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ABSTRACT

Network-based attacks like the distributed denial-of-service (DDoS) attacks are not new, but we are beginning
to see attacks of unprecedented scale. Examples of such attacks include the 2016 attack on DYN INC
that crippled a part of the Internet for hours, and the attack on Liberia, which partially brought down the
African nation. Limitations in identifying vulnerable Internet infrastructure and testing possible defense
strategies are a part of the problem. We need a simulation testbed that can reflect the complexity of the
Internet, yet allows to swiftly test attacks, providing insights that can apply to real-world attack scenarios.
In this research, we have designed a test-bed that mirrors the Internet infrastructure of the US and can
simulate the Internet traffic flow patterns for different attack targets. We also estimate the degradation in
the quality-of-service and the number of users impacted in two attack scenarios.

1 INTRODUCTION

Network based cyber-attacks like DDoS appear to be a growing phenomenon (Inofsecurity 2016). However,
there is no clear understanding of where the attacks are coming from, how the attacks are organized, and
how the attack targets are identified. While it is known that a majority of these attacks are originating
from bots (Kandula et al. 2005, Alomari et al. 2012), there is lesser clarity on where the bots are located
(Kumar and Carley 2016b) and how the bots are controlled (Stinson and Mitchell 2007, Santanna et al.
2015). To add to the puzzle, the specific impact and maximum possible damage of such attacks are also not
known, and we only estimate the impact after the attacks have happened. However, one thing is clear that
the bandwidth used in these attacks are increasing with time (Inofsecurity 2016). In a recent example of
the cyber-attack on the African nation of Liberia (Kumar 2016), thousands of bots targeted the fiber-optic
cable exchange point (IXP), bringing down the Internet connectivity of the entire country for almost a
day. Another example is the attack on Estonia (Ottis 2008), which crippled the Estonia’s government
web-services for a few weeks. These incidents highlight the serious nature of such attacks and call for
policies to counter them (Kumar, Benigni, and Carley 2016), and ways to understand and control them (Yu
et al. 2014, Kumar and Carley 2016a). In this research, we propose a simulation test-bed to estimate the
impact of such attacks.

Because of the complexity of the Internet, simulating an Internet-scale network based attack is nearly
infeasible. Most existing simulation environments are designed for small-scale tests and are usually
conducted in a lab setting using a few systems. Results from a small-scale simulation may not be a good
representation of the Internet scale problem. The complexity is two-fold. First, it’s hard to model agents that
could resemble modern computer systems, but at the same time consume reasonable computing resources
for a large-scale simulation. Second, openly available information on the Internet infrastructure is limited.
Fortunately, we can endeavor to overcome both the problems. For a network-based attack like DDoS, we
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(a) The location of physical conduits. Adapted
from Durairajan, Barford, Sommers, and Willinger
(2015) with permission from the authors. Copyright
2015 by the Association for Computing Machinery.

(b) The network built using the physical conduits data (shown
on the left). The green nodes are the IXPs located in different
cities, and the conduits connecting them are modeled as
straight edges.

Figure 1: The network designed to simulate attacks on the US Internet infrastructure.

can model the attackers and the target as dumb systems that can send and receive network packets. For the
second limitation of modeling a close to the real Internet infrastructure, we apply recent development on
mapping the optical fiber cables of the US. The mapping of the Internet infrastructure project (Durairajan
et al. 2015) (see Fig.1a) has provided a practical knowledge of the US cyber infrastructure. By combining
the cyber-infrastructure data with data on the Internet adoption by countries (Whitehouse.gov 2016), a
simulation environment could be built to model a real attack environment. Our simulation environment
allows to evaluate different attack scenarios and providing information on average degradation of the
quality-of-service, and the approximate number of users impacted.

