOV represents 

the average movement of workpieces and its unit is ten thousand steps; MOV_D represents the variance of 
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MOV, its order of magnitudes is thousand; TH represents the average TH, its unit is slice; TH_D is the 

variance of TH; MUT is the machine utilization time, its unit is million seconds. The simulating time span 

is 90 days and the first 30 days are the warming-up period. 

Table 2: Performance Comparison among Different Scheduling Strategies. 

WIP 
Performanc

e 

Scheduling Strategies 

SRCTP_NB 
SRCTP_

B 
DDR FIFO EDD 

6500 

MOV 3.72 3.66 3.66 3.33  3.13  

MOV_D 4.83 5.30 5.22 5.98  3.84  

TH 7.48 7.06 7.00 7.83  6.06  

TH_D 5.66 8.46 8.54 4.40  3.65  

MUT 2.60 2.54 2.51 2.29  2.35  

7000 

MOV 3.65 3.55 3.57 3.39  3.16  

MOV_D 4.90 4.54 5.03 6.81  4.14  

TH 7.56 7.46 7.55 7.80  6.13  

TH_D 6.95 7.84 7.49 4.51  3.48  

MUT 2.60 2.47 2.48 2.33  2.37  

7500 

MOV 3.70 3.61 3.56 3.30  3.15  

MOV_D 4.90 4.54 5.03 6.00  4.12  

TH 7.56 7.46 7.55 8.15  6.22  

TH_D 6.95 7.84 7.49 4.21  3.35  

MUT 2.58 2.50 2.48 2.27  2.36  

8000 

MOV 3.68 3.59 3.59 3.30  3.20  

MOV_D 4.48 4.73 5.37 6.81  4.65  

TH 7.96 8.01 7.75 8.28  6.39  

TH_D 6.22 7.68 6.94 4.71  3.53  

MUT 2.65 2.51 2.53 2.25  2.40  

 

Through comparing performances in different scheduling strategies, this paper obtained the following 

three conclusions. 

 

(1) Heuristic scheduling rules usually only optimize a few performances, which result in that a few 

performances are much better but the else performances are not good. SRCTP_NB, SRCTP_B and 

DDR can optimize most performances better in different load situation, because these three 

methods considered multiple factors from aspects of workpiece, machine, workload situation, and 

batch mode. Besides, with the increase of WIP level, the advantage becomes much more obviously.  

(2) Performance MOV and TH of DDR are worse than those of SRCTP_NB and SRCTP_B. This 

means that remaining cycle time prediction can improve TH and MOV. When WIP level is 6500 

pieces, MOV and TH improved 1.6% and 6.9%, respectively; when WIP level is 7000 pieces, MOV 

and TH improved 2.2% and 1.5%, respectively; when WIP level is 7500 pieces, MOV and TH 

improved 3.7% and 1.4%, respectively; when WIP level is 8000 pieces, MOV and TH improved 

2.6% and 2.6%, respectively. So, remaining cycle time prediction can improve MOV and TH of a 

production line. 

(3) No matter how much the WIP level is, performances of SRCTP_NB are better than those of 

SRCTP_B. In other words, use SRCTP on non-BPMs, the production line will obtain much better 

performances. 
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4.2 CT and ODR of Different Products 

Since the difference among products in real semiconductor production line is usually non-negligible. This 

paper counted CT and variance of CT of different 9 products with different scheduling strategies and 

average ODR of different 9 products, respectively shown in table 3 - table 5. 

Table 3: CT of Different 9 Products. 

Scheduling 

Strategies 

Product Category 

NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8 NO.9 

SRCTP-NB 44.21  20.59  38.73  52.67  50.65  21.65  20.10  88.17  41.60  

SRCTP-B 44.18  21.20  43.65  50.26  48.73  22.04  21.90  83.21  40.36  

DDR 44.16  20.91  44.80  49.65  48.11  21.61  22.33  83.21  41.93  

FIFO 45.48  12.29  60.07  58.97  39.84  12.74  38.42  null 50.75  

Table 4: Variance of CT of Different 9 Products. 