The important contributions of this research are: a) We design a simulation testbed mirroring the fiber-
optics Internet architecture of the US. To the best of our knowledge, this is the first work that simulates
DDoS attacks on a realistic US cyber infrastructure. b) We present a model to estimate the degradation
in the quality-of-service and the number of users impacted in different attack scenarios. To make our
simulation more realistic, we use a dynamic packet flow algorithm that changes the Internet traffic flow
pattern with congestion. c) Our model enables to find cyber installations that are more vulnerable to attacks.
We believe our approach could be useful to cyber-infrastructure companies and the Homeland Security.

The rest of this paper is organized as follows. Section 2 presents related work. We introduce the
methodology of the simulation in section 3. In section 4, we model and discuss the experiments. The results
of the experiments are presented in section 5, along with a discussion on the outcomes of the simulations.
Limitations of our approach are described in section 6. We finally conclude and discuss future work in
section 7.

2 RELATED WORK

Prior work on using simulation to model cyber-attacks can be grouped in two categories: a) Measuring
resiliency of the Internet infrastructure b) Simulation of network based attacks.

2.1 Measuring Resiliency of the Internet Infrastructure

To explore the node to node resiliency of the global Internet infrastructure to under-sea cables physical
damage, Omer et al. (2009b) and Omer et al. (2009a) modeled the Internet resiliency as a network
optimization problem. The authors solved it using linear and mixed integer programming with constraints.
Since most cyber-attacks don’t entirely stop the flow of network packets but rather makes the Internet
slower, this model is not best suitable for simulating DDoS attacks. Moreover this model did not account
for the dynamic nature of the path used by Internet traffic, which is included in our model. In this research,
we are interested in resiliency, but we don’t model physical damage to the under-sea cables.
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2.2 Simulation of Network Based Attacks

A number of researchers (Kotenko and Ulanov 2005, Kotenko 2005, Kotenko and Ulanov 2006, Li et al.
2008, Zhang et al. 2008, Qwasmi et al. 2011, Grunewald et al. 2011) have simulated DDoS attacks,
albeit on a much smaller scale. Computer-systems are complex, and modeling their behavior makes agents
complex and resource intensive which limits the scale of simulation. For example, Kotenko and Ulanov
(2005) investigated different attack scenarios and protection mechanisms for networks with a variety of
structures and security policies, and used OMNeT++ INET Framework for their development. The relative
complexity of these models render them limited to small scale, with limited number of systems. If an agent
is complex, it takes more computer memory to create and execute the simulation. We resolve this problem
by proposing very simple agents, with only limited networking (send and receive data) capability. The
study by Kong et al. (2003) is the closest to our research. In this work, Kong et al. (2003) modeled general
flow of computer network using NS2 based simulation engine. The simulator creates Internet traffic from
regular systems (not infected) as Pareto distribution, and traffic from bot systems as uniform distribution.
In evaluation, they present how changes in source-network and sink-network affect the quality of services
on the network. However, their network is randomly generated and hence does not reflect the reality.
Simulating network flow on the realistic Internet network topology of the US, is one of our important
contributions.

Another research area that is close to this research is the traffic simulation problem. Balmer, Cetin,
Nagel, and Raney (2004) used multi-agent simulations to model a traffic problem. The design is not well
aligned to test cyber-attacks considering the route that a packet takes is more complex than a highway
traffic flow.

3 METHODOLOGY

Distributed Denial of Service (DDoS) attacks are generally of two types a) Network-layer attacks b)
Application layer attacks. In a network layer attack, the adversary exhausts the available network bandwidth
of the service provider or the server, where as, in an application layer attack the goal is to overwhelm the
processing capability of the target-server or router. In this study, we focus on network layer attacks. A
network layer attack is based on the assumption that a company’s network resources like firewalls, routers,
and servers have limited capacity, which is based on the network requirements of the company. These
requirements are determined based on average usage and are often not good enough to survive attack
scenarios. The attacker’s strength is decided by the number of the bots in control. During an attack, these
botnets send a large number of network packets to saturate the limited bandwidth of the target company,
so that genuine users are not able to access the services.