WI

P 

Scheduling 

Strategies 

Product Category 

NO.

1 
NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8 NO.9 

650

0 

SRCTP-NB 3.04 1.94 6.69 2.14 2.74 1.45 3.59 2.85 3.61 

SRCTP-B 1.13 0.78 3.87 0.41 0.76 0.72 2.86 0.47 3.00 

DDR 0.77 0.37 1.34 0.27 0.73 0.28 2.26 0.47 0.36 

FIFO 3.54  3.88  13.34  18.75  18.79  6.86  10.91  null 21.99  

700

0 

SRCTP-NB 3.89 1.93 6.95 0.56 0.45 2.23 4.05 2.89 3.10 

SRCTP-B 3.63 1.52 4.82 1.53 1.91 2.34 2.66 2.15 3.52 

DDR 3.52 0.61 5.02 1.69 2.02 2.15 1.99 2.22 2.74 

FIFO 8.70  9.03  17.07  25.29  22.07  9.83  12.38  null 29.50  

750

0 

SRCTP-NB 3.70 2.13 6.22 1.81 1.36 3.33 4.34 1.11 4.66 

SRCTP-B 3.87 1.77 4.09 2.08 2.15 2.33 2.63 4.26 2.48 

DDR 5.41 2.68 6.17 2.49 3.07 3.56 2.82 2.72 3.77 

FIFO 5.16  4.84  18.94  25.60  22.11  10.05  14.52  null 28.88  

800

0 

SRCTP-NB 6.28 4.28 7.02 2.13 2.29 4.84 4.40 2.05 5.52 

SRCTP-B 6.43 3.56 7.95 3.58 3.21 4.43 3.81 5.16 5.57 

DDR 5.64 3.55 5.45 3.64 4.05 4.05 3.28 2.90 4.05 

FIFO 
10.4

1  9.99  17.35  27.60  23.97  10.39  14.28  null 27.88  

Table 5: Average ODR of Different 9 Products. 

WIP 
Scheduling Strategies 

SRCTP-NB SRCTP-B DDR 

6500 51.80% 38.06% 36.84% 

7000 37.44% 25.95% 34.07% 

7500 23.29% 9.11% 25.96% 

8000 17.72% 4.85% 17.86% 
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Through table 4-6, this paper obtained the following three conclusions. 

 

(1) There is almost no production in NO.8. That is because FIFO always select the first-in workpiece 

to process. Table 3 shows that CT of NO.8 is the longest one, which determine the workpiece is 

difficult to be selected by machine to be processed under strategy FIFO. 

(2) Variance of CT under strategy SRCTP_NB, SRCTP_B and DDR are all better than strategy FIFO 

no matter in which WIP level and which product category. This is because strategy SRCTP_NB, 

SRCTP_B and DDR all comprehensively considered machine information, workpiece information 

and production line information. For strategy SRCTP_NB, SRCTP_B and DDR, when WIP level 

is 6500 pieces, the CT variance of SRCTP is larger than that of DDR. With the increase of workload 

level, the CT variance of SRCTP and that of DDR become closer. So, SRCTP can improve the 

production system much more under high load level. 

(3) With the increase of workload level, the descent velocity of ODR under SRCTP is more rapidly 

than that of DDR. But, take MOV and TH into account, SRCTP performed better than DDR. 

5 CONCLUSIONS 

This paper proposed a scheduling strategy with remaining cycle time prediction for semiconductor 

production lines. Inspected the effectiveness of the proposed method based on a simulation model of a real 

production line in semiconductor manufacturing company of Shanghai. Although the proposed method 

performed well in the mentioned simulation model, it still has room for improvement: consider more 

practical problems in semiconductor production line. Such as rework issues of workpiece, addition of test 

workpieces and machine downtime. The follow-up work will add these aspects so that perfect the proposed 

method. 
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