We use an agent-based network simulation approach to simulate cyber-attacks. Our simulation envi-
ronment comprises of a network of connected Internet Exchange Points (IXPs) as nodes and Internet packet
traffic as flow (see Fig. 1). We would like to clarify that the problem that we are solving is different from
the network resiliency problem as solved in (Omer et al. 2009b, Omer et al. 2009a), and the network
robustness problem as done in (Durairajan et al. 2015). The important difference is the dynamic nature
of traffic in the Internet. In the Internet, the flow of packets change path as a portion on the Internet gets
congested, and hence assuming the Internet network to be a static network is not right. In fact, two packets
meant for the same target may take different routes. The dynamic nature of the Internet results in impacting
users that are sometimes physically far away from the actual attack target.

In this section, we present the agent model, the simulation environment model, the flow model and
approximations used, our problem formulation and the pseudo code for simulation.

3.1 Agent Modeling

We use an agent-based model for this simulation. We model computer-systems as active agents, and the
fiber-optics network as a passive environment. For simplicity, an agent is any system (including laptops,
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(a) Internet adoption in the US by county. (b) The generated computer density map.
Figure 2: The computer distribution used in our study is generated from population density distribution
and Internet adoption map (2013 census). In the right image, computers are grouped by connecting them
to the nearest IXP. Groups are visualized in different colors.

mobile devices, Internet of Things, and Servers) that is connected to the Internet. Agents can act both as
source or sink of packets, and to simulate a more realistic environment both the source and the sink have
limited bandwidth. Flow through links also have a bandwidth limitation. In simulation, source agents send
packets that travel from source to target (sink).

We have two types of agents. First agent type is ‘Un-compromised Agents’ i.e. the systems that are not
compromised. The second agent type is bots, i.e. the systems that are compromised and are used in attacks.
For location of ‘un-compromosed agents’ we use the data from US census on population and percentage
population with active Internet connection (Fig. 2a). For location of botnets (infected computers), we
us botnet tracker data from Malwaretech website (Malwaretech 2016). Since we know the approximate
location of each of the agents (shared by Malwaretech), we could approximate the route the packets from
an agent could take to reach a target (explained later). We can do the same for all bots, to understand the
network congestion these bots can create.

3.2 Environment Modeling

We used systems as agents to simulate the DDoS cyber attacks on the US Internet infrastructure. The
environment in our case is the network generated by the optical fiber cables and the Internet exchange
points (IXP). We model it as a network with nodes and links. Nodes represent the IXPs and links are optical
cables connecting different IXPs. We use optical-fibers data from Durairajan et al. (2015) for modeling
the links. Figure 1b shows the network built using nodes and edges data. The authors shared their data
on nodes, and their connections between cities (Fig: 1a), but they do not have data on bandwidth capacity
of these optical fibers. We approximate the bandwidth limitation of the long-haul pipes to 8 Tbps (Betker
et al. 2014).

3.3 Flow Modelling

An attack scenario is modeled as flow of large traffic to a target node. We first estimate the regular traffic
flow in the network without any attacks using computer density distribution. For estimating the attack traffic,
we first pick an attack target, and direct all bots to send data packets to the target. We then superimpose
the attack traffic on the regular traffic. In our experimental attack scenarios, We use the information on
the bots locations shared by a security website (Malwaretech 2016) to find the nearest IXP for all bots,
and estimate the number for bots connected to each IXP (Fig. 3). The number of bots connected to each
IXP allows to estimate of the attack-traffic that an IXP generates and adds to the Internet. After estimating
the attack-traffic, we remove the bots from the simulation and only keep the IXPs with equivalent bots
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load. This way we avoid the complexity of using millions of systems in the simulation, but still use their
attack impact. The superposition of attack traffic on regular traffic creates a congestion map of the entire
network, and allows us to measure the drop in average quality-of-service. We also estimate the number of
users impacted, which is indirectly approximated by the number of users connected to each IXP (Fig. 3b)
and the estimate of congestion at each IXP.

3.3.1 Simplified Model of Packet Flow on the Internet

Because the Internet is very complex with billions on systems and millions of routers, simulating an attack
with so many components is unrealistic. We simplify the packet flow architecture such the simplified model
contains the necessary characteristics needed for a realistic simulation. Figure 3 shows a simplified version
of packet flow through the Internet that has been used in this work. In the figure, compromised systems
(shown in light yellow) send a stream of packets to a target system (shown in red). As the compromised
systems (bots) send packets at the same time, the packet flow (shown as purple arrows) adds up as the
flow moves towards the target. To keep the simulation simple, we have entirely removed the systems
by their contribution made to an IXP (shown in the right image). This simplification is possible because
the number of systems connected to an IXP does not change dynamically (on an average) and hence the
network topology is mostly static (flow is not). To summarize, we replace all systems with their weight on
the nearest IXP, similarly we replace all bots with their equivalent weight on the nearest IXP. The count of
bots and systems connected to an IXP enables us to estimate the attack traffic the IXP can generate, and
also allows to estimate the number of users that get impacted when an IXP is congested.

IXP	 IXP	

Compromised	System	(Bot)	 Normal	System			 IXP	Target	System	

ISP	

ISP	

ISP	

ISP	
ISP	

ISP	

IXP	 ISP	

IXP	Target	System	

4				+	6		

Compromised	System	(Bot)	 Normal	System			

2				+	1		

3				+	3		

Figure 3: A Network flow representing an attack scenario. Left figure shows a scenario in which the red
node is the target of attack. Yellow nodes are bots or attacking systems that generate network flow (traffic).
Purple arrows show the direction of traffic flow, and the width of arrows shows the volume of traffic. Figure
on the right is a simplified version on the left network, where we have replaced the individual systems by
their counts on IXPs as attributes. The simplification speeds up the network simulation as the simplified
network only includes IXPs (with equivalent system weights) and a target.

3.3.2 Approximating the Congestion Control Algorithms Used on the Internet

We approximate the Border Gateway Protocol (BGP) algorithms commonly used by gateway routers by
Dijkstra’s shortest path algorithm (Dijkstra 1959). BGP is commonly used as the protocol between Internet
service providers and is designed for packets to take the most efficient route. In simple terms, BGP uses cost
metrics for each path to find the most optimum path, which also makes it complex. To keep the simulation
simple, but still include the impact of cost of traversal through congested paths, we used Dijkstra’s shortest
path algorithm, where cost in a path is determined by the congestion in the path. Including Dijkstra’s
algorithm makes the simulation dynamic and more realistic, e.g. as we increase the attack bandwidth
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sent by a bot, the packets are likely to take different paths, and hence creates congestion in other paths
influencing the quality of service in areas which may not be close to the target.

3.4 Problem Formulation

Given a flow network G = (V,E), many non-negative sources f : (Vi)→ Z+, a negative sink h : (Vj)→ z−,
links with limited capacity Ei(Vi,Vj)< E(max), there exists a equilibrium state of flow using any weighted
shortest path algorithm. Ui is the number of systems (or users) connected to Vi (IXP) which is determined
by the systems density map (Fig. 2b), where users (U ∼User Density) grouped to nearest node (explained
in Fig. 3). Similarly Bi ∝ f : (Vi) is the number of bots connected to Vi (IXP). Here Bi is determined by
bots density data from Malwaretech (Malwaretech 2016) grouped by nearest node (IXP). The equilibrium
state allows estimation of congestion at each node Ci, which enables to estimate the number of users
impacted ∑iUi. To estimate f : (Vi), i.e. the flow generated by node Vi (an IXP), we use bot density
function (B∼ Bot Density), and group the bots to their nearest node which implies Bi is the total number
of bots connected to ith node. To estimate the number of users impacted (Uimpacted), we sum the number
of users ∑iUi connected to ith congested node. Given an attack target, the average reduction in quality of
service could be measured by estimating the congestion in the network, which could be approximated by
∑i, j E(Vi,Vj)avg/∑i, j E(Vi,Vj)congestion. In an attack situation, the users trying to access the targeted server
(or IXP) get impacted the most. Also the users connected to other nodes experiencing congestion get
impacted. We estimate the number of users impacted by counting all the users connected to the congested
IXPs (Uimpacted = ∑i∈cUi,where c is the set of congested nodes). Given an attack scenario with an attack
target, we measure the trend of ‘number of users’ impacted, with increase in attack bandwidth (e.g. each
infected system sends attack bandwidth from 1 Mbps to 5 Mbps) (see Algorithm 1). Source code to
reproduce similar experiments can be obtained by requesting the first author.

3.5 Virtual Experiment

Table: 1 summarizes the variables used in the experiment. We have two parameters in the model, a target and
the bandwidth of attack initiated by each bot. The constants are maps that we obtained from different data
sources including ‘optical-cable’ map from Durairajan et al. (2015), population and computer ownership
from census, and map of Mirai botnet (Malwaretech 2016). The output variables are the number of users
that get impacted in an attack scenario, and the degradation on QoS (sometimes referred as congestion).
To validate, we used the data from downdetector website.

4 EXPERIMENTS

Our experiment has different scenarios, and each scenario has a target. Though it is possible to use multiple
targets, to keep the results easy to understand, we have used a single target in each scenario. For example,
we can pick a server hosted in New York city as an attack target, and simulate the experiment. In any
experiment, we generate network traffic from all nodes (except the target node) directed towards the chosen
target. The simulation will result in a map of users that get impacted because of attack on the target. We
can also determine the trend the number of users that get impacted as the attack bandwidth (by each bot)
is varied. Besides, we can also estimate the average degradation (using congestion in the network) in the
quality of service with the increase in attack bandwidth. We simulated two different attack scenarios and
estimated the impact of attacks.

4.1 Scenario 1 - Attack on Dyn Inc on 21st of Oct, 2016

Targeting a server hosted in New York City, we try to mimic the attack on DYN Inc (DYN INC
2016). In this attack simulation, all bots target the New York city server. Since Downdetector web-
site (http://downdetector.com/) provides data on how people in different regions got impacted because of
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Algorithm 1: Pseudo Code to Estimate the Number of Users Impacted
Data: Network H, Target target, UsersAtEachIXP usersIXP
Result: Number of Users Impacted in Each Iteration
impactedUsers = []
while i < numberO f Iterations do

for node ∈ H.nodes() do
if node is not Target then

/* Find weighted shortest path from source to target using Dijkastra algorithm*/
path = di jkastraPath(H,node, target)
for edge ∈ path do

/*Increase flow in edge*/
H.currentFlowBandwidth[edge] += attackBandwidthIncrement
/*Update flow through each ixp in the path*/

end
end

end

numberO fUsersImpacted = 0
for ixp ∈ H.ixps() do

if ixp. f low≥ maxCapacityO f IXP then
/* Increase number of users impacted by the number of users connected to IXP */
numberO fUsersImpacted+= ixp.users

end
end
impactedUsers←− numberO fUsersImpacted
i++

end

the DYN attack, this attack could be used to approximately validate the simulation. Note that the attack
on Dyn Inc. is more complex than just a simple DDoS attack as the attack was done in three waves and
the target of attack varied throughout the day. However, because of absence of data on the location of the
exact server that was attacked in each wave, we assume the New York server to be the only target. Even
with this simplification, we get a close estimate of users impacted by this attack.

4.2 Scenario 2 - Attack on AT&T on 28th of Oct, 2016

In this scenario, we try to model an attack on the AT&T Internet infrastructure in the Chicago area. This
scenario attempts to model the network outage reported by Downdetector website (http://downdetector.com/)
on 28th of October 2016. The exact cause of the problem with AT&T servers is unknown, but a visualization
map of the users impacted was obtained from the website.

In the next section, we describe the results obtained for each of the experiments.

5 RESULTS AND DISCUSSIONS

In this section, we present the simulation results for the two attack scenarios, and compare them with their
known impact map for validation. We also describe the impact of those attacks on the Quality of Service
(QoS).
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Table 1: Virtual Experiment Table

Factors Values # of Values
Inputs
Attack Target (A web-server or an IXP) One of the nodes in the Network 1
Bandwidth of Attack 1 to 5 Mbps per bot 10
Constants
Long-haul optical-fiber Map Map from (Durairajan et al. 2015)
Population density Number from census
Computer Ownership Percentage from census
Map of Botnets Mirai Bot family from (Malwaretech 2016)
Outcomes
Number of Users Impacted In thousands
Degradation in Quality of Service Percentage 1-100
Validation
AT&T Attack on 28th of Oct, 2016 Map of Impacted Users
DYN Attack on 21st of Oct, 2016 Map of Impacted Users

5.1 Scenario 1 - Attack on Dyn Inc. on 21st of Oct, 2016

In scenario 1, we use a server linked to the New York city IXP as the target of attack. The attack tries
to simulate the DYN server attack that happened on Oct 21, 2016. We first discuss the congestion in the
fiber-optics cables as observed in the simulation (Fig. 4a). In Fig. 4a, the width of edges indicate the
network flow through the optical fibers, and the color indicates the congestion level. As the bandwidth of
attack is increased in each iteration, more and more edges (optical-fibers) showed congestion. This is as
expected in an attack. However, the edges that got more congested were not always close to the target.
In fact, two of the most congested links are actually connecting the west coast areas, and one of the links
is connecting the southern part of the US. This is a result of the dynamic nature of simulation. Because
Dijkstra’s shortest path algorithm chooses path with the least cost from a source to a target, this changes
the packet flow routes as current routes get more congested. Moreover, we can see that the most congested
links are mostly linking high density areas and are long-haul links. This can be explained by the fact that
these long haul links are likely to be the best route from far-off areas, as the length of optic-fibers do not
affect the edge weight.
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actual impact as reported by DownDetector website.
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Figure 4b shows the result of the final stage of simulation (max bandwidth of attack). In Fig. 4c, we
show the actual impact as reported by downdetector website. The image was downloaded from wikipedia,
and shows the impact of the DYN attack as measured by ‘downdetector.com’. The red areas are most
adversely impacted regions. The image shows that the east coast of the US was primarily impacted because
of the attack, but outages were also recorded in some western and southern parts of the US. If we compare
the simulation result (Fig. 4b) and the actual impact (Fig. 4c), we can observe that both of them highlight
the eastern areas as mostly impacted. This is expected as the target of the attack was based in the New
York city. What is interesting to see that some areas in the central, and western parts of the US were
impacted, and the simulation also predicted similar areas.

Lastly, we use the trend plot (Fig. 6a) to discuss the percentage of users impacted, and how the number
changes with increase in the bandwidth of attacks. As we can observe, the increase is steeper in the
beginning but the rate of increase slows down with increase in attack. The plot of the users impacted is
based on the estimation of the users who are actively connecting to the attacked server.

5.2 Scenario 2 - Attack on AT&T on 28th of Oct, 2016

In scenario 2, we use Chicago city AT&T server as the target of attack. The attack tries to mirror the AT&T
server problem that happened on Oct 28, 2016. We first discuss the congestion in the fiber-optics cables
as observed in the simulation (Fig. 5a). As described earlier, the width of edges indicate the network flow
through an optical pipe, and the color indicates congestion level. As the bandwidth of attack is increased
in each iteration, more and more optical-fibers (edges) registered congestion. Figure 5b shows the result
of the final stage of simulation.
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(a) Simulation Scenario 2: Visual-
izing the congestion in the network
while attack on a server in Chicago.
Red lines are the congested routes.
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(b) Simulation result of degradation
in the quality of service by an attack
on a server connected to Chicago
IXP . More red is more severe.

(c) Actual impact as reported by
DownDetector website. The red ar-
eas are more adversely impacted re-
gions.

Figure 5: AT&T attack Simulation: For the AT&T outage on 28th Oct, we compare the result of simulating
an attack on a server connected to Chicago IXP to actual impact as reported by DownDetector website.

In Fig. 5c, we show the actual impact as reported by downdetector website. The image was obtained
from ‘downdetector.com’ website. The red areas are most adversely impacted regions. The image shows
that areas near Chicago and south of Chicago were mostly impacted because of the attack, but minor
outages were also recorded in some far areas. If we compare the simulation result (Fig. 5b) and the actual
impact (Fig. 5c), we can observe that both of them highlight similar areas as the one primarily impacted.
The QoS not only degraded near the Chicago city but also in some areas far away.

Figure 6b shows the trend of ‘percentage of users’ impacted as the bandwidth of attack was increased
assuming assuming these users were actively trying connect to the server. As we can observe, the increase
is steeper in the beginning but the rate of increase slows down and converges.

If we compare the result of attack on ‘New York IXP’ to the result of attack on ‘Chicago IXP’, we
find that the plot of ‘number of users’ impacted is more steep in case of the attack on the ‘New York IXP’.

1236



Kumar and Carley

There could be many reason for this like the density of population around the New York city is higher
compared to density of population near Chicago, especially on the western sides of Chicago.
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(a) Simulation Result for attack on DNC server in the
city of New York.
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(b) Simulation Result for attack on AT&T server in
Chicago.

Figure 6: The plots show the trend of users (actively trying to connect) impacted with increase in attacks
bandwidth.

6 LIMITATIONS

We designed a simple network simulation model for DDoS, yet sophisticated enough, to mimic complex
nature of cyber-attacks. The benefit of simplicity is that we can efficiently simulate attacks that are generated
by millions of systems. To keep the model simple yet realistic, we have made a few assumptions. First,
The Quality of Service (QoS) as observed by a user is determined by the congestion of traffic at the nearest
IXP. This may not always be true, especially when the traffic is local to an ISP, e.g. a client is watching
video streaming data from a server located in proximity. In some other cases, rather than passing through
nearest IXP for all their traffic flow, ISPs engage in peering. Second, we approximate the botnet data from
the Mirai botnet population obtained from a website (Malwaretech 2016), which may or many not be an
accurate representation for many attacks. Mirai has recently initiated only some of the known attacks.
Also, these botnets have a dynamic nature, so they may grow or reduce in size with time. All these factors
limit our estimations. Third, we assumed that the bot locations are known and do not vary. In reality,
bots become alive when an infected system connects to the Internet (i.e. switched on) and disappear when
the system is disconnected (i.e. switched off). Finally, we used Dijkstra’s shortest path algorithm for path
estimation, which is again a crude approximation of the BGP routing algorithm used on the Internet.

7 CONCLUSIONS

In this research, we designed and implemented a network simulation model to understand the Internet
traffic flow pattern in a DDoS attack situation. To keep the simulation simple, yet mirror the complexity
of the Internet, we made certain assumptions that were reasonably justified. In particular, we combined
all bots and systems connected to an IXP as one node, which allowed us to approximate the amount of
attack traffic a node can generate, and the number of systems impacted if a node is experiencing traffic
congestion. To approximate the traffic generated by bots, we used bots data from a security website, and
to approximate the number of systems connected to an IXP, we used population density and the Internet
penetration survey data. To make our network test environment more realistic, we used the fiber-optics map

1237



Kumar and Carley

of the US from a recent research study. Using this novel network simulation test-bed, we simulated results
for two different attack scenarios to understand the traffic flow as a function of attack-bandwidth. The
traffic flow visualization enabled us to find the edges (fiber-optic cables) that are more prone to congestion
in case of an attack. We also used real data from downdetector.com website to compare both simulation
results and found a reasonably good similarity. We provided a list of assumptions that limit our study, but
we hope that the approach we have used could be used by the Internet Infrastructure companies or the
Homeland Security to better understand the Internet infrastructure vulnerabilities of the US.
